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Self-Interaction Corrections in a Nonrelativistic Stochastic Theory
of Quantum Mechanics
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The radiation damping terms of classical electrodynamics are introduced into a set of stochastic equations
of nonrelativistic quantum mechanics to study their e8ects on the energy levels of a stationary system to 6rst
order in perturbation theory. In the potential case there appear correction terms to Schrodinger's equation,
one of which is calculated by solving a subsidiary equation. In particular, we obtain for the Lamb shift an
expression of essentially stochastic origin, whose structure is in complete agreement with known results.
According to this calculation, which has the advantage of being devoid of divergence problems, the non-
relativistic spinless contribution to the Lamb shift of the 2s level amounts to 60% of the total effect.

I. INTRODUCTION

&~URING the last few years, different authors have
been carrying out independent work with the

purpose of establishing a stochastic interpretation of
quantum mechanics. The common premise underlying
these kinds of theories is that quantum phenomena are a
result of the violent stochastic interaction between the
system and the rest of the universe, i.e., the surrounding
medium. This point of view has led successfully to
Schrodinger quantum mechanics, as can be seen from a
significant number of papers, among which we shall
mention only some which are of direct interest for the
present treatment, namely, those by Kershaw, ' Nelson, '
Santos, ' and de la Pena. 4 Other quantum-mechanical
questions have been recently approached from the
stochastic standpoint, including the several-body prob-
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lem and its inherent interference aspect, ' the relativistic
extension, ' the treatment of particles with spin, ' etc.

The results obtained up to now are encouraging and
seem to indicate the convenience of exploring more
complex situations in order to arrive at a final conclusion
about the theory's soundness and potentialities. The
present paper is oriented precisely in this direction, its
purpose being to introduce the radiation damping due
to the acceleration of the electron into the stochastic
formulation of quantum mechanics. The origin of the
radiation damping may be traced to the self-interaction
of the electron, . as is evident for example from a series
expansion of the retarded potentials in classical electro-
dynamics. ' (In this context, we recall that these
radiative corrections were first obtained by Lorentz in
studying the motion of an extended self-interacting
particle. ) This allows us to consider a first-order treat-

' L. de la Pena-Auerbach and A. M. Cetto, Rev. Mex. Fis. 18,
323 (i969).

6 R. Hakim, J. Math. Phys. 9, 1805 (1968).
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ment of the radiation damping terms of classical
electrodynamics as equivalent to a first-order calcula-
tion of the vertex corrections of quantum electro-
dynamics in the nonrelativistic spinless approximation.
Wc therefore expect that the introduction of the self-
interaction force into the set of stochastic equations of
motion allows us to calculate the corresponding correc-
tion to the energy levels of the system under considera-
tion. In particular, we expect to obtain in this form the
nonrelativistic spinless contribution to the Lamb shift
in the hydrogenlike atom.

In introducing the radiation damping, one must keep
the stochastic nature of the particle's motion in mind.
As has been demonstrated. elsewhere, " the electro-
magnetic force acting on a stochastic particle is not
given entirely by the I.orentz force, but contains
additional terms of stochastic origin. Precisely one of
these terms (when referred to the electron's self-field),
turns out to be responsible for the major contribution to
the Lamb shift of the s levels, as shown in Secs. II and
III. In this context, it is interesting to note that a
similar attempt" to calculate the self-interaction eRect
on the energy levels failed, essentially due to the omis-
sion of thc terms giving risc to thc main contribution.
Further details on this subject are given in Sec. II.

We wish to remark that the procedure followed in the
present paper is characterized by its mathematical and
conceptual simplicity, but is at the same time naturally
limited to a 6rst-order calculation since we consider only
the 6rst relevant terms in a series expansion of the
electron's retarded potentials. Such a perturbative ap-
proach guarantees, in its turn, the legitimate use of the
radiation damping terms, since any runaway solution is
a priori excluded by imposing a general behavior of the
perturbed quantities characterized by their unperturbed
values, as is shown in Sec. III.

