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It is proved that the complex-ghost relativistic Geld theory with real space momenta, which was proposed
by Lee and Wick and by Lee, is not invariant under real Lorentz transformations in the second-order self-
energy part involving a complex-ghost-pair intermediate state.

I. INTRODUCTION expected cut corresponding to the pair state along the
real axis, and therefore the unitarity of the S matrix is
not violated. ' Thus, Lee and Wick'' succeeded in
constructing a convergent, unitary, relativistic field
theory.

There arises a question on the Lee-Wick prescription,
however. The conventional Feynman integral is mani-
festly Lorentz invariant (or covariant in general)
because by means of the Feynman —ie prescription
both energy and space-momentum integrations can be
regarded as real ones. If the energy integration is
regarded as an integration along a contour instead of
using —ic, the whole Feynman integral may be regarded
as a multiple contour integral as done explicitly in the
homological approach to the Feynman integral. The
Lee-Wick modified Feynman integral violates this
manifest Lorentz invariance, because its energy inte-
gration roust be a contour integration while its space-
momentum integrations must be real ones. It is, there-

fore, necessary to check whether or not the Lee-Wick
modi6ed Feynman integral is Lorentz invariant. Possible
violation of the Lorentz invariance' was implied by the
work of Cutkosky, Landshoff, Olive, and Polkinghorne, ~

who showed that in a certain complicated graph at
least two different results could emerge from the Lee-
Wick modi6ed Feynman integral if one considers

various Lorentz frames having comP/ex space momenta.
The purpose of the present paper is to prove that

the Lee-Wick prescription violates the invariance under

real Lorentz transformations for real values of the total
4-momentum in the second-order self-energy part
involving a complex-ghost-pair intermediate state. The
proof is given in Sec. II. In Sec. III, some remarks and

comments are made.

ECKNTLY Lee and Wick'' and I,ee' renewed
interest in constructing a convergent field theory

by using "complex-ghost" states, namely, the zero-
norm states whose energy eigenvalues are not real.
Previously, it had been believed4 5 that such a theory
would almost inevitably violate the unitarity of the
physical S matrix because the state consisting of a
complex ghost and its conjugate could have a real
eigenvalue and negative norm. Lee' explicitly showed,
however, that this belief was groundless in relativistic
theories.

According to Lee and Wick, ' the transition matrix
in the theory involving complex ghosts diverges ex-
ponentially as the time interval tends to infinity, but
if one extracts the physical part of it, one obtains. the
correct S matrix which is defined by using in-states and
out-states. Hence, in the relativistic field theory, the S
matrix can be calculated by means of Feynioan integrals
as usual, but some modification becomes necessary
owing to the above extraction. Instead of the conven-
tional Feynman —ie- prescription, the energy inte-
gration has to be made along a complex contour C,
which is obtained by deforming the real contour in such
a way that when the imaginary parts of the complex-
ghost masses gradually increase from infinitesimal to
their actual finite values, no paths of the masses collide
with the energy integration contour. Here, it is im-

portant to note that all the space-momentum inte-
grations are still kept to be real. Then it can be shown
that the modi6ed Feynman integral involving a com-
plex-ghost-pair intermediate state does not have the

*Work performed under the auspices of the U. S. Atomic
Energy Commission.
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(His relativistic theory will lead us to a non-self-ad joint
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II. PROOF OF LORENTZ NONINVARIANCE

We consider the Lee-Wick modified Feynman
integral corresponding to the second-order self-energy

'The present author believes that the reasoning given in the
Appendix A of Ref. 7 does not constitute a proof of the nonin-

variance. Some drawbacks of it are as follows. (1) Cutkosky et al.
tacitly assume the existence of the triangle singularity, but it is
dubious because the Lee-Wick modified Feynman integral does
not define an analytic function (see Sec. III). (2) They consider
two different complex masses aside from the complex conjugate,
and therefore the one-complex-mass theory is excluded. (3) Their
consideration does not exclude a possible cancellation of the non-

invariant contribution by some other graphs of the same order.
' R. E. Cutkosky, P. V. Landsho8, D. I. Olive, and J. C. Polk-

inghorne, Nucl. Phys, &12, 281 (1969).
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graph in a model theory in which all particles are
spinless. ' Each internal line corresponds to a linear
combination of Feynman propagators of various
physical and ghost particles in such a way that the
integral is convergent. As is easily seen and was ex-
plicitly shown by I.ee,' we can extract the controversial
part from the integral without losing the essential
features of the problem. This part is exactly the modi-
fied Feynman integral involving the two propagators
of a complex ghost and its conjugate. It is explicitly
written as

I(po) =— Pq &qo

X
(vo' —E ')L(po —vo)

'—(E —*)'7

-(po=po"' p=p"') (21)

X—
b

FIG. 2. Nonanalytic barrier
I' in the po plane, where its
shape is merely qualitative.

