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true for other cases. These comparisons can be made
easily by using Tables IT and III of this paper with
Tables I and IT of Ref. 9. However, although TPE im-
proves upon OPE in a comparison with the phenomeno-
logical phase parameters, neither OPE-+TPE nor
OPE+TPE+ATPE provide a good fit to these values.
Since the vector-meson-exchange contributions are
large in the intermediate region, their inclusion is ob-
viously needed.

V. CONCLUSIONS

Since the TPE contribution in the U(6,6) model is
highly divergent, this model seems to provide only an
effective coupling, and it then significantly affects only
the s- and p-wave OPE phase parameters. Thus, the
modification of OPE in the U(6,6) model is largely con-
fined to the core.
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On the other hand, the TPE contribution in the
chiral-dynamical model is obtainable without any
serious difficulty, and the additional contribution in
this model significantly alters the nucleon-nucleon
scattering phase parameters throughout the intermedi-
ate region. However, since the agreement between the
OPE+TPE phase parameters and the phenomenologi-
cal values improves in some cases and deteriorates for
others by the addition of the chiral-dynamical contribu-
tion, a definite conclusion about the chiral-dynamical
coupling can be reached only after including the vector-
meson-exchange contributions.
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The intrinsic magnitude of the CP-violating coupling is not simply related to the decay ratio (Kz — 2w)/
(Ks — 2m), because of the K1-Kgs overlap. It is this intrinsic coupling which is needed to estimate CP
violation in other systems. We examine an explicit model showing the interference effects of the K;-Kg
overlap on the relation of the coupling constants to the above decay ratio. There are interference effects in
e which depend on nonmeasurable mass shifts. (Theoretical estimates of these mass shifts are discussed.)
However, ¢ does not depend on these mass shifts and thus can be more easily related to the in-

trinsic CP-violating coupling.

HE intrinsic magnitude of the CP- or T-violating
coupling in the decay of K;— 2r is of crucial
importance. Theoretical estimates of T-violation effects
in other systems such as the neutron electric-dipole
moment (EDM)!2 depend on knowledge of this
coupling. However, because of the overlap of the Ky,
and K 5,3
Am=ms—m,;= —0.47Ps, (1)

the observed partial width?
[I‘(KL —> 21r)/1‘(Ks —> 2#)]1/220.002 (2)
is not simply related to coupling constants, so that the

* Supported in part by the National Science Foundation.

1S. L. Glashow, Phys. Rev. Letters 14, 35 (1965) ; G. Feinberg
and H. S. Mani, Phys. Rev. 137, 637 (1965); G. Feinberg, ibid.
go, 1)31402 (1965); G. Barton and E. D. White, ibid. 184, 1660

969).

2J. K. Baird, P. D. Miller, W. B. Dress, and N. F. Ramsey,
Phys. Rev. 179, 1285 (1969). The authors establish an upper limit
|EDM| <5X10™% ¢ cm and indicate that a future experiment
should increase their sensitivity to 7X 1072 ¢ cm. See also “‘Search
and Discovery,” Phys. Today 22, 56 (November, 1969), for future
expectations in improving the measurement of the neutron EDM.

3 Particle Data Group, Rev. Mod. Phys, 42, 87 (1970).

naive determination of the magnitude of the CP viola-
tion from Eq. (2) may be very misleading. Although
this fact is well known, it seems to have been repeatedly
ignored. Thus we feel that it is useful to present a de-
tailed explicit discussion of the interference effect of the
K 1-K s overlap on the relation of the coupling constants
to decay rate (2).

