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true for other cases. These comparisons can be made
easily by using Tables II and III of this paper with
Tables I and II of Ref. 9. However, although TPK im-
proves upon OPE in a comparison with the phenomeno-
logical phase parameters, neither OPE+TPE nor
OPK+TPE+ATPK provide a good fit to these values.
Since the vector-meson-exchange contributions are
large in the intermediate region, their inclusion is ob-
viously needed.

V. CONCLUSIONS

Since the TPE contribution in the V(6,6) model is
highly divergent, this model seems to provide only an
effective coupling, and it then signihcantly affects only
the s- and p-wave OPE phase parameters. Thus, the
modification of OPE in the V(6,6) model is largely con-
Gned to the core.

On the other hand, the TPE contribution in the
chiral-dynamical model is obtainable without any
serious difficulty, and the additional contribution in
this model significantly alters the nucleon-nucleon
scattering phase parameters throughout the intermedi-
ate region. However, since the agreement between the
OPE+TPE phase parameters and the phenomenologi-
cal values improves in some cases and deteriorates for
others by the addition of the chiral-dynamical contribu-
tion, a de6nite conclusion about the chiral-dynamical
coupling can be reached only after induding the vector-
meson-exchange contributions.
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The intrinsic magnitude of the CP-violating coupling is not simply related to the decay ratio (E'I, —+ 2w) j
(E8 ~ 2m), because of the EI,-Eg overlap. It is this intrinsic coupling which is needed to estimate Cg
violation in other systems. We examine an explicit model showing the interference eGects of the E'J.-X8
overlap on the relation of the coupling constants to the above decay ratio. There are interference effects in
~ which depend on nonmeasurable mass shifts. (Theoretical estimates of these mass shifts are discussed. )
However, e' does not depend on these mass shifts and thus can be more easily related to the in-
trinsic CE-violating coupling.

HK intrinsic magnitude of the CP- or T-violating
coupling in the decay of E1,~2m is of crucial

importance. Theoretical estimates of T-violation effects
in other systems such as the neutron electric-dipole
moment (EDM)" depend on knowledge of this
coupling. However, because of the overlap of the E~
and E8

the observed partial width3

$I'(Kr, —+2x-)/I'(Ks —+2x-)j"' 0.002 (2)

is not simply related to coupling constants, so that the

~ Supported in part by the National Science Foundation.' S. L. Glashow, Phys. Rev. Letters 14, 35 (1965); G. Feinberg
and H. S. Mani, Phys. Rev. 1N, 637 (1965); G. Feinberg, ibid.
140, 81402 (1965)," G. Barton and K. D. White, ibid. 184, 1660
(1969)~

~ J. K. Baird, P. D. Miller, %. B. Dress, and ¹ F. Ramsey,
Phys. Rev. 1'/9, 1285 (1969).The authors establish an upper limit

~ EDM [(5X10 2' e cm and indicate that a future experiment
should increase their sensitivity to 7&(10 24 e cm. See also "Search
and Discovery, "Phys. Today 22, 56 (November, 1969),for future
expectations in improving the measurement of the neutron KDM.' Particle Data Group, Rev, Mod, Phys. 42, 87 (1970).

naive determination of the magnitude of the CI' viola-
tion from Eq. (2) may be very misleading. Although
this fact is well known, it seems to have been repeatedly
ignored. Thus we feel that it is useful to present a de-
tailed exphcit discussion of the interference effect of the
El;Eq overlap on the relation of the coupling constants
to decay rate (2).

%e use the multichannel ED ' formalism' to relate
the relevant branching ratios to the intrinsic coupling
strengths in the case where the CI' violation is a weak
interaction. (As noted previously, ' this could equiva-
lently be treated in the Wigner-Weisskopf formalism. )
The result' for e depends on nonmeasurable mass shifts.
Many theoretical estimates7 of these mass shifts indicate
that the EJ.-E8 overlap depresses the CI' violation, so

4 P. Coulter and G. Shaw, Phys. Rev. 188, 2443 (1969).
5 M. Bander, P. Coulter, and G. Shaw, Phys. Rev. D 2, 944

(1970).
tl T. T. Wu and C. N. Yang, Phys. Rev. Letters 13, 380 (1964).

