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Recoil Protons from Wide-Angle Bremsstrahlung
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Inelastic electron-proton scattering may be studied experimentally by momentum analyzing and de-
tecting the final proton, in which case it becomes necessary to consider the contribution made by wide-angle
bremsstrahlung. In this paper we calculate exactly the Bethe-Heitler contribution to the cross section for
this process, differential in proton momentum and solid angle, and integrated over the phase space available
to the unobserved final electron and photon. The result may be applied to muon-proton bremsstrahlung as
well. If the electron rest mass is neglected where possible, the final formula takes a simple form as the sum
of two terms. Of these, the dominant term containing a logarithm is proportional to the elastic scattering
cross section, while the minor nonlogarithmic term can usually be neglected. The resulting formula is
similar to that for the concomitant process in which the incoming electron radiates a photon in a physical
radiator upstream and then scatters elastically from a proton, which in turn recoils into the detector. The
factoring of the elastic scattering cross section occurs also when the final electron rather than the recoil
proton is observed, a result which depends upon the so-called peaking approximation. In the present calcu-
lation the factoring of the leading term is exact for relativistic electrons.

I. INTRODUCTION
' N some work at Orsay on inelastic electron-proton
~ - scattering, it was desired to know the contribution
of the process

e+p ~ e'+p'+V (1)

to the momentum spectrum of recoil protons produced
in a liquid-hydrogen target by an electron beam well
defined in energy and angle. The requirement of
appreciable momentum transfer to the proton in
process (1) forces the electron or photon to scatter
through a wide angle; i.e., one deals with wide-angle
brernsstrahlung (WAB). The transition rate for this
process was calculated by Berg and Lindner' (BL),
who considered the "Bethe-Heitler" amplitude corre-
sponding to Fig. 1, and also the "virtual Compton"

amplitude of Fig. 2. However, the object of the BL
calculation was the spectrum of secondary electrons.

A calculation involving the recoil proton spectrum
was done by SchiP to obtain radiative corrections for
the experiment of Panofsky and Tautfest, ' who detected
protons from e-p scattering using photographic emul-
sions. Schiff began with the Bethe-Heitler4 formula,
which describes radiative electron scattering in a fixed
Coulomb field. The integral over final states was done
by a method now known as the peaking approximation,
based on the observation that the integrand is large
only when the momentum vector of the photon is
nearly parallel to that of the incident or final electron.
Schiff obtained a formula for the proton momentum
distribution which contained the Mott -cross-section

Q
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FiG. 1. Electron-proton bremsstrahlung: "Bethe-Heitler"
diagrams. q~ =Q~ —Qp~.

* Present address: 201 Residence des Eaux Vives, 91 Palaiseau,
France.

t Present address: NASA Ames Research Center, Moffett Field,
Calif. 94040.

~ R. A. Berg and C. N. Lindner, Phys. Rev. 112, 2072 (1958);
Nucl. Phys. 26, 262 (1961).See also, P. S. Isaev and I. S. Slatev,
Nuovo Cimento 13, 1 (1959); A. Costescu and T. Vescan, ibid.
48A, 1041 (1967).

3

Fio. 2. Electron-proton bremsstrahlung: "vir tual
Compton-effect" diagrams. r = pp —p.

'L. I. Schiff, Phys. Rev. 8V, 750 (1952).
'%. K. H. Panofsky and G. Tautfest, Phys. Rev. 105, 1356

(1957).
4 H. Bethe and %. Heitler, Proc. Roy. Soc. (London) 146, 83

(1934).
'N. F. Mott, Proc. Roy. Soc. (London) A135, 429 (1932).
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elastic scattering as a factor. He then argued that the
de6ciencies of the no-recoil analysis could be made
good by the simple substitution of the Rosenbluth'
cross section for the Mott cross section, which was
proved true in leading order of a recoil parameter by
Drell. ~

The BL analysis differs from that of Bethe-Heitler
in representing the target current by an operator
describing the properties of a physical proton including
its finite mass, the anomalous magnetic moment, and
the "structure" implied by the Dirac and Pauli form
factors I"~ and I"2.