We use the multichannel ND~! formalism? to relate
the relevant branching ratios to the intrinsic coupling
strengths in the case where the CP violation is a weak
interaction. (As noted previously,® this could equiva-
lently be treated in the Wigner-Weisskopf formalism.)
The result® for e depends on nonmeasurable mass shifts.
Many theoretical estimates’ of these mass shifts indicate
that the K1-Kg overlap depresses the CP violation, so

4 P. Coulter and G. Shaw, Phys. Rev. 188, 2443 (1969).
(1; %) Bander, P. Coulter, and G. Shaw, Phys. Rev. D 2, 944

¢ T. T. Wu and C. N. Yang, Phys. Rev. Letters 13, 380 (1964).
We use the now “standard” definitions of e and ¢ (see Appendix)
which differ by a factor of 2 from_the original definitions of Wu
and Yang.

" K. Nishijima, Phys. Rev. Letters 12, 39 (1964); T. Truong,
ibid. 17, 1102 (1966) ; K. Kang and D. Land, ibid. 18, 503 (1967).
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that the “intrinsic” CP violation may be larger than
one would expect from Eq. (2) by a non-negligible
factor. However, ¢ does not depend on these mass
shifts, and thus can be more easily related to the in-
trinsic CP-violating coupling. Thus an accurate
measurement of ¢ is crucial in order to determine the
intrinsic CP-violating coupling.

We obtain the result that I'(K;— 2x), where the
final 27 state has I=0, is different from what it would
be in the absence of interference by a factor |F|2,
where?

, 2535\ 12
F=(¢Am+%1‘5)“1 Amg) 1— — _J

T2 O3,

Ny [y OT (N /2
—(Ams® —3iTys@)| 1= ———— . ®)

Ty 0T, 5®

Am=mg—mr and Amy(s) is the shift of the Kz (Kg)
meson from the mass it would have if it were stable.
Amg™ is the mass shift of K g due to its decay into the
27(I=2) channel. T21® is the partial width for the
decay Kp—2x(I=0) which would be seen in the
absence of interference with Kg. I'sg is the decay width
for K s— three-body decay channels of K. We expect
the square-root terms to be of order unity if the CP
violation for Kg— 3w is comparable to that for
K1, —2x.° The widths Tys®, I'25®, and T3z are not
changed much by the interference because of the small-
ness of the CP violation. We only expect appreciable
changes in CP-violation widths, e.g., T'(K— 27). The
sign of the square-root terms is written as though all the
couplings were positive. The actual sign can be deter-
mined by letting 4/T';; carry the sign of the coupling
between channels ¢ and j.

The major uncertainties in Eq. (3) are the mass shifts
Amyz, and Amg®. There have been many theoretical
attempts to compute Am. The usual assumption’ is that
the major part of Am is a result of the coupling of K s to
the 2r(I=0) channel. If this is a valid approximation,
one would expect | F|<1, so that the effect of the inter-
ference of Kz, and Kg would be to suppress the decay
K1 — 27, This would imply that theoretical estimates

( B,® 0
0 B2(2)
B= 0 0
1 gZS(O) ng(Z)
E—{—Eo(—iggL(O) —igar®

where E is the total energy in the center-of-mass system.
Since we are interested in computing the amplitude in a

8 We use the subscripts 2, 3, S, and L to label the 2, three-
body Kg, and Kz, channels respectively. Superscripts 0 and 2 are
used to label the 27 I=0 and I=2 channels, respectively. I's
with one subscript are used to label the total widths.

9 For estimates of relevant phase-space factors see J. D. Jackson,
in Brandeis Summer Institute 1962 Lectures in Theoretical Physics,
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of the neutron EDM may be larger than previously
expected if the weak interaction violates T invariance.!

On the other hand, theoretical calculations of mass
shifts in the K° system are in a generally unsatisfactory
state. For example, an attempt by Rockmore!® to com-
pute Amz, using Sakurai’s weak-interaction Hamiltonian
resulted in values of Am; which are negative and
|Amp| ~3|Am|. In this case |Amy/Am|>1 and we
might have |[F|>1. We make no attempt here to
compute Amy; however, our model does indicate that it
would not be surprising if |Am;| were large.