II. INTRODUCTION OF RADXATION
DAMPING FORCE

We refer throughout this paper to the stochastic
formulation of quantum mechanics presented in Refs. 4,
8, and 11, since, as has been formerly demonstrated, 4 '3

it covers the relevant aspects of similar theories such as
those represented by Refs. j.—3. According to this
formulation, the motion of a stochastic particle is
described by the set of equations

f&+& stands for the external force, the + sign referring to
the "parity" of f under time reversal„and $„$,are the
systematic and stochastic derivative operators, given to
second order, i.e., in the Markovian approximation, by

8
S~= —+v' V,

8$

S,=u V'+DV',

(2a)

(2b)

Vp
u=2D ReV 1nP=D—,

p
(Bb)

where p=f~f.
Our present problem deals with an electron acted on

by an electromagnetic 6eld. The corresponding force
terms to be introduced. into Eqs. (I) have been derived
in earlier papers'"; however, since this is a crucial
point in the present treatment, we suggest an alternative
way of obtaining them in the following paragraphs.

The simplest of all methods is based on the fact that,
as has been demonstrated before, " in taking the
stochastic nature of the motion of the quantum-me-
chanical particle into consideration, the total time
derivative d/Ch must be replaced by the forward
derivativel 4

8
S=S,+S.= —+(v+u) V'+DV'.

In particular, by making this substitution in the Lorentz
formula

1dA
+-(v V)A+ -vX(VyA),

c df c

where v is the total velocity (and hence, transforms into
c=v+u), we obtain for its stochastic generalization

where D is a measure of the dispersive eRects of the
stochastic substratum on the particle's trajectory; in the
quantum-mechanical case it takes on the empirical
value A/2m. ' 4 Equations (I) can be combined and
integrated to obtain Schrodinger s equation; specidcally,
in the potential case the integration is performed with
the change of variables

(3a)

S,v—S,u= fi+i/m,

S,v+ S,u= f~-&/m.

(&a)

(&b)

D
f=e E+ -(v+u) XH ——V'A

Here, v and u represent the systematic and stochastic
components, respectively, of the total velocity c=v+ u;

"L.de la Pena-Auerbach and A. M. Cetto, Phys. Letters 29A,
562 (1969); Rev. Mex. Ffs. 18, 253 (1969).

'~ J. E. Krizan, Phys. Rev. 165, 1725 (1968).
"L.de la Pena-Auerbach and R. M. Velasco, Rev. Mex. F&s.

18, 3N (1969);L. de la Pena-Auerbach, R. M. Velasco, and A. M.
Cetto, Rev. Mex. Fh. 19, 193 (1970).

This result agrees exactly with the expression obtained
from 6rst principles in Ref. 11, and proves to be correct
insofar as it leads to Schrodinger s equation with mini-

mal electromagnetic coupling, when substituted in

Eqs. (1).
In this paper we wish to include in Eq. (4) the terms

arising from thc electron's self-interaction; in order to
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find the right expression for them, we use as a starting select B such that the right-hand side of Kq, (11)
point the classical expressions' cancels out, i.e.,

28
E„= w,

3G
A„=——w

G2

$.@a=Q (N~~a~r+ fr~I +&) ~ (12)

where vr is the acceleration. Once more writing S in-
stead of d/dt, we get

Now Eq. (11) can be immediately integrated to yield
Schrodinger's equation, upon the further change of
variable w = i ln—f:

E,= —~SVy,

g2

(Sa)
zk—=—

Bt
Vy

(5b)A, = VQ,
SSG lDe'

+I I'+ & I'+ V'I' —2D B V 14'.
mc'with r= 2e'/3mc', since the acceleration is determined to

first order by the external potential through fo———eV&.
Since all the calculations are to be carried out to 6rst
order in perturbation theory and, hence, to first order in

r, we may use in Eqs. (5) the unperturbed values of v
and u; moreover, in the particular case dealt with in the
present treatment, namely, the hydrogenlike atom, it
is evident from Eqs. (3) that u is time independent and
we may take v=0 without loss of generality due to the
spherical symmetry of the problem. According to Eq.
(2a), we may therefore write 0 instead of S, in Eq. (Sa),
thus obtaining from Eqs. (4) and (5)