Meister and Yennie' (MY) treated radiative cor-
rections to elastic electron-proton scattering using a
current operator for the proton equivalent to that of
BL. By differentiation of their formula applicable to
proton detection, MY obtained an expression for the
recoil momentum spectrum which should be valid near
the elastic scattering peak (for soft-photon emission).

In this paper the required cross section, differential
in Anal proton momentum and solid angle, is obtained
by integrating the Bethe-Heitler terms of the BL matrix
element over the phase space of the unobserved (e',y)
system. This integration can be done exactly in closed
form because the momentum transfer to the proton
vertex of Fig. 1 is fixed. Thus the result can be applied
to muon bremsstrahlung, although for simplicity we

always talk in terms of process (1).
In the text we consider only relativistic electrons.

The formula for purely elastic scattering is presented
as is that for the proton spectrum due to elastic scat-
tering by electrons which have lost energy by brems-
strahlung in an upstream radiator. This second process
is conveniently compared with |A'AB by defining an
equivalent radiator thickness for TAB.

Appendix A contains outlined derivations of the
elastic scattering and NAB cross sections, with simi-
larities indicated. The soft-photon limit and ultra-
relativistic limit are given. In Appendix B the differ-
entiated radiative correction of Meister and Yennie
is compared with our result.

II. ELASTIC SCATTERING

Consider a proton of rest mass M, at rest in the
laboratory until scattered elastically out of the target
by an incoming energetic electron. The recoil proton
emerges from the target at angle g with respect to the
electron beam, with momentum Q, total relativistic
energy E, and kinetic energy T=E—3f. The four-
momentum transfer to the proton is q"=Q"—Qo" (see
Appendix A for notation). The invariant

r = q„q&/4M'= (E M—)/2M = T/2M =——q'/4M' (2)

is a convenient dimensionless parameter.

' M. N. Rosenbluth, Phys, Rev. 79, 615 (1950).' S. D. Drell, Phys. Rev. 87, 753 (1952).' N. Meister and D. R. Yennie, Phys. Rev. 130, 1210 (1963).

and the electron angle of scatter 8, is determined by

Q sing
cot-,'0, = 1+ tang,

Q cosp —T M
(4)

with the neglect of the electron's rest mass m relative to
its energy.

The Rosenbluth cross section, differential in solid
angle of the proton, is a function only of Q and g:

(d(r C,(G, y Q(E+M)

~d0 z r ep'(~0"+M)
2iV '

=C,~G, ~ (1+r) secP, (5)
6p

el

where

Gz, '+rG~, '
G.(= cot'(-', 8.)+2rG~„' ——G.&(Q,&),

C.t=(e'/2iV)'=0. 587 10 "cm'
(6)

e being the elementary unit of charge in esu; Gz„and
G~„are, respectively, the r-dependent electric and
magnetic form factors of the proton. '

Equation (5) is valid when the final lepton is rela-
tivistic and

—g')&2m'.

III. RADIATION BEFORE SCATTERING

An electron of energy Ep+ fp may emit a photon of

energy

k~ = ep —ep'i

into the forward direction while traversing the up-
stream physical radiator, subsequently scattering elas-
tically on a proton.

The probability for emitting the photon with energy
kf in dkf in a radiator of 3 radiation lengths is

tC (co,kf)dkg/kr,

where C (e,k) 1 is a dimensionless function describing
the shape of the bremsstrahlung energy spectrum";
4 (e,0) =~3 in the soft-photon limit.

The effective cross section for detecting knock-on
protons from this two-step process is given by

d 0 Bkt do' tC'(Eo)kf)
(",Q,~) =

dQdQ BQ dQ it kf

L. N. Hand, D. G. Miller, and R. Wilson, Rev. Mod. Phys. 35,
335 (1963).' B. Rossi, High Energy Particles (Prentice-Hall, Englewood
Cliffs, N. j., 1952).

The incident electron energy necessary to eject the
observed proton is

eo"——MT/(Q costt —T)
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in which the recoil factor

Bkf eo"(r.o"+M)

term in the curly bracket of (13):

u x(1 x—) (G~„' 2—rGpg„')
b=-

7r ~eqGei

Bkr f do)

aQ &dpi,
(l.2)

a function of only Q and p.