We use the now "standard" definitions of e and e' {see Appendix)
which differ by a factor of 2 from the original definitions of Wu
and Yang.

7 K. Nishijima, Phys. Rev. Letters 12, 39 (1964); T. Truong,
ibad. 17, 1102 (1966};K. Kang and D. Land, ibid. 18, 503 (1967).
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that the "intrinsic" CI' violation may be larger than
one would. expect from Eq. (2) by a non-negligible
factor. However, ~' does not depend on these mass
shifts, and thus can be more easily related to the in-
trinsic CP-violating coupling. Thus an accurate
measurement of e' is crucial in order to determine the
intrinsic CP-violating coupling.

We obtain the result that F(Ez~2n), where the
6nal 2m. state has I=O, is different from what it would
be in the absence of interference by a factor II'I',
where'

P (0)P (2) 1j2-

(Am—8('& ', (F—gs-('&) 1—
p ()I 8()

(3)

g»(') g»(')

Ig+g jg,z(o) jg2z(2)

where E is the total energy in the center-of-mass system.
Since we are interested in computing the amplitude in a

' We use the subscripts 2, 3, 5, and L to label the 2x, three-
body E8, and EI, channels respectively. Superscripts 0 and 2 are
used to label the 2w I=O and I=2 channels, respectively. I"s
with one subscript are used to label the total widths.' For estimates of relevant phase-space factors see J.D. Jackson,
in Brarldeis Summer Ilstitute 196Z Lectures &s Theoreticat Physics,

Am=ms mz —and Amp(s) is the shift of the Ez (&s)
meson from the mass it, would have if it were stable.
hm8(2) is the mass shift of EB due to its decay into the
2m(I=-2) channel. F2z(o& is the partial width for the
decay XJ.—+2m. (I=O) which would be seen in the
absence of interference with E8. F38 is the decay width
for E8—+ three-body decay channels of EI,. %e expect
the square-root terms to be of order unity if the CI'
violation for E8—+ 37' is comparable to that for
Ez, ~2m. ' The widths I'2s ", I'2q(", and I'3L, are not
changed much by the interference because of the small-
ness of the CI' violation. %e only expect appreciable
changes in CP-violation widths, e.g. , F(Ez +2m.). The-
sign of the square-root terms is written as though all the
couplings were positive. The actual sign can be deter-
mined by letting QF,, carry the sign of the coupling
between channels i and j.

The major uncertainties in Eq. (3) are the mass shifts
AmI. and Ama('). There have been many theoretical
attempts to compute d m. The usual assumption' is that
the major part of Am is a, result of the coupling of EB to
the 2m(I=O) channel. If this is a valid approximation,
one would expect

I
I'

I
((1, so that the effect of the inter-

ference of Ez and Es would be to slppress the decay
EI.—+ 2+. This would imply that theoretical estimates

(0) O

of the neutron KDM may be urger than previously
expected if the weak interaction violates T invariance. '

On the other hand, theoretical calculations of mass
shifts in the E system are in a generally unsatisfactory
state. For example, an attempt by Rockmore" to com-
pute hml. using Sakurai s weak-interaction Hamiltonian
resulted in values of Aml, which are negative and
IhmzI=3IhmI. In this case Ibm'/hmI)1 and we
might have IFI)1. We make no attempt here to
compute Aml, ,

' however, our model does indicate that it
would not be surprising if

I
AmzI were large.

The last term in Eq. (3) involving the IVIII =3~

transitions is the term which is computed in the models
of Truong" and Barshay" and more recently by Kamal
and Kenny. " All of these authors conclude that the
X' —+ 2n.(I=2) amplitude is not enough to give a value
of Re~ compatible with experiment.

