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Quark-Model Predictions for Form Factors in Inelastic Electron Scattering
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The three form factors associated with inelastic electron scattering are discussed in the framework of
the symmetric quark model. Predictions are presented for each of ten nucleon resonances; a comparison
with the available coincidence data is made.

w ITH the advent of coincidence experiments in
inelastic electron scattering, ' one can obtain

more experimental information on nucleon resonances
than was possible when only the anal electron was
detected. The cross section'' now involves the mag-
nitudes and relative phases of the three inelastic form
factors f„ f+, and f, rather than just

I f, l' and

(I f~I2+
I f I').4 Thus theoretical predictions for each

oi f„f+, and f separately are desirable.
In previous publications' ' we have presented results

for
I f, l' and (I f+I'+ I f I') for each of ten diiIerent

nucleon resonances cV"' in the reaction e+p~ e+lV*,
using the symmetric quark model. In this note we shall
present the predictions for f„ f+, and f separately;
these results are presented here for the first time and
can in general not be deduced from a knowledge of
only If. l' and (If+I'+If-I') F«»tation and a
discussion of the model used, the reader is referred to
Refs. 5 and 6.

Using a different model, predictions for
I f, l' and.

(I f+ I'+
I f I') have been obtained by Walecka et al.2;

for a general discussion of electroproduction with im-
plications for coincidence experiments, and a presenta-
tion of f„ f+, and f in their model, the reader is
referred to Ref. 1.

We shall now derive the expressions for f„ f+, and

f in terms of multipole operators. These form factors
are defined by'

i/2 EE&Q2 I/2
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' For a discussion of the relevance of coincidence experiments

to electroproduction, together with experimental references, see
P. L. Pritchett and P. A. Zucker, Phys. Rev. D 1, 175 (1970).' P. L. Pritchett, J. D. Walecka, and P. A. Zucker, Phys. Rev.
184, 1825 (1969).' Previous references on coincidence cross sections are listed
in Ref. 1~' J. D. Bjorken and J. D. Walecka, Ann. Phys. (N. Y.) 38, 35
(1966).' N. S. Thornber, Phys. Rev. 169, 1096 (1968).' N. S. Thornber, Phys. Rev. 173, 1414 (1968).

~ P. L. Pritchett, N. S. Thornber, J. D. Walecka, and P. A.
Zucker, Phys. Letters 2'78, 168 (1968).

where E and E' (222 and. M) are the nucleon and reso-
nance energies (masses), respectively, 0 is the volume,
J„(0) is the current operator at the space-time point
x„=0,and m and mg are the parities of the proton state
and nucleon resonance, respectively. Expressing the
nucleon state in terms of states of de6nite helicity and
linear momentum, 4 writing the current in terms of the
appropriate multipole operators, ' and doing the re-
sulting integration over solid angle, ' we obtain the
following results (222/M has been set equal to 1):

2J+1
f.= +( ~2)"'2 (—2)' &2 2i~pl Jr, 2+p&

2Jy+1

x &JfII Tz"+pTs—-'ll 2) (p =~1) (2)

Here 3f~ '"' T~" and T~ 'f"- are the Coulomb, electric,
and magnetic multipole operators. )In passing from
Eq. (1) to Eq. (2), an extra &1=2r/2 has been incorpo-
rated into the hnal-state wave function. This phase is,
of course, physically unobservable. ]We note that

I f I'= 2~
I
&~rllM~""'ll 2& I'

If I'+ lf I'=2~LI &Jr-ll2~"ll2&I'+ I&jrll2~™'ll-'&I'j
as they should. ' "

Thus

f.=~ (2~)'"
I
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I
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where A, B„and C, are constants which can easily
be computed from Eq. (2) for each resonance, if the
phases of the reduced multipole matrix elements are
known. The symmetric quark model, of course, yields
phases as well as magnitudes of reduced multipole
matrix elements, and we thus obtain the constants A,
B„and C, for each resonance. These results are listed
in Table I. The mageitldes of the reduced multipole
matrix elements have already been tabulated for our
model, and may be found in Ref. 5 for a harmonic-

T. deForest and J. D. Walecka, Advan. Phys. 15, 1 (1966).
9 A. R. Edmonds, Angular Momentum in Quantum Mechanics

(Princeton U. P., Princeton, N. J., 1957)."J. D. Walecka, in International School of Physics "Fnrico
Fermi, " Italian Physical Society Course 3h', edited by T. K. 0,
Kricson (Academic, New York, 1967), p. 17.
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TABLE I. Values of A, B„and C~ in the symmetric quark model.

State I (J~}

940
1520
1535
1670
1688
1700
2190
1236
1650
1950

(k+)
1 (3—}
1 (1-)

(l')

(2')

~ e 4 ~ ~

(3)1/2 (1)1/2

1 ~ ~ ~ ~ ~ ~

(5)1/2

+(-)'"

oscillator quark potential and in Ref. 6 for a Coulomb
quark potential. To obtain f„ f+, and f, we thus
simply use Eq. (3) together with the values of A, 8„
and C, listed in Table I and the tabulated magnitudes
l&~fll~~""'ll2& I, l&jiIIT~"ll2& I, and l(~fll&z™'ll2&I

listed in Refs 5 or Q ll

We note that since f„ f+, and f are amphtudes,
only the relative phase between any two of them is of
physical signi6cance; the absolute phase of any one
form factor is not observable. We have chosen the
phases of the final-state wave functions such that f. is
real and positive in the physical region for each of our
resonances.