IV. WIDE-ANGLE BREMSSTRAHLUNG

The di6'erential cross section for DAB is given by

is obtained. by differentiation from (8) and (3). For
the purpose of computation it is convenient to combine
the Rosenbluth cross section (5) with the recoil factor:

The explicit occurrence of kr ln (17) is rather curious,
since the 6nal-state integral was carried out exactly
over all photon directions in the zero-momentum
system. This integral is dominated by contributions in
which the photon momentum vector lies close to the
forward direction. Nevertheless, ONr resNA has eofh~eg
to do with the peakirtt, approximation,

Consider the similarity between (17) for NAB and

(10), which refers to the two-step process; their relative
contributions to the observed proton spectrum are
roughly in the ratio t„/t

Near the infrared photon (elastic scattering) limit,
x -+ 1; from (13)—(16),

d2

(eo,QA)
d QdQ

C,yE+M 1

v 8 kf
lim t„=(2n/n) [1n(—q'/nt') —1]
x~1

X x(1 x)—(Grr „—' 2rG~„—')+G,&t.,

A —
g

t,~ = — (1+x') ln +I'—
t/L/'. mx

(13)

for electron bremsstrahlung [see Eq. (A31) ff.g. The
same expression holds in the infrared limit for electron
detection. "However, the equivalent radiator for proton
detection decreases faster with increasing photon
energy than that for electron detection because of the
behavior of the exact argument of the logarithm [cf.
Eqs. (A27)—(A30)j.

(~0)Q)4')
dDdQ

Bkf d0 keg—(1+~), (17)
-w~n &Q d& z kf

which is comparable in form to (10).The small correc-
tion factor b is the ratio of the first term to the second

where n=1/137 is the 6ne-structure constant, x is an
invariant "inelasticity parameter, "

x = —2M r/po"tt& = eo /eo ~
0(x( 1

and I,,~ is the equivalent radiator thickness. In the zero-
momentum system of the Anal electron-photon system,
8' is the total energy:

W = [m' —q'(1 —x)/x]"'

and the photon eIlel"gy divided by Ht ls

I=-,' (1—nt'/W')

The validity of (13) is restricted only by (7). In ques-
tionable cases, such as muon-proton scattering, one
can always use the exact formulas in Appendix A.

The dominant term within the curly brackets of
(13) is clearly the second, which is proportional to the
elastic factor G,i. For 6xed v., G,i has its minimum value
when the proton comes forward (&=0). Even then the
second term accounts for typically more than 95%%uo of
the cross section. This suggests rewriting (13) with the
Rosenbluth cross section factored out:

V. DISCUSSION

'tAte see that for relativistic electrons the Rosenbluth
cross section factors almost completely from the %AS
cross section, as indicated by the approximate methods
of SchiR and of Meister and Yennie.

In the study of electroproduction of hadrons by
recoil proton detection, the formulas given here can be
used to subtract the WAS contribution to the mea-
sured spectrum. Of course, the information so obtained
is not in general equivalent to that found from electron
detection. It is interesting to note that for fixed incident
electron energy the missing mass increases linearly with
decreasing momentum of a detected electron, whereas
the missing mass for proton detection. increases and
then decreases again as the momentum of the detected
proton decreases monotonically from its maximum
value.

It is noteworthy that recoil proton detection has
some advantages over scattered electron detection in
the study of elastic e-p scattering: Radiative eGects are
reduced because photon emission along the direction
of the final electron is suppressed. Calculation of the
major contribution to the radiative tail is accomplished
without approximation. Measurements at constant
momentum transfer made with a magnetic spectrometer
are made at constant spectrometer current, tending to
reduce systematic errors.

"E.A. Allton, Phys. Rev. 135, 8570 (1964}.
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Corrections to our calculation will arise from radiative
corrections and the neglected proton Compton eGect,
Ke intend to investigate the latter in a subsequent
paper, a1though some idea of its importance may be
found by examining the work of MY.'
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APPENDIX A: THEORY

Introduction

The notation used here is that of Bethe, Schweber,
and de Hoffmann, " with the spinor normalization of
Feynman": NN=2m, where m is the rest mass of the
particle in question. The target is a proton at rest in

the laboratory for which the proton current operator
for both Figs. j. and 3 is that of Hand, Miller, and
%i}son.' The contribution of the proton current to the
square of the matrix element is

m the lepton mass,

1 t!f'28

G. =~.(.) —- -1+2 G '() 1-—I—
2r kiV

When the final electron is relativistic (o))m),

G., =~,(r) coto(-;e.)+2rG~'(r)

is an accurate approximation; here 0, is the laboratory
scattering angle of the lepton.