The last term in Eq. (3) involving the |AI|=3%
transitions is the term which is computed in the models
of Truong! and Barshay!? and more recently by Kamal
and Kenny.?® All of these authors conclude that the
K°®— 27 (I=2) amplitude is not enough to give a value
of Ree compatible with experiment.

To summarize, the crucial factors for determining the
intrinsic magnitude of the CP-violating couplings in ¢
are the mass shifts Amyz and Amg®. These quantities
cannot be measured and theoretical calculations of
Amy and Amg®» are unreliable. However, we will see
that ¢ does not depend on the mass shifts. In deriving
Eq. (3), we assume that the CP violation occurs entirely
in the weak interactions. If the CP violation occurs in
electromagnetic or semistrong interactions, the form of
Eq. (3) can be more complicated, but an evaluation
of F will still require a knowledge of mass shifts.

In our model we assume that the K7, and K g mesons
appear as bound states in two high-mass channels with
opposite eigenvalues of CP. The Kg and K, are then
coupled to the 27 (I=0,2) and 3 channels, respectively,
via the weak interactions. We lump all of the three-body
decay channels of Ky, into a single channel which we
treat as a quasi-two-body channel. The potential term
describing the three-body decays can be as complicated
as needed to simulate their effect in the vicinity of the
K° mass. We then introduce I™-violating forces to couple
the two CP eigenstates. In order to describe this system
we need a 5-channel model.

We write the Born (or generalized potential) matrix
as®

0 ngS(O) igar® )
0 g2s®  igar®
’ E+E,
Bs igss gL , (4)
—igss) Bg 0
gsL 0 By, )

narrow energy range, the detailed energy dependence of
the Born terms is unimportant, and we expect to be able

Elementary Particle Physics and Field Theory I, edited by K. W.
Ford (Benjamin, New York, 1963), p. 263.

1o R. Rockmore, Phys. Rev. 185, 1847 (1969).

1 T. Truong, Phys. Rev. Letters 13, 358 (1964).

12§, Barshay, Phys. Rev. 149, 1229 (1966).

18 A, Kamal and B. Kenny, Phys. Rev. 186, 1473 (1969).
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to approximate any one of them by a simple pole with
an appropriately determined residue. The position of
the pole is determined essentially by the range of inter-
action of the forces connecting the initial and final state
and by the thresholds of the initial and final states. If
we assume that the uncoupled channel in which K
and K appear as bound states are high-mass channels
with equal mass (by CPT invariance) and that these
channels are coupled to the 27 and 37 channels via the
short-range weak interactions, then we expect that the
pole positions for all the nondiagonal terms can be taken
equal. We do not expect the pole position for the strong
diagonal interactions to be the same as for the non-
diagonal interactions and we leave these Born terms in
a general form. In the absence of all nondiagonal forces,
the Kz and Kg mesons (by TCP invariance) will be
produced with the same mass and we expect Bg and By,
to be identical. We also expect that the inequality
(K — 3r)KT(Kg— 2m) is primarily due to smaller
phase space in the 37 channel and hence g5z, and go5'®
should be comparable in magnitude.®

T-violating forces can also be introduced through a
direct coupling of the 27 and 3x channels. In order to
to obtain the experimental value for T'(Ky— 27) with
this type coupling, we would have to choose the coupling
approximately 10~ times as strong as one of the strong
diagonal Born terms. We thus identify a direct coupling
between the 27 and 3= channels with T violations in
electromagnetic!* or semistrong interactions.!®* We also
considered a model of this type. The simplest things to
do is to make a pole approximation for the coupling
between the 27 and 37 channels, If we take the pole
position to be the same as for the weak coupling con-
necting the 27 and 3 states to K s and K1, respectively,
then we obtain the result presented in Eq. (3). However,
we cannot justify choosing the same pole position to
describe both the short-range weak interaction and the
longer-range semistrong or electromagnetic interaction.
Choosing the pole position at different energies greatly
complicates the equations, and we were not able to
find a simple expression like Eq. (3) entirely in terms
of mass shifts and coupling constants to describe the
effect of the interference. The reason for the difficulty
is that the Born term coupling the 27 and 3 states has
no relation to mass shifts and widths that would exist
in the absence of overlap. Simple estimates for the factor
F show that if the pole position for the 27-37 coupling
is close to the physical region and the pole position for
the weak coupling is much farther away, then |F| can
be of the order of one even if | Amz/Am| is very small.
Superweak couplings'® can also be introduced by