To summarize, the crucial factors for determining the
intrinsic magnitude of the CI'-violating couplings in e

are the mass shifts AmI. and hm8(2). These quantities
cannot be measured and theoretical calculations of
Aml, and Amp(') are unreliable. However, we will see
that e' does not depend on the mass shifts. In deriving
Kq. (3), we assume that the CP violation occurs entirely
in the weak interactions. If the CI' violation occurs in
electromagnetic or semistrong interactions, the form of
Kq. (3) can be more complicated, but an evaluation
of Ii will still require a knowledge of mass shifts.

In our model we assume that the EI, and E8 mesons
appear as bound states in two high-mass channels with
opposite eigenvalues of CI'. The E8 and EI, are then
coupled to the 2~(I= 0,2) and 3m channels, respectively,
via the weak interactions. Ke lump all of the three-body
decay channels of EI, into a single channel which we
treat as a quas~-two-body channel. The potential term
describing the three-body decays can be as complicated
as needed to simulate their effect in the vicinity of the
E' mass. %e then introduce T-violating forces to couple
the two CI' eigenstates. In order to describe this system
we need a 5-channel model.

We write the Born (or generalized potential) matrix
as'

'g28"' ~g~I."'
g28'" ~g2I, ")

E+Eo
2g3 S

—&g38

g3I,

narrow energy range, the detailed energy dependence of
the Born terms is unimportant, and. we expect to be able

E/emerftury Particle Physics and Fietd Theory I, edited by K. %.
Ford (Benjamin, New York, 1963), p. 263."R. Rockmore, Phys. Rev. 185, 1847 (1969)."T.Truong, Phys. Rev. Letters 13, 358 (1964)."S. Sarshay, Phys. Rev. 149, 1229 (1966)."A. Kamal and S.Kenny, Phys. Rev. 186, 1473 (1969).
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to approximate any one of them by a simple pole with
an appropriately determined residue. The position of
the pole is determined essentially by the range of inter-
action of the forces connecting the initial and 6nal state
and by the thresholds of the initial and final states. If
we assume that the uncoupled channel in which KL,
and E8 appear as bound states are high-mass channels
with equal mass (by CPT invariance) and that these
channels are coupled to the 2m and 3x channels via the
short-range weak interactions, then we expect that the
pole positions for all the nondiagonal terms can be taken
equal. We do not expect the pole position for the strong
diagonal interactions to be the same as for the non-
diagonal interactions and we leave these Born terms in
a general form. In the absence of all nondiagonal forces,
the Ez and Es mesons (by TCP invariance) will be
produced with the same mass and we expect 88 and B~
to be identical. Ke also expect that the inequality
F(Ez-+3)r)((F(Es-+2m) is primarily due to smaller
phase space in the 3x channel and hence ger„and g28(0)

should be comparable in magnitude.
T-violating forces can also be introduced through a

direct coupling of the 2' and 3m channels. In order to
to obtain the experimental value for F(Ez—+2rr) with
this type coupling, we would have to choose the coupling
approximately j.0 ' times as strong as one of the strong
diagonal Born terms. We thus identify a direct coupling
between the 27r a,nd 3x channels with T violations in
electromagnetic" or semistrong interactions. '5 We also
considered a model of this type. The siInplest things to
do is to make a pole approximation for the coupling
between the 2x and 3z channels, If we take the pole
position to be the same as for the weak coupling con-
necting the 2x and 3m. states to Eg and E'L„respectively,
then we obtain the result presented in Eq. (3).However,
we cannot justify choosing the same pole position to
describe both the short-range weak interaction and the
longer-range semistrong or electromagnetic interaction.
Choosing the pole position at diBerent energies greatly
complicates the equations, and we were not able to
find a simple expression like Kq. (3) entirely in terms
of mass shifts and coupllllg coi1stants to descllbe the
eGect of the interference. The reason for the difFiculty
is that the Born term coupling the 2x and 3m states has
no relation to mass shifts and widths that would exist
in the absence of overlap. Simple estimates for the factor
P show that if the pole position for the 2m-3m coupling
is close to the physical region and the pole position for
the weak coupling is much farther away, then ~F~ can
be of the order of one even if

~
Amz/Arw

~
is very small.