The differential cross section is

(
do C@/Ggl 8 M

dn .i r po(oo+M)
(AS)

!

where C,i=(e'/23f)'. This formula is exact if G, i is

taken from (A5); otherwise, one can use (A6) for G,i

ancl set po ——oo in (AS).

(2-) b (p.+e.-p-e)
d'o. = (4ire') '

Po(2oo) 2~

dip doe—im. , i
', (A7)

2o(2or)' 2E(2or)'

where P&&
——~po~/oo is the velocity of the incoming

projectile relative to a target at rest. If the final proton
is detected in solid angle dQ, the 6nal-state integral
gives

2'" =4~.(.)e"e'+~ G-'( )g", (A1)
Electron Bremsstrahlung

The lepton current operator for I'ig. 1 is given by
where q'= —4M'v is the square of the four-momentum

transfer, 3I is the proton mass, and

S,(r) =LG~'(.)+ rG~'(r) j/(1+ r), (A2)

—+»++»
p+k —m po —k —m

(A9)

where Ge(0) =1 and Gir(0) =2.793.
where e& is the photon polarization four-vector, with

e~e„=—1 and e=e~y„, etc. One easily finds from this

the equivalent plane-wave operator:
Elastic Scattering

The lepton current contributes

S""=2(Po,P)""+A"", (A3)

J,» =eke»/2), +q»ke/2ho+xq»,

X=(e p)/X —(e po)/Xo

&=(& p), ~o=(& po).

(A10)

(A11)

(A12)

where we have introduced the anticommutator symbol The re uired tensor averaged over initial lepton
(u,b)»" =a»b"+b»u". The square of the matrix element
is then

im. , i'= (1/g )S„„r"=G.,/r,

where, with oo (o) the initial (final) lepton energy, and

'2 S. S. Schweber, H. A. Bethe, and F. de Hoffmann, 3IIesons
and Fields (Row Peterson, Kvanston, Ill. , 1955)."R. P. Feynman, QNmtles Electrodynamics (Benjamin, New
York, 1962).

FIG. 3. Elastic electron-proton scattellng;
"Rosenbluth" diagram. q& = Q&—Q0".
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polarizations, is

S»"=g -', TrU, (P,+m)2,"(P+M)]
pol

m') (p, )""+(p o)""

Mo) 2Mo

(p,p)""+(p., ) " (p.,p.)""+(p, o)""
—2rg" + —'

X~o»o 2X 2Xo

-(p„s)" - mM ' (p, so-)»" — mMy'—lg"" —+—
I

—— rgPv , (A13)
X Xo) 2M' X 2M' Xo 1

where so ——p —k, s =p+k, and o = —(po —p)'/4M'
The square of the bremsstrahlung matrix element is found by contracting the two tensors:

)~w~n/'=
Si""T„,

[ro(r) Ysor+2rGir'(r) Y,ir],
2M'r'

(A15)

4M4r 4M'm'
=PA'+A, ' —2~(1+r)]- +LAA, —r(1+r)1

Mo M, o

mM ' mM ~o—2[A o' —r(1+r)] ——2[A' —r(1+r)] — —(1+r) —+—,(A16)
~o

in terms of 7., Ao, x, and s'. The integrands are

Ii' ——M'/Xo,

Io' (mM/Xo)——',
Io'= Xo/M',

I4' ——M'A'/Xo,

Io' (mMA/Xo)', ——
Io'=M'A/&o.