1 J. Bernstein, G. Feinberg, and T. D. Lee, Phys. Rev. 139,
B1650 (1965).

18 T. D. Lee and L. Wolfenstein, Phys. Rev. 138, B1490 (1965).
The 27-3r coupling can also be nonzero if the weak interactions
contain a AS =0, CP-violating, P-violating, and G-parity-violating
piece. In this event the 2z-3x coupling will be very small and we
neglect this possibility.

18 I.. Wolfenstein, Phys. Rev. Letters 13, 562 (1964).
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considering a direct coupling between K and Kg
(grs#0). This type of T violation is irrelevant for our
investigation since it will probably never be seen except
in K° decay.

We can obtain a complete description of this model
by solving the multichannel ND~! equations.”” We can
decouple the diagonal matrix elements of N and D from
the nondiagonal matrix elements by making a subtrac-
tion in D at E= E,, the pole position of the off-diagonal
matrix elements of B. We assume that Bg and By
produce zeros in Dg and Dy, near the K° mass according
to

D,g:DL:d(mK—E), (5)

where mg would be the mass of K° if it were stable.

The solution is straightforward but tedious, and
here we will only state the relevant results of the calcu-
lation (see the Appendix). The masses of Ky, and Kg
will be shifted from mx according to

Amg=mg—mxg
= —3a2 VT35V —3a; PT5® —JasTss,  (6)

AmL=mz,—mK
= —3asTsr— 30 OT. O —Jas@T9, . (7)

To a good approximation we can write

Amg= —F0s O T35 —1ay DTy | (6"
Amp=—2%a3T;y. 7)

We define
Amg 0= —1a,OT56® | Amg®= —1q,®Ty5® . (8)

The o’s can be computed if the B’s are known. For
example, for a2® we find

Cy® cotdy—1

C2®4-cotd, ’

s ® =

©)

where

G2 9=—(ReDss)/(p2N25) (10)

and &y is the background == 7=0 phase shift which can
be found from B,®. p; is a kinematical factor for the
27 =0 partial wave. TV is the partial width for the
decay K1 — 27(I=0) which would exist in the absence
of overlap with Kg. I';1(® is also related to the back-
ground phase shift in the 2x(7'=0) channel according to

Do ® =131 (C5® sindo-+cossp)?, (11)

where v/ would be the partial width in the absence
of overlap and background,

Y20 =p2(ger ) 201/ [d(E+Eo) ],

where ¢r=—D;r/gsr. is independent of gsz. Entirely
analogous equations are found for the other widths. We

(12)

1" For a discussion of the multichannel ND! equations see J.
Fulco, G. Shaw, and D. Wong, Phys. Rev. 137, B1242 (1965).



782 P.

note that Truong’s’ expression for the mass shift,
Amg= —3T'5 cotdo, (13)

is the special case of Eq. (9) where C5@>>|cots|. We
have an additional parameter in our expression for the

| T22® /T
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mass shift, which has the advantage of not predicting
an infinite value of Am as 80— 0.