Superweak couplings" can also be introduced by

'4 J. Bernstein, G. Feinberg, and T. D. Lee, Phys. Rev. 139,
$1650 (1965).

'5 T. D. Lee and L. %olfenstein, Phys. Rev. 138, 81490 |'1965).
The 2~-3~ coupling can also be nonzero if the weak interactions
contain a AS =0, CP-violating, E-violating, and G-parity-violating
piece. In this event the 2x-3x coupling will be very small and we
neglect this possibility."L.Wolfenstein, Phys. Rev. Letters 13, 562 (1964).

considering a direct coupling between EJ. and E8
(gz&QO). This type of T violation is irrelevant for our
investigation since it will probably never be seen except
in E' decay.

Ke can obtain a complete description of this model
by solving the multichannel XD ' equations. '~ We can
decouple the diagonal matrix elements of E and D from
the nondiagonal matrix elements by making a subtrac-
tion in D at E=Eo, the pole position of the oB-diagonal
matrix elements of B. We assume that 88 and BJ„
produce zeros in D8 and DJ. near the Eo mass according
to

where N,~ would be the mass of E' if it were stable.
The solution is straightforward but tedious, and

here we will only state the relevant results of the calcu-
lation (see the Appendix). The masses of Ez, and Es
will be shifted from m~ according to

nzs= ns8 —mz
= —)&a l ~s ——&2 f 2s ——&8f as, (6)

To a good approximation we can write

Ke define

Z)(rgs(o)= ~()2(0)p2s(0) orris(&)= &(z2(2)p2s(2) (g)

The e's can be computed if the 8's are known. For
example, for o.2&0) we find

C2&'~ cot60—i
n &0)=-%2

C2(')+cot() o

whel e
C2 (ReD2&(o))/(p2%2s(o)) (lO)

and 80 is the background mx I=0 phase shift which can
be found from 82(0&. p2 is a, kinematical factor for the
2x'1=0 paitlal wave. I 2J( ) is the paI'tlal width fol the
decay Ez~ 2rr(I=0) which would exist in the absence
of overlap with EB. r2L, ' & is also related to the back-
ground phase shift in the 2)r(I = 0) channel according to

F2z(')=72z(o)(Cg") sinbo+cosbo)', (ll)
where ygL, (0& would be the partial width in the absence
of overlap and background,

v~z"'=z2(g2z'")'vz/[&(~+&0)7, (~2)

where qz, = —D()z/gaz is independent of g3z. Entirely
analogous equations axe found for the other widths. We

"For a discussion of the multichannel XD ' equations see J.
Fulco, G. Shaw, and D. %ong, Phys. Rev. 137, 81242 (1965).
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note that Truong's' expression for the mass shift,

Ans8= —
~ I"g cotbo,

is the special case of Eq. (9) where Cs"»&~cot&&~. We
have an additional parameter in our expression for the

mass shift, which has the advantage of not predicting
an infinite value of Am as ho ~0.

We can compute the rate for Ez, +2—rr(1=0) relative
to Kz —+3&r by computing the ratio (Tz,s&o&/Tzs).

We find

I
T'zs&o&/T»

I

(r sz&o&)z/s(//szz g) si s//z/sp(r sz&o&r e)&/sy (r se&o&r sz) / j(/so+i)+s (r se& &) / p(p»&o&Z, z&s&)&/s (r //&s&r, z&o&)s/s](/ss& &+i)

rszz s(/sszr —g)+s (p 8&o&)z sp(r'sz&»t'se)& s (r s&s»Z' )sr&]s( &o&+i)+s (Z's//&s&)z sp(Z'sz&»i'ss)z s {Z'se&s&r'sz)z s]( s&s&+s)
(14)