(A20)

Then from (A15) and (A16) one finds

(1—x) Fir = (2r/x) t
1+x'—2s(1—x+s)]I4'

—(2r/x) (1—x) (x—s)I,'+ (x/2r) Io'
—(x—s) (2—2x+s)/(1 —x), (A21)

(1—x) I'x44 ——2{xAoo—r(1+r)L(1+x')/x+2s]}Ii'
+2,(1+.) (1—*)I,'—(x/2. ) (1+r)
&(Io'+2x (1+r) +xs (1+r Aoo/r)/—
(1—x)+2xI4' —2 (1 x)Io'—

+4sA oIo'. (A22)

(A17)x=q'/2(po q) 0&x&1.
Then

(A18)X =2M'r (1—x)/x

and so we factor out (1—x) '. Note that in the elastic
scattering limit x ~ 1; Another useful parameter is

where A = (I' p)/2Mo and Ao ——(P p,)/2M'. Equations
(A14)-(A16) are equivalent to the result of Berg and
Lindner. ' The invariant Xo (X) is small when the photon
follows the incident (final) electron direction, so that
photon emission along the electron trajectories is
favored.

For proton detection, however, X is 6xed, so only
forward photon emission is enhanced. Indeed, r and
Ao are also determined, and the variables of integration
will be Xo, o., and A. The identity o.=r+(X—Xo)/2M'
eliminates 0-. To manifest the infrared behavior, we

want to factor out of both I'~ and V~~ a quantity
proportional to k '. Since X=(k.p) =q'/r (po q), a-
convenient parameter is

s =xm'/2M'r . (Alg) The completely differential cross section, comparable
to (A7), is

Clearly s( j. for —q'& 2m', or equivalently for
T&m'/M, where T is the kinetic energy of the final

proton.
Finally we express V~ and V~~ as linear com-

binations of six quantities which will be integrands in

the integration over 6nal states, with coeKcients given

(2~) 'b "'(po —
q
—& —p)

do = (4ore') o

Po(2eo) 2M

d'p d'k d'Q
&( ~mw~, )

. (A23)
2e(2or) ' 2k(27r) ' 2E(2or) '
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When integrated over the phase space of the unobserved

electron and photon, this becomes

X@2(&)IIEM+2&GM (&)IIM]1
(A24)

k
IIsM, M = — dK(1 —x) l'zM, M.

8"4~

involving A. and Xo (integrals I4 Is)—, the coordinate

system is oriented so that the spacelike components of

p2, Qo, Q, and P=QO+Q lie in the xs plane, with the s
axis parallel to the spacelike part of po. Let the direc-

tloll of pllotoI1 cmlsslon (1110111cIltu111three-vector of k)
have angular coordinates $ and l, so that dL =sintdgdl .
In this system

&o ——(2M2r/x)u(1+z) (1—80 cosh)

(2x—1)u
A =AD(1 —u)+30 cos)

(1+2xs)"'The tilde indicates that the integration is to be carried
out in the zero-momentum frame of the photon —final-

electron system, where
2r X'A p' —l. /2

+ —(1—x)u 1 r——sin( cosf,
x r(1+2xz)

p&+k~ = (W,O),
8"= (i+k)' =23Pr (2 2x+s—)/x

= —q2 (1—x)/x+2122.

A25
where

Po
—po/~0= (1+2xz) t /(1+s)

u =k/W = (1—x)/(2 —2x+s) .The six integrals contributing to (A24) have the form

D eGnlng

1 —q2 1+s+(1+2xz)'")
Ip= ln i, (A27)

2 )(1+2xs)
where the I;"s are given in (A20). Integrals II I, —

involve only ) p, and are straightforward. To do those the six integrals are

II ——(x/2r) Io,

I2 /2xr(1 x)——, —

2T
I2 —(1+s)u', ——

x2302 x(1+2s) '—s(1—x) ' s(1—x) ' F02 x(2x—1)(1+2z)—x(1—x) (1+s)
I4 —gIp + (1+v) — — u

(1+2xs)' 1+2xz 2r (1+2xz)'

(1—u) (2x—1)- (1—x) (1+s)u
+ ———(1+r)

1+2xs 2(1+2xs)

x220' (2x—1)(1+2s)—(1—x) (1+s) (1—x) (1+s) xA 02 1
+ (1+r) +

'r (1+2xz)' 1+2xs 2r (1—
(A28)

(1+2xs)'