Note that there are three 6rst-order contributions to the
energy shift, namely,

8E„g=r(5),V)+~~Dr(V2V) —2Dr(B V). (14)

(15a)bz, &'& = 3Dr(V"V)= e.Z', (l,l)

bE„g&'&= —2Dr(B V)= e@CAN(n, l)',
f=f0+re.f0+ (De'/mc') V'fo. and

(15b)

It can be readily seen from an integration by parts,
recalling the de6nition of S„that the 6rst term in Eq.
(14) vanishes —this is just the correction predicted in
Ref. 12.We are therefore left with two corrections to the
energy, namely,

K),v+ X),u=0, (7b)

Making use of Eqs. (1) and (6), with f& ~=0, we write
the equations of motion for our problem in the form

m(K), v—S,u) = [1+r50,+ (De'/tlc') V')f0 (7a)

where we have introduced

8 n'Z4EA
=AL,n

3~ N3
(16)

and combine them to get the equation

1ÃSgvq= f

and its complex conjugate, where

Sq —Sg CSEE &

vq= v—zQ.

(9a)

(9b)

De'
Bg AS' AD(Vw)'+7+F5)—,V+ v2V

mG'

=r Q ( fo;Bkl; I;BgB—,+S,BI)—, (11)

where fo———V'V. In view of this result, we propose to

Equation (8) may be readily integrated upon the change
of variable4 "

v, = 2DVm —(ir/m)B. (10)

Indeed, in terms of the new variables m and B we obtain
to first order in 7

where R is the Rydberg constant, L is the Lamb
constant, "and the E's are two dimensionless parame-
ters. The correction 5E('& owes its presence to the last
term in Kq. (4), while 8E"' is due to the perturbation of
the stochastic velocity u, bu= rm 'B, as is easily seen
from Kqs. (9b) and (10). Krizan does not obtain the
6rst term at all,

' while he electively reduces the second
one to zero by neglecting the inhomogeneous term in

Eq. (12), which amounts to taking B=0.
The calculation of K& in Eq. (15a) is immediate, its

value being
(17)Eg(e,l) = ',s5ip-

On the other hand, the calculation of K2 is less direct
since it involves the solution of Kq. (12). Section III is
devoted to the construction of the solutions to this
subsidiary equation; we consider it convenient, how-

ever, to anticipate some of the main results in order to
proceed to the general discussion.

Although E2 is found to be in general different from
zero for e&1 and any /, its numerical value is small

"D. Ivanenko and A. Sokolov, Xlassische Feldtheorie "See, e.g. , H. A. Bethe and E.Salpeter, in Haedbuch der Ehysik,
(Akademie-Verlag, Berlin, 1953). This book includes a particu- edited by S. I'lugge {Springer-Verlag, Berlin, 1957), Vol. 34,
larly lucid exposition of many topics related to„radiation damping. Chap. 1.
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compared to ~3m, which is the value of Ej for s states.
Taking the smallness of bE q&') into consideration, we
may state that the main result of the present treatment
is a shift of the levels of the hydrogenlike atom, given
essentially by bE„&"). Hence, in this nonrelativistic
spinless theory, the Lamb shift is a direct consequence
of the additional force term —(eD/c) V'A in Eq. (4), and
the remaining contribution bE„~(') is of secondary
importance.

At this point, we wish to compare the predictions of
our theory with the quantum electrodynamical results.
As is well known, " the Lamb splitting between s and p
levels is given by E(u,0)—IC(u, 1)= 7.75 in units of p;
therefore, our result corresponds to about 60/z of the
total effect, certainly a reasonable one considering
that we are working in a nonrelativistic spinless
approximation.