(I'ss "&I'os) "'
P =(ia/&i+-', I' s)-z a&rzz, 1 —~—

(I'sz, &o& I'ss J

(I' sio&psz(s&) i/s-

-(Ar/is&'&--, 'si"»&'&) 1-( ——
&I'sz "&I'ss "&~

(3)

We have neglected terms of order (I'sz, &'&/I'ss&'&) in
obtaining Eq. (3). We interpret

~

Ii
~

' as the change in
the partial width I'(Ez ~2sr(I=O)) from I'sz&o& which
would be observed in the absence of the overlap of El,
and Eg.I8

A commonly used way to compute mass shifts is to
write an unsubtracted dispersion relation for the mass
Shift ln terms of t11e width of tlM lntelactlon. This
procedure leads to the qualitative estimate ~hswz,

~

((~/)ssss~. In our model, As&sz, is determined by the
product n3I"3~. Since the effective two-body threshold
for the three-body decay channel of ICJ. is expected to
be near the Eo mass, we expect the effective background
phase shift 6s will be small. Then zzs=Cs (if ~cot&&s~

»
~
Cs

~
). If I'sz is small for kinematical reasons, then Cs

is large for the same reasons and the product C3I"3q can
be large (on the same order of magnitude as &zs&o& I'ss&o&).

For 63&0 the mass shift can still be sizable, with sign.

depending on bs as well as C3."
' To interpret Ii, we keep the derivation of Eq. (14) general

and do not require that the stable masses of EI, and E8 be identi-
cal. Then the w~ in Kq. (14) is the stable mass of EB, m~8. %e
can eliminate interference effects by formally separating m~8 and
m~1, by many widths F8. In doing this, we obtain the result
[ Tzs«& /Tzs (

= (I'szo/I'sz)'/s. The factor Ii is therefore the change
in this ratio due to the interference.

'9 The C's can only be computed by using a model. For a simple
calculation assuming a pole approximation without diagonal
forces see Ref. 4.

The signs are written here as though all the couphngs
were positive. To obtain the actual sign we must give
the I'I' the sign of the appropriate coupling; e.g. ,
sgn(1'sa&o&)z/s=sgn(gss&o&). If we use the inequalities
I'ss&"» I'sz»1'sz&"» I'ss (assuming that gsz, &" is of the
same order of magnitude as gss) and evaluate Eq. (14)
at E=mL, , we obtain

~

2'iso/2'„~ —(I „&o&/I sz)z s~p
~

wlmle F ls glvell by Eq. (3) as follows:

Ke compute the expressions for e and e' and 6nd

sez(ss —so& —
pi n&s» 1/2 (I is&1 &o&)1/s-

«I „& &) I „&o&
~ (17)

As noted earlier, e' is independent of the (nonmeas-
urable) mass shifts. Thus an accurate measurement of e'

is very important. However, unless the two terms in
Eq. (17) add, or one dominates, it is still difficult to
estimate the intrinsic CP-violation strengths.

B;s%)— Bg,(E)E' —Es

pz(E'P /, (&')
X dZ' (A2)

and
Z —Zs "p,(Z')X;,(Z') dZ'

D (E)=8"— — — "— . (A3)
B~—Eg E —8—ze

We have normalized D,;(Es)=5;; by making a sub-
traction in the D-function g,t 8=E8. E; is the threshold
for the ith channel and p; is a kinematical factor.

We assume /see discussion after Eq. (4)] a Born
matrix of the form

o &z& s /&z+z»)
gzs/(E+Eo) floss(~)

(A4)

where the second. channel is a high-mass channel which
would have a bound state at E=—Mg in the absence of

APPENDIX

Many of the results quoted in the main body of this
paper can be derived in a two-channel model. The
generalization to more channels is straightforward.