1+2s ' su(1 —x)[2(2x—1)'—1 —2xs]
X x' — + +(1+r)s(1—x)/(1+2n),

1+2xs

x'Ap 1+2s xA p 2x—1

Using these integrals one finds from (A21), (A22), and (A24)

HM =Io[1+x'—2s(1—x+s) j+u'(1+s) —2x+2s,
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x'A p2

Hapr Ip—— [1+x'rs—St'(2+x+2s)+2sr(1 —t+2xt)] —(1+r)[1+xP+2xs—st(1 —x)(2+x+2s)]

x'A p'
xr'+ [(2x—1)(1—u+ xr) —xt (1+s)]

1+2xs

xAp'
1—2N

+ [2(2x—1)(1—t+2xt) —1+x] —(1+r)(u'(1+s) —2x+t[xu+s(xu+2 —2x)]), (A30)
1+2xs

r = (1+2s)/(1+2xs), t = (1—x)/(1+2xs), u = (1—x)/(2 —2x+s) .

Note that only Ip contains a logarithm. These expres-
sions are to be used in (A24) to calculate the cross sec-
tion, and constitute the main result of this appendix.
We will consider two limiting cases.

In principle the scattering becomes elastic as x —& 1.
Of course one cannot set x=1 because of the infrared
divergence, but the cross section does simplify con-
siderably if u= 0/W((1, or, equivalently,

Then (A29) and (A30) become

H pd Ip(1+——x')+u' 2x, —
H g pr = [A p'x'/r 1 r][I—p(1—+x')

+u' —-,'x —-,'x']+ (1+r)x(1—x) .

(A36)

However, (A35) assures that it is a good approximation
to take

m2 x

4&2~ 1—x

x'A p'/r —1 —r =cot'(-,'8,) .
(A31) Then from (A24), (A36), and (A37), one finds

(A37)

Then N~O, r~1, and t~0. For —q2)4', we can set
x~1 in the numerators of all terms in (A29) and (A30)
which become

H~ 2 (1—s) [(1+s)Ip
—1]

H@rdd= 2 (ppp/Msr 1)[(1+s—)Ip —1],
(A32)

where Ip is to be evaluated from (A27) using x = 1.
In the latter expression, we have used the elastic

scattering kinematical relation pp ——p+2Mr with the
exact formula

A p pp/M r/x—— —

to show that for x= 1,

A p'x'/r (1+r)= ppp—/M'r 1. —

Thus in the elastic scattering limit (A31)

(A33)

&p))m, —q2))2m2; (A35)

t.hen s&(1, r =1, arid t= 1—x are good approximations.

d 0
lim (1—x)

dPdQ)

do. pp+M 2n
——[(1+s)Ip

—1], (A34)
dQ, QE

where the exact elastic scattering cross section (Ag)—
using (A5) for G,~

—appears as a factor. The factoring
of the exact Rosenbluth cross section is a necessary
result that could be proved directly from the matrix
element. If, in addition to (A31), the condition s«1 is
valid, then (1+s)Ip~ln( —q'/ru').

The other case is the relativistic limit. We consider
the cross section under the assumptions

d'o- u C.& 2+M

dQdQ wp a s r ppE 1 —x

X(G,i[Ip(1+x')+u' —-', x—
p x']

+[Gs'(r) —2rGdtd'(r)]x(1 —x) ) . (A38)

Here G.~ is to be calculated using (A6) and Ip = ln( —q'/
Wmx) according to (A25) and (A27). Equation (A38)
is the result discussed in the text.

APPENDIX B: COMPARISON WITH FORMULA
OF MEISTER AND YENNIE

Here we show that there exists a range of moderately
soft photon energies within which a result of Meister
and Yennie' agrees well with our formula (17) in the
text.

Meister and Yennie obtain the differential cross
section for WAB by differentiating their radiative
correction with respect to Q. In fact they give two
results, one being essentially their Eq. (2.26b), the
other their Eq. (4.4). We examine the former, since the
latter involves additional approximations which obscure
the comparison with our result when the photon is very
soft. Actually, their Eq. (2.26b) is not complete, and
we are obliged to add to it the derivative of their Kq.
(3.4). It is understood that we concern ourselves only
with the ZP ("Bethe-Heitler") terms in these
expressions.