III. SOLUTION OF SUBSIDIARY EQUATION

Equation (12) may be written in our working ap-
proximation in the following more convenient form:

DV'3= (fp V)u+u'X (VXB). (18)

To solve this equation in the general case is a rather
complex task. Quite fortunately in the case of greatest
interest to us, namely, the s states, the solution turns
out to be almost immediate: The fact that u is radial
and depends only on r allows us to take V'gB =0 and
write, instead of Eq. (18),

Z82 BQ
DV'B=(fp V)u—

where the last equality applies specifically to s states in a
Coulomb field. Hence, imposing on B the usual homo-
geneous boundary conditions, and writing u=u(r)a„, we
get

Ze' 1 du(r')
B= dr'dn'

4 D ir —r'i d'

Z8 Rg 1 "u(x)
u(x)dx+2r dx, (20)

r' o g X

where the last equality results from an integration
by parts with respect to r' and N. The introduction of
u=2D ReV' in/, where P is the unperturbed hydrogen-
like amplitude, yields for es states,

An integration by parts shows that —2(B V)=(V' 3)
and hence, according to Eqs. (15b) and (16), the dimen-
sionless parameter Eo(u, 0) can be calculated from the
divergence of B in Eq. (21) to yield

dL
z,(e,o) =4 — +zI„,(p)) . i23)

p'Ln- j' dp

In particular, for m=1 this correction is identically
zero, and for e= 2 we have

1 3 4 i2 —pi
K,(2,0) = —pr + + +ln

P P P P

=—s.[p'+y+1n2 —7e P Ei(2)$= —0.08~, (24)

3=Bo+Bi+Bo, (25)

where y= 0.577 is the Euler constant and Ei(x) is the
exponential integral function of x. From this result we
see that X&(2,0) amounts to only a few percent of
Ei(2,0), as stated above.

In the case l/0, Eq. (18) is not as easily soluble be-
cause VXB&0.The calculation of Eo(n, l) for this case
is actually of little relevance since its contribution to the
total energy shift is small, as can be inferred from the
above result. Nevertheless, we sketch below a possible
method of finding the solutions to the subsidiary equa-
tion for //0. Perhaps the main advantage of obtaining
an explicit expression for B in this case consists of the
fact that it allows us to prove the possibility of arriving
at the final result (the relative shift of the s and p levels,
for example) without divergence problems. We have
seen that rm 'B must be considered a first-order cor-
rection to u due to radiation damping; therefore, we
must demand the general behavior of B to be in ac-
cordance with that of u. Since to the particular solution
to the subsidiary equation we may always add an
appropriate solution to the corresponding homogeneous
equation, we use the latter one to guarantee the correct
behavior of bu= vm 'B, as stated in the Introduction.
This criterion is explicitly used in the following
calculation.

In solving Eq. (18) for /00, we first recall that the
energy shift cannot depend on the magnetic quantum
number m since we are working with a central force. We
may therefore take m=0 without loss of generality.
Further, we write the solution to Eq. (18) in the form

L--i'(p)
3=-PpZe')9'a, ——ln — +2pI p

p' I-„,'(0)

where Bo is a function —to be determined later—
( 1) satisfying the homogeneous equation corresponding to

Eq. (18), namely,

where p=Pr, P= 2Z/nap, ap is the Bohr radius, and I„p is
an integral involving associated Laguerre polynomials

DV'Bp —uX (V'XBo) =0. (26)

leo =
"dI „ i'(x)

dx x'I.„,'(x) DV'Bi= (fp V)ui. (27a)

Defining u~ ——N„a,„and u2 ——Ngatt, we select B~ such that
VXBi=0 and
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Consequently, the equation for 32 is

DV Bp—uX (VXBp)= (fp V)up.

to its structure, let us propose a series development of
the components of B, in terms of Legendre polynomials