It is evident that (2.4) is holomorphic in po whenever

C(po,q) does not vanish anywhere in the integration
range of q. Therefore, if (2.4) were a contour integral,
for which contour deformation is allowed, it would have
a singularity only at

po= a=
I (%+M*)'+p'7"', (2 6)

po= b—=Ep(2+Ey)2* ——Re(4Ã'+p')'". (2.7)

which would be accompanied with a cut along the real
axis. According to Lee's prescription, ' however, (2.4)
has to be regarded as an integral of rea/ variables. Then
C(p„q) can vanish if po lies in a domain D, whose
bounding curve I' is shown in Fig. 2. The curve I'
intersects the real axis at only one point,

Here po and p are the external energy and space
momentum, respectively (the three components of p
are regarded as real parameters);

It is important to note that

b(a for p~0 (2.8)

E,= (3P+q2)"', — (2.2)

F(po) —= d'V

E,E, ,*C(p, ,q)

-(po=p. "' p=p"') (2 4)

where 3f stands for a complex mass, that is, ImMQO 8;
an asterisk denotes complex conjugation; C is a contour
shown in Fig. 1; (po=poioi, p=p~ &) indicates a sub-
traction term for avoiding ultraviolet divergence.

By means of Cauchy's theorem it is straightforward
to carry out the contour integration over qo. After some
manipulation, we find

~(po)= —k~iLF(po)+F( —po)7, (23)
where

because of the nonreality of M. Though C(po, q) can
vanish in D, as was shown by Lee, ' F (po) is well defined
for all values of po and continuous in pp for pWO, '
because for each po+D, C(po, q) vanishes only on a
one-dimensional manifold in the q space and therefore
the contribution from its neighborhood is infinitesimal.

I.emma The first de.rivative of F (po) is discontinuous
at po=b

Proof. By means of Feynman parametrization, we
can write

F(b+6po) F(b)—
6 p

d q
E»Eu-»'LC'(b q)+~p07C'(»q)

with
C'(po q) =po —E»—Eu-»* (2.5)

dn d'q (2.9)
o E»E, »*I C'(b, q)+~~p»7'

Suppose p&0, and let

k=—q —-,'p. (2.10)

If the direction of p is chosen as the s axis of the co-
ordinate system, we have

X po+Ey-El pi= p2=0, ps&0. (2.11)

Pro. j.. Contour C in the qo plane, where we
suppose ImM &0.

8 The imaginary part of M may be an intrinsic one or may be
due to radiative corrections.

Then, for ~Ir~ in6nitesimal, it is straightforward to
show that

C (b, —',p+lr) —A (ki2+k22) iBka, (2.12)—
9 According to Lee {Ref.3), the p =0 case should be considered

only as @limit y —+ 0.
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where
A—=ReEoto 'WO, B—=poImEoto 'WO. (2.13)

Now, we calculate the difference

tlat'(b)

of the right
and left derivatives of F(po) at po b——:

Now, we asslme that I(po) is Lorentz invariant at
least for po real, and show that this leads to an ab-
surdity. If I(po) is Lorentz invariant, then the function

D()-=D((+p)") (2.20)

is Lorentz invariant, where z=Poo —p'. From (2.19) we
have

F(b+6po) —F(b)
aF'(b)= lim

, hyp-&+0 (2.21)D(p) =0,hpo
with

F(b+&po) F(b—)
(2.14) (2.22)p

—
ho po

lllTl
6@0~0 &po

Since it is obvious that the contribution to AF'(b) from

I
lrI nonin6nitesimal exactly vanishes, we may confine

ourselves to the region of Ilt I
infinitesimal. Then with

r=k~'+k2' we find

AF'(b) = — lim
yo

dn dk3 dr

X
(Ar+iBko no)' —(Ar+iBko+uo)'

lim
AIz„, I

-+o,

( 1 1
xI

M4+» ok —» )
2xoIz„,

I

o

(2.15)
I p I R«.to I 1m&o~. I

ra. DzSCUSSroN

Under 6nite, real Lorentz transformations, P can move
throughout the interval

2(M'+M*') &P& (M+M*)'. (2.23)