The ZP terms inside the curly brackets of MY's Eq.
(2.26b), in our notation, are

2[in (—dt'/re') —1 —
p In (1+2K/m') ], (B1)

since the I'& of MY is the same as our X = —dI'(1 —x)/2x.
Noting that W'=2X+rrt', we combine the two loga-
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rithms to give

2/In( —q'/Wm) —1j. (B2)

8 2X I i BX
4ln i

BQ m' 2X BQ
(B3)

where u is given by (16) in the text. Differentiation and
some algebra leads to

To this we must add the derivative with respect to
Q of the coefficient of n/m. in MY's Eq. (3.4), holding
constant the incident electron energy eo and the proton
angle p:

2n —
g Q

t„M~ = —ln —1+—
lVm 4x

(B7)

In our formula (17) which corresponds to (B6), the
Rosenbluth cross section is to be evaluated at the
momentum Q of the detected proton. Our formula for
the equivalent radiator is

bluth cross section is to be evaluated at the proton
momentum corresponding to the incident electron
energy «. The equivalent-radiator term in the trace is
the sum of (B2) and (Bs) multiplied by u/m. .

1 BP Br

X BQ rBQ x(1—x) BQ

2n 1+x' —q' x+3x' u'
t = — —lneq +—

2 t/t/mx 4 2
(13')

TE xk~( BQ)
(B4)

The term-by-term correspondence between (B7) and
(13') is obvious. Both equations go to the correct
infrared limit: x= 1, I=0, 8'= m, and

I i Bkf

2x kr BQ
(B5)

The MY expression for the NAB cross section is then

dQ gj+B dQ Q I9 kf
where we have used AQ=kfi BQ/Bkf i, and the Rosen-

where we have assumed. eo))m, so that k~ ——eo(1—x).
Keeping only the dominant term (~ 1/kr) in (B4) can
be justi6ed by examining the relative magnitude of the
two terms using (11) in the text for Bk~/BQ The.n MY's
(3.4) contributes a term

t.,(kr ——0) = (2n/~) /In( —q'/m') —1j.
There is a transition region of very soft photons (k m)
extending from the infrared limit up to the point where
u approaches its asymptotic value &, while x has barely
changed from unity. Beyond this transition region,
-', I'=~I=8, and the theories are equivalent until x
begins to differ appreciably from unity. In tracing out
the momentum spectrum toward the lower momenta,
the factor (1+x')/2 in (13') decreases gradually from
unity, so that t,~M" of (B7) increasingly overestimates
our expression. This is not surprising since Meister and
lennie did not intend to apply their formula to the case
of hard-photon emission.
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The pion-nucleon couplings resulting from the U(6,6) model and the chiral-dynamical model are applied
to the investigation of the nucleon-nucleon scattering. It is shown (a) that in the U(6,6) model the one-
pion-exchange (OPE) contribution differs from the usual result only in short-range effects, while the two-
pion-exchange (TPE) contribution is highly divergent; and (b) that the chiral-dynamical model leaves the
usual OPE contribution unchanged, but leads to a signi6cant modi6cation of the usual TPE contribution.

I. INTRODUCTION

HE meson theory of nuclear forces has been
investigated by many authors over several

decades. ' Although the one-pion-exchange (OPE)
nucleon-nucleon interaction is easy to derive, the calcu-
lation of the two-pion-exchange (TPE) interaction is

' For a recent review, see G. Breit and R. D. Haracz, in IIigh
Energy Physics, edited by E. H. S. Burhop (Academic, New York,
1967), Vol. I, p. 21.

much more complicated. A precise evaluation of the
TPE contribution has been carried out in our previous
papers, ' 4 where the calculational techniques required
for this purpose are also given. It has already been

2 S. N. Gupta, Phys. Rev. 11'7, 1146 (1960); 122, 1923
(1961).' S. N. Gupta, R. D. Haracz, and J. Kaskas, Phys. Rev. 138,
B1500 (1965).

4 S. S. El-Ghabaty, S, X. Gupta, and J. Kaskas, Phys. Rev. D 1,
249 (1970).