27b
Here,

1 t 1
1„=2Dpl ——+-+

2 p I 2(+1

2(+lq

dp

~p. = Z fI(p)PI(x)
t even

Bpp=srn9 Q g, (p)P.(x),
8 Od.l

(32a)

(32b)

=2Dpp„((p) (28a) where the f's and g's are to be determined. Using well-
known properties of the Legendre polynomials, we
obtain

and

2DP Pi'(x)
Ny

———- - — —sin8 —,x= cos8.
p Pi(x)

(28b)
1 p)

p'f IP—I
p' I p)p )A procedure similar to that followed in the case l=0

leads to the following result for 31.. 1 (s+1)(s+2) s(s —1)+—Qg, P,+r —P, i . (33)
p p 2s+1 2s+1,(fp V)ur

— r'2''dn'
lr —r'l Since, as stated above, the energy correction due to

B, is proportional to (V B&), it follows from Eq. (33)
that the only terms which may contribute to it are those
for which t ~& 2l and s ~&21+1.

Substitution of Eqs. (32) into Eq. (27b) separated
into its r and 8 components gives rise to a system of
equations from which the functions f, and g, can be
determined by demanding that the coefficient of every
Legendre polynomial vanish. In the general case, it is
easier to multiply each of both equations by P, (x), with

q an arbitrary integer, and integrate over x, thus
eliminating the angular variables and obtaining an
infinite set of coupled equations, some of which are to
be solved to find the f's and g's of interest. For arbitrary
1, the resulting equations are so involved that we con-
sider it worthless to write them down here; we shall
henceforth limit the discussion to p states. In this case,
the only relevant equations are those which contain fI
with t= 0, 2 and g, with s= 1, 3, namely,

"N„(x)dx i

g'

Ze'Pa„- 1
N, (x)dx+2p

3D p p

In performing the integration there appears the term
2DPlp

—'a„lnx calculated for x=0; we therefore select
Bp such as to cancel out this infinite term, thus assuring
that bu is sn1all compared with u. In this form we obtain

Bp+Br——-', Ze'P'a,

1 j ~ 2(+1(p)—(—', —lnp) ——ln — - +2pI„i(p), (29a)
p

2 p2 I t
2 +1((0)

where

2l+1

I i(p)= (29b)
g31 2L+1

The energy shift associated with this part of B may pf II+2 f I 2f +p( pf II+2 f I 2f )be written in units of ~„as

}'I,'(N, P =Sr(2I„i(p)

= —6(phr' —hr), (34a)

p'hi" +2p(1+pF „i)hi' —2(3—pF „r)hr

2l+1

l

), (30)
where

10ZeP(P'
+2(1 pl'~r) fp I (34b)—

3p 2

where Eq. (23) is a particular case of this result. ~hen
n=l+1, Eq. (30) attains the simple form 2j+1 2j+5

(34c)

4m

Ep'(l+1, l) = ——t
3 p3

The system of equations (34) is satisfied by(31a)
3(t+1)(2l+1) fo=( o

——;Z'P'1 )
—',

fp=hr (5/9)Ze'P'p '——and, hence, we have for the 2p state
I

Ep'(2, 1)= —pr/18. (31b) with arbitrary apr From this result it follows that

(35)

Equation (27b) may be solved as follows. According «Bp) = —pZe'0'(1/p')&Pp —pPp) =0,
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since for p states, (Ps) = s(Ps). Hence, for f= 1 the total
energy shift is given by Eq. (30). For the 2p level, in
particular, the theory predicts a negative shift as given
by Eq. (31b),which is in agreement with known results. "

IV. CONCLUSIONS

The stochastic theory of quantum mechanics has
allowed us to calculate readily the nonrelativistic spin-
less part of the self-interaction effect in the hydrogenlike

. atom. According to this theory, we may consider the
Lamb shift essentially as an observable effect of the
stochastic electromagnetic force —(eD/c) VsA, which has
no analog in Newtonian mechanics. Clearly, from the
very outset we cannot expect the numerical results to
be accurate since, as is well known, relativistic and spin
effects play an important role in this problem.