We also observe that Table I contains a number of
zero entries. By definition of f+ [Eq. (1)), f+ must
vanish (in any model) whenever Jr ———',, as has been
pointed out previously. ' This explains some of the
zeros in Table I; the other zero entries arise in a quark-
model calculation of this type, irrespective of which
form V(r) is chosen for the quark potential function. ' "

Some comments on the general shape of f., f+, and

f are in order. If the quark-model potential is that of
a harmonic oscillator, the reduced multipole matrix
elements of f„ f+, and f all have a Gaussian-type
fallo6 in momentum transfer. This is as expected,

since the Fourier transform of a Gaussian-type har-
monic-oscillator wave function is just another Gaussian. '"

Thus, for a harmonic-oscillator potential, f., f+, and. f
each have a common factor exp[ ——',(q*b)'1, where

(q")' =q'+ (1/4M') (q' —M'+m')'

is the square of the three-momentum transfer as seen
in the rest frame of the nucleon isobar, and b is a
constant.

If the quark-model potential is proportional to 1/r,
then the reduced multipole matrix elements, and
hence f„ f+, and f, fall off as inverse powers of
(q*)'. For each nucleon resonance f. (when not identi-
cally zero) contains no zeros in our model; instead
there is a steady decline in absolute magnitude from
an initial value towards zero. For resonances with a
vanishing electric multipole matrix element but
a nonvanishing magnetic multipoje matrix element
[940 (f ), 1236, 1950j, f+ and f have no zeros in our
model, and they also decay steadily from their initial
values towards zero. For resonances with an electric but
no magnetic multipole matrix elements [1535 (f ),
1650 (f )j, there can be a zero in f due to a possible
zero in the electric multipole matrix element; this
arises from competition between the convection and
magnetic-moment parts of the nucleon current, In
f '"' the contributions add, and there is no zero; in

f ""' they subtract, and there is a zero. The position
of this zero depends on the quark g factor g, and lies at

q*=0.48(g,) '" BeV/c (harmonic-oscillator model),

q*=0.53(g,—1) '" BeV/c (1/r potential model

for g,/1; for g, = 1 there is no zero).

TABLE II. f+jf,' and f jf,94 in the harmonic-oscillator quark
model (obtained from Table I and Ref. 5). b=4(BeV//c) ';
g,/235, = IJ,„——-', Ij, , 3/I~ is undetermined.

f @940

1—
gq (It*b)'

1.0..

1520 —,
' (-', )

2190 —' (-' }
(qgb) 9

3%2iV,b

V*bt:1—kg~(Fb)'j

3(gs)m, b

(c*b)'E1—3a.(v*b}'3

4(+35)w,b

0$--

~ a

15"20 g~ l888

.+p' .5'8

0(0
.83

1.00

s'in 8~V/c

i

[.$'0"The results for 8, in Table I correspond to choosing a positive
phase in front of the convection part of the current in the reduced
matrix element of T~" in Refs. 5 and 6."R.G. Moorhouse, Phys. Rev. Letters 16, 772 (1966).

Fio. 1. f+/f 940 in the symmetric quark model vrith a harmonic-
oscillator potential and 3E,=-3M„. The experimental points are
taken from Ref. 1.



QUARK-MODEL P RE D I CTIONS

Thus all the form factors so far discussed have rela-
tively simple behavior. These form factors have essen-
tially already been plotted (in magnitude squared) in
Refs. 5 and 6; the phases and. normalization factors

f /f 940

M~= 3~&„
f /f 940

Afar= co
f /f 940

M'~= 33f„
f /f 940

N'~= ~

TAM, K III. f~jf,940 at threshold in the symmetric
quark model with V (r}Cc 1/r.
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YxIlr,z IV. f+Jf,940 for the 1236 state in the symmetric quark

model. h. o. stands for harmonic-oscillator potential; 1/r stands
for a 1/r quark potential.
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FIG. 3. Same as Fig, 2, but with 3Eq ——~.

FIG. 2. Same as Fig. 1, except that the quantity
plotted is now —f jf,"'.

can be obtained from Table I of the present note. The
remaining transverse form factors in Table I, on the
other hand, show potentially more complicated be-
havior. Table II shows the explicit behavior of f~/f, '4'

for the 1520, 1688, and 2190" states in the harmonic-
oscillator quark model. f has one possible zero 'depend-

ing on the quark mass M„. f+ is seen to be fairly
simple (no zeros). These form factors are plotted
together with the experimental data in Figs. 1—3. We
see that for f+/fP4O (Fig. 1) the agreement with the
threshold experimental data is reasonably good; the
theoretical curves can be diminished in magnitude if
we increase M~; in fact, they decrease to zero if we let
M, —+ ~. The agreement with experiment for f /f/4'
(Figs. 2 and 3), on the other hand, is not as good; the
theoretical curves (for a harmonic-oscillator quark
potential) are too large. We also note that in this
model

~ f ~
is expected to be much larger than

~ f+~
for the 1520, 1688„and 2j.90 states, except at threshold.
To check this prediction, additional experimental data
for f+ and f as functions of momentum transfer would
be needed.

Table III shows the values of f~/j, '40 at threshold
for the 1520 and 1688 states, using a 1/r potential in
the symmetric quark modeL f~/f. 9~ (for the 1520
state) and f /f, '~ (for the 1688 state), each with
M, =M„/3, are seen to be in reasonable agreement
with the experimental data shown in Pigs. 1—3, but
f~""/f,940 is predicted too small. Here, again, more
data would be useful.

Finally, there is experimental evidence on f~ for the
1236 resonance. ' This is compared with the theory in
Table IV; the agreement is seen to be quite good.

'3 In Refs. 5 and 6 the reduced matrix element of Tq" for the
2190 state is lacking a factor of (2)"2.