The Lorentz invariance of D(z) implies that (2.21) holds
for any value of P satisfying (2.23). Using (2.18) and
(2.20), therefore, we have

D(po) =0 for a(po&a. — (2.24)

For p&0, (2.24) contradicts property (4) of D(po)
because of (2.8). Thus I(po) cannot be Lorentz
invariant.

Remark. If we consider the case in which the number
of spatial dimensions is one, then the proof of the
Lorentz noninvariance of I(po) becomes much simpler.
In this case, F(po) is holomorphic except on I' and
divergent on I'. In particular, I(po) is divergent at
p, =b. Since the image p of b in the z plane is not
invariant under Lorentz transformations, I(po) cannot
be Lorentz invariant.

where we have used an identity

lim — = —2orib(x) .' +' x+io x—io
(2.16)

D(po) =0 for —b&po(b ~

(3) It is continuous in po., in particular,

D(wb) =0.

(2 18)

(2.19)

(4) Its 6rst derivative (along the real axis) is discon-
tinuous at po= &b.

Thus M'(b) is nonvanishing for p&0. (We can likewise
show that it is in6nite for p=0.') Q.E.D.

Let I(po) be the analytic continuation of I(po) from

I po I (b; that is, let I(po) be the integral obtained from
(2.1) by deforming the q contours. Then I(po) is
manifestly Lorentz invariant and holomorphic except
for two cuts po&a and po& —a. Let

D(Po) =I(P )—I(Po) (2.17)

Then D(po) has the following properties. (1) It is an
even function of po. (2) It identically vanishes for

I p, I &b; in particular,

First, we should make a comment on Lee's proof3
of the Lorentz invariance of I(po). He proved that the
violation of the Lorentz invariance of I(po) is at most
inPriitesimal under any inPeitesima/ Lorentz trans-
formation. This result is indeed true, but it by no
means guarantees that the violation is infinitesimal
under anyProite Lorentz transformation. As seen from
our proof presented in Sec. II, the violation occurs only
for finite Lorentz transformations, as long as the space
momentum has three dimensions. Therefore, our con-
elusion is not inconsistent with Lee's proof.

In Sec. II, we have shown that F(po) is not holo-
morphic at po= b. By the same reasoning, we can show
that F(p,) is singular at every point on I'. Thus the
singularity of F(po) entirely encloses a domain D. We
call I' the "nonanalytic barrier, "which is qualitatively
diGerent from the usual cut appearing in the theory of
analytic functions. The nonanalytic barrier is artificial
in the mathematical sense; that is, it shrinks if analytic
continuation is enforced mathematically. However, it
is physically very significant. It is important to observe
that Eq+E& q* is the total energy of the system con-
sisting of a complex ghost and its conjugate and having
the total space momentum y. Therefore, D is nothing
but the range of the energy eigenvalues of the complex-
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ghost-pair states. We note that almost every point (in
Lebesgue's sense) of D is nonreal. As was pointed out
by Ascoli and Minardi' and emphasized by Lee and
Wick. ,' ' any state having a nonreal energy eigenvalue
cannot contribute to the final state if the initial state
consists of physical particles alone. Thus the nonreality
of the energy eigenvalues of the pair states makes the
5 matrix unitary. Conversely, if the 5 matrix is unitary,
F(po) should not have the usual cut po) a. Hence there
should exist a nonanalytic barrier enclosing it in order
to forbid us to continue J"(p,) analytically. This barrier
should have a definite location and a definite shape"
if the theory has a Hamiltonian, because as seen from
(5.11) and (5.12) of Ref. 1 the 5-matrix elements are
expected not to be continued analytically to the region
of the eigenvalue spectrum of the Hamiltonian. Thus
the existence of the nonanalytic barrier is vital to the
unitarity of the 5 matrix, as long as the theory has a
Hamiltonian.