A remarkable feature of the calculation is the absence
of divergence and renormalization difficulties. This re-
sult is in agreement with the modern formulation of the
Lorentz-Dirac theory of classical electrodynamics, "ac-
cording to which the electromagnetic mass term is zero

' F. Rohrlich, Classical Charged Particles (Addison-Wesley,
Reading, Mass. , 1965), Chap. 6.

(in other words, one might say that classical Dirac
electrodynamics is a renormalized theory). On the other
hand, the Lorentz-Dirac theory endows the particle
with an effective radius, which manifests itself through
the well-known "preacceleration" effects. '4

Concerning this last point of view, we wish to add
some speculative comments. As stated above, the
stochastic process which may be associated to the
quantum mechanics of point particles is Markovian. In
the case of extended particles, however, the nonlocality
of their interactions induces a non-Markovian behavior,
a feature that may be taken into account by adding
higher-order terms —with as yet unknown coeKcients-
to the stochastic equations. This procedure represents
perhaps the simplest possible way of introducing self-
interaction effects phenomenologically, by adscribing an
effective radius to the particle, as conjectured in an
earlier paper. ' The above argument may be reinforced
by recalling the well-known heuristic picture proposed
by Welton, ' according to which the Lamb shift is
related to the effective radius of the electron due to its
jiggling under the action of the electromagnetic vacuum
fluctuations.

"T.A. Welton, Phys. Rev. 74, 1157 (1948).
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The essential features of the near-6eld approximation for strong gravitational 6elds are elucidated by
developing the approximation (i) in 6rst order for quasistatic systems; (ii) to arbitrary order for nonrotating
systems with axial symmetry; and (iii) by sketching the approximation for rotating, axially symmetric
systems. The restrictions, placed by Einstein's equations, on the time dependence of the "multipole mo-
ments" of a system which is isolated from other bodies of empty space are exhibited. These restrictions are
statements of the global conservation of energy and linear momentum. In Newtonian theory they would
state that, for an isolated system, (d/dt)AO ——0 and (d'/dt')A& =0 where Ao, A& are multipole moments. The
principal assumption made in this paper is simply that a near-6eld zone exists for the systems which we
consider (i.e., L/)«1). We do not, in any sense, assume that the gravitational fields are weak. The contracted
Bianchi identity Go",.„—=0 plays a crucial role in the analysis since it implies, for a quasistationary system,
that if the empty-space iield equations G„„=Oare obeyed in order n, then p(—gl"sGs'j, =0 is obeyed in
order n+1. This in turn implies the existence of a vanishing surface integral which restricts the time depen-
dence of the quasistationary Geld in each order. It is shown that there are close similarities between strong
gravitational Gelds and electromagnetic fields in the near-Geld approximation. For example, just as the 6rst
effect of a quasistatic electromagnetic Geld is to induce a magnetic 6eld, so the Grst effect of a quasistatic
gravitational Geld is to induce a magneticlike field, whose potentials are go,

I. INTRODUCTION

ECENTLY, Morgan and Sondi' have treated the
near-field transfer of energy by gravitational fields

without any assumptions that the fields are weak. They
*Supported in part by the National Science Foundation

fGP-13959, GP-15911, GP-9114j and the U. S. Ofhce of Naval
Research fNonr-220(47) g.

)On leave from the University of Nebraska, Lincoln, Neb. .

68508.

posed the question of how a time sequence of static
configurations which can be continuously deformed into
each other differs from an arbitrary sequence of static

'T. Morgan and H. Bondi, Proc. Roy. Soc. (London) A320, 277
(1970);J. Jackson, Proc. Cambridge Phil. Soc. 64, 491 (1968);
H. Levy, ibid. 64, 1081 (1968); and H. Bondi, Fluids et Champ
Gravitabionnel en RelakviQ Generale (Colloques Internationaux du
Centre National de la Recherche Scientifique, Paris, 1969).