We can compute the rate for Kz, — 27 (7=0) relative
to Kr—3r by computing the ratio (T729/Trs).
We find

(T2 ©)2 (g — E) — T35 2] (Tar.OT35) 24 (Tas OT'31)12] (crg )+ (Pag @) 12[ (T OT 51, )12 (Tag DT, ©)127] (015 @ +-5)

The signs are written here as though all the couplings
were positive. To obtain the actual sign we must give
the I'*/2 the sign of the appropriate coupling; e.g.,
sgn(Teg®)2=ggn(g25®). If we use the inequalities
Tos@O>>T3 5 Ta 2> T35 (assuming that gor? is of the
same order of magnitude as g3s) and evaluate Eq. (14)
at E=myr, we obtain

| T1e®/Trs| = (Tar'®/Tsr) 2| F| , (15)

where F is given by Eq. (3) as follows:

T2s@T5g\ 12
F=(iAm~+3T )1 {AmLI:l —(m) :l

| PG Y

.. ['pg© Ty N 1/2
—(ams®—3ires®)| 1-(—— ) |1 @)

Tor, O g™

We have neglected terms of order (T'sr®/T25®) in
obtaining Eq. (3). We interpret |F|? as the change in
the partial width T'(K1— 27(I=0)) from T2 which
would be observed in the absence of the overlap of K,
and Kg.18

A commonly used way to compute mass shifts is to
write an unsubtracted dispersion relation for the mass
shift in terms of the width of the interaction.” This
procedure leads to the qualitative estimate |Amz]
K|Amg|. In our model, Amy is determined by the
product «3T'sz. Since the effective two-body threshold
for the three-body decay channel of K is expected to
be near the K° mass, we expect the effective background
phase shift §; will be small. Then az=~Cs (if |cotds|
>3>|C3]). If T3y, is small for kinematical reasons, then C;
is large for the same reasons and the product CsI'sz can
be large (on the same order of magnitude as ax@Ty5®).
For 8;7#0 the mass shift can still be sizable, with sign
depending on 83 as well as Cs.1°

18 To interpret F, we keep the derivation of Eq. (14) general
and do not require that the stable masses of Kz, and Kg be identi-
cal. Then the mg in Eq. (14) is the stable mass of Kgs, mxg. We
can eliminate interference effects by formally separating mxg and
mgy by many widths I's. In doing this, we obtain the result
| Tro®/Trs| = (T219/T3)1/2. The factor F is therefore the change
in this ratio due to the interference.

19 The C’s can only be computed by using a model. For a simple
calculation assuming a pole approximation without diagonal
forces see Ref. 4.

T2 (g — E) 45 (Tas ©)2[ (Do, OT35) 12— (TagOT52)12] (e ® 44) -5 (Das®) 12 (Do ®T55) 12— (Tag @ T52) 127 (e ® +-4) ’

(14)

We compute the expressions for € and ¢ and find
Tz O\ 1/2
e=<~ ) F,
Tp5®
iei(sz—so)'— Tor@\Y2  (Tpg® Ty, ®)1/2
( ) — ] a7
V2 L Tys®/ Tas®
As noted earlier, ¢ is independent of the (nonmeas-
urable) mass shifts. Thus an accurate measurement of ¢’
is very important. However, unless the two terms in

Eq. (17) add, or one dominates, it is still difficult to
estimate the intrinsic CP-violation strengths.

(16)

7
€ =

APPENDIX

Many of the results quoted in the main body of this
paper can be derived in a two-channel model. The
generalization to more channels is straightforward.

We will review briefly the multichannel ND™!
equations.’” We assume that the unphysical cut terms B
are known. Then the scattering amplitude may be
written as (E=total center-of-mass energy)

A=ND, (A1)
where
1 = —Eg
Ni(E)=Bi{i(E)y+> - | Ba(E)— Bi(E)
EwJEy E' —Eg
pr(E)Nwi(E")
X ———dE' (A2)
E'—E
and
E—Eg 2 pi(E)N(E") dE’
Di(B) =5, f . (a3)
™ E; E'—-Es E/—E—’Le

We have normalized D;;(Es)=28; by making a sub-
traction in the D-function at E= Eg. E; is the threshold
for the 7th channel and p; is a kinematical factor.