We will review briefly the multichannel ÃD '
equations. '~ We assume that the unphysical cut terms 8
are known. Then the scattering amplitude may be
written as (E= total center-of-mass energy)

(A1)
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coupling to channel I. Ke can simplify the equation by
making the subtraction in D at E-=- —Eo. Then the
E-functions can be written as Doe(E) =d(ms —E). (A11)

We assume that for E=m~ it is a good approximation
to write

oo

S;;(E)=8;;{E)+—
E+Eo

&"(E') ——, &"(E)
E'+Eo

After making the approximation in Eq. (A11), we
6nd that the 5-matrix element for the first channel may
be written as

X dE' (A5)
jV~

m g E+—iso
I'

g2z511
mg —8—i-,' I'

{A12)

and for tQ J

where

F'(E) =

&' (E)=a' F'(E),

E+Eo
&' (E') ——, &' (E)

E +E„

(A6)
where

piXii/Dii= 8' sln8, (A13)

I'= I'iL(c sin8+cosb)Fi(E+Eo)]', {A14)

p'(E')E*{E')
X dE'. (A7)

The D-functions are found from Eq. (A3). For the
oR-diagonal D-functions, we may write

~ =ci/(pili),
»= 2pg»'o o/Ld(E+Eo)],

mg = nzg —~o.P,
ee= (o cot8 —1)/(c+cotg),

(A15)

(A16)

(A17)

(A18)

where

v'(E) =

D*'(E)= -a' o *(E)

E+Eo ~ p, (E')P, (E') dE'.
g; E'+Eo E' E ie— —

(AS)

(A9)

In the energy range of interest (E =alii«Eo, where io is
real), we separate ooi into its real and imaginary parts:

v i(E)= Ci(E)+6 ipi(E). (A1o)

where I'i is the width the resonance would have if the
background phase shift 8 were zero. Equations (6)
and (7) are generalizations of Eq. (A17) for the case of
three open channels and two closed channels.

If we generalize to a 5-channel problem with a Born
matrix given by Eq. (4), the relevant X and D matrix
elements are still determined from equations similar
to Eqs. (A6), (A7), (A3), (A8), and (A9). The X and D
matrices will have the form

g (0)

0
0

g~s")~s
zg2J PI

0
g2(~)

0
g2s(0)Ps

—~g (»P

0
0

&7,
—~gssps

g3I.PI,

g2S(o)p2(0)

g»(2)P, (2)

&gsSF3

0

jg~~(0)p~ (0)'

&g2&
(2)P2 (2)

g31.~3
0

D (0)

0
0

g2s ps
~+&g2L PL

0
D2(2)

0
—g2s("&s

+cger, "'q r.

0
0

D3
+Zgos+s—g3I,PJ.

g s(0) p (o)

—g2S(2) q ~("
—~g3S&3

Ds
0

g,~(0)q„(o
—~g21.(2)

q 2"'
—g31.@3

0
DL,

where q 2"', q a'", and q 3 are complex in the E'0 region
while Ns and &pr. (oos=- &pr, in this case) are real. The
diagonal E-functions are found from Eq. (A5) while the
F's are given by Eq. (A7). The D-functions are found
from Eqs. (A3), (Ag), and (A9). The expressions for the
partial widths for decay into a given channel are given
by Eqs. (A14) and (A16) while the mass shifts are a sum
of partial mass shifts of the form determined in Eqs.
(A17) and (A18).

In order to find the rs, tio
I Tr,&~oi/Tr, &

l
in Eq. (14) we

must invert the D matrix, perform the appropriate

matrix multiplications, and rewrite the amplitudes by
using the definitions of the widths. The result is Eq. (14).

Once we have found the amplitudes T1.2(0) T1,2(')
Ts2('), and Tq(2), we can compute the amplitudes
A(Xr, ~7r+ o~ ') and A(E's~m-+'7r ') by taking the
appropriate isospin combinations. We can then calculate
e and e' Las given in Eqs. (16) and (17)7 by using the
relations

g+ =A (E:r,~ Tr+7r )/A (Es &m+n )=-e+ e', '(—A21)— —

goo A(Er, ~~'~')/A (E——s ~ ~o'~o) = e 2e' (A—22).