Cutkosky, LandshoG, Olive, and Polkinghorne~ pro-
posed a modified version of the Lee-Wick modified
Feynman integral in the framework of the 5-matrix
theory. According to their prescription, one first sup-
poses that every complex-ghost propagator involved
in the integral has an imaginary part of the mass
diferent from that of any other propagator. Allowing
space-momentum contour deformation, one can ana-
lytically calculate the integral. Since any pair of com-
plex ghosts cannot yieM a branch point on the real
axis, the unitarity of the 5 matrix is guaranteed.
Finally, one takes the limit in which all complex-ghost
masses (whose imaginary parts have the same sign)
coincide. Though this limiting procedure is ambiguous
in higher-order graphs, their prescription always yields
a manifestly Lorentz-invariant, unitary 5 matrix.
This recipe should not, however, be regarded as a
substitute for the Lee-Wick modified Feynman integral,
because the former has not yet been derived from a
Lagrangian field theory. It is quite plausible that it
cannot be derived from a Lagrangian field theory, as
is seen from the following reasoning.

(1) The contour deformation of the space momen-
tum, which is vital to the Lorentz invariance, has never
been justified physically (i.e., not in the sense of a
purely mathematical device) in the field-theoretical
formulation.

(2) Because of the absence of the nonanalytic
barrier, there will not exist a Hamiltonian as discussed
above.

(3) Before taking the limit, higher-order Feynman
graphs require more complex ghosts of diGerent masses;
that is, the interaction Lagrangian, if we assume it, has
to contain infinitely many terms. Furthermore, as long
as we start with a Lagrangian, we cannot forbid the

"R.Ascoli and E. Minardi, Nuovo Cimento 8, 951 (1958).
'~ Therefore, it is different from the nonanalytic cut encountered

in Ref. 7.

appearance of the Feynman graphs which have an
intermediate state involving both complex ghost and
its own conjugate.

We may thus conjecture that the complex-ghost
theory is unitary at the sacrifice of either the Lorentz
invariance or the Lagrangian field-theoretical
formulation.

Though the complex-ghost relativistic field theory
is not Lorentz invariant, " this fact should not be
regarded as a serious defect of it. If ReM is large while
Im3f is small, then the Lorentz invariance is violated
very slightly" only in high energies. Such a slight
violation of the Lorentz invariance is rather natural
because it is experimentally known that the space- and
time-inversion invariances are violated. This theory
provides an interesting example of Lorentz-noninvariant
theories without losing the formal Lorentz invariance
as a guiding principle in the formulation. This feature
is somewhat analogous to the so-called spontaneous
breakdown of symmetry in the sense that the basic
formalism is invariant but the noninvariance emerges
from state vectors. Complex-ghost states having a
real space momentum" cannot span a Lorentz-invariant
subspace of Hilbert space, " so that the extraction of
the 5 matrix stated in Sec. I is not made in a Lorentz-
invariant way.

A difficulty of the complex-ghost relativistic field
theory may happen when one carries out the renor-
Inalization procedure according to Dyson's prescrip-
tion. " (The renormalization is mathematically unneces-
sary in the convergent field theory, but it is necessary
from the physical point of view. ) Then propagators
involve radiative corrections, and therefore their
analyticity domains are bordered by nonanalytic
barriers. In an integral involving such modified propa-
gators, two nonanalytic barriers of the opposite sides
may collide if the total energy is higher than 4 Reef.
If this situation happens, we can no longer choose any
adequate contour'in that integral.
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"Rigorously speaking, if ImM is due to radiative corrections
as in Ref. 2, then we cannot exclude a possibility that the Lorentz-
noninvariant part found in the present paper might be canceled
by a similar part in higher-order modified Feynman integrals. Of
course, there is no reason why such a cancellation should happen."

, Note that u —b is of order (ImM)' for ImkI small.
'4 To secure Lorentz invariance, one might try to construct a

theory in which the velocity vector is real instead of the space
momentum. In such a theory, however, it seems to be very
dificult to deal with many-particle systems and to de6ne Feynman
integrals."A similar remark was made from a diferent standpoint by
K. L. Nagy, ITP-Budapest Report No. 267, 1969 (unpublished).

~6 F. J. Dyson, Phys. Rev. V5, 1736 (1949).