We assume [see discussion after Eq. (4)] a Born
matrix of the form

< Bn(E)
- g1o/ (E+Eo)

where the second channel is a high-mass channel which
would have a bound state at E= My in the absence of

gi2/ (E+Eo)>, (a4

Bas(E)
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coupling to channel 1. We can simplify the equation by

making the subtraction in D at E= —FE, Then the
N-functions can be written as
1 = E+E,
Ni(E)=Bu(E)+ - B(E")— - Bu(E)
™ JE; 0
pi(E")N (E')
X ———— dE' (AS)
E'—E
and for 1§
N(E)=gi;F:i(E), (A6)
where
1 E+E,
Fy(E)= +- | Bu(E)— ———Bu(E)
0 ™ JE; 0
pi(E)F(E")
X ————dE'. (A7)
E'—E

The D-functions are found from Eq. (A3). For the
off-diagonal D-functions, we may write

Dii(E)= —gijei(E), (A8)
where
E+E0 ®© pi(E/)Fi(E,) dE'
wm-—— [ ~.(a9)
T g, E+Ey, E—E—ie

In the energy range of interest (E=~mp<<E,, where ¢ is
real), we separate ¢; into its real and imaginary parts:
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We assume that for E~my it is a good approximation
to write

Dy(E)=d(mp—E). (A11)

After making the approximation in Eq. (A11), we
find that the S-matrix element for the first channel may
be written as

mrp—E+AT
Sp=erii— 7 (A12)

mp—E—13T

where

01V 11/ D11= €% siné, (A13)
T'=T4[(c sind+cosd)F1(E+ Eo) 2, (Al4)
¢=C1/(p1F1), (A15)
T'1=2p1g12*¢s/[d(E+ Eo) ], (A16)
mrp=mp—3al, (A17)
a= (¢ cotd—1)/(c+cotd), (A18)

where T'; is the width the resonance would have if the
background phase shift 6 were zero. Equations (6)
and (7) are generalizations of Eq. (A17) for the case of
three open channels and two closed channels.

If we generalize to a 5-channel problem with a Born
matrix given by Eq. (4), the relevant N and D matrix
elements are still determined from equations similar
to Egs. (A6), (A7), (A3), (A8), and (A9). The N and D

e1(E)=C1(E)+ip:iF1(E). (A10) matrices will have the form
[N, 0 0 225 OF,® gy OF,®
0 Ny®@ 0 gasDFy® gy MF,®
N= 0 0 N3 1835k gFs ) (A19)
225V F g g2sWFs  —igssFs Ng 0
\—1g2.PFr  —igear.®Fr  gaiFyL 0 Ny,
[ D,® 0 0 — g5y ® gy ©
0 D, ® 0 — 25D r® gy Doy
D= 0 0 D; —ig35¢3 —g3L¢s , (A20)
—g25Wos  —gsPos  tigises Dg 0
\Fig2. Qo +ig2nPer  —girer 0 D

where @2, ¢, and ¢; are complex in the K° region
while ¢g and ¢r, (¢s= ¢r in this case) are real. The
diagonal N-functions are found from Eq. (A5) while the
F’s are given by Eq. (A7). The D-functions are found
from Eqgs. (A3), (A8), and (A9). The expressions for the
partial widths for decay into a given channel are given
by Egs. (A14) and (A16) while the mass shifts are a sum
of partial mass shifts of the form determined in Egs.
(A17) and (A18).

In order to find the ratio | 722®/T 3| in Eq. (14) we
must invert the D matrix, perform the appropriate

matrix multiplications, and rewrite the amplitudes by
using the definitions of the widths. The result is Eq. (14).

Once we have found the amplitudes T'7,®, Tr,®,
T5®, and Ts®, we can compute the amplitudes
A(K— %% and A(Kg— 7% by taking the
appropriate isospin combinations. We can then calculate
e and € [as given in Egs. (16) and (17)] by using the
relations

N—=AKr—rtr)/A(Ks—rtr)=eté
noo=A(Kr—771°)/A(Ks— 77 = ¢—2¢ .

(A21)
(A22)



