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Neutrino scattering processes are studied in the framework of general local current-current interaction.
The scattering amplitudes for such processes are expressed in a simple factorized form in terms of helicity
form factors for the current vertex functions. These expressions explicitly display the full kinematic content
of the local current-current interaction and are used as the basis for a systematic study of possible ways
to test the V—A structure of the weak current in high-energy neutrino scattering processes. A direct test
in an "inclusive experiment" consists of measuring the outgoing lepton polarization. Alternative tests from
angular and spin correlations are possible only in "exclusive experiments. " Several examples of this latter
type of experiment are given: (i) pure lepton scattering processes, (ii) neutrino scattering o6 spin-zero
(nuclei) targets, (iii) quasi-elastic scattering oG polarized-nucleon targets, (iv) quasi-elastic hyperon pro-
duction (decay asymmetry), and (v) single-pion production in the N~ region.

I. INTRODUGTION

A LL present experimental evidence in weak decay
processes is consistent with the V—A theory of

weak interactions. ' The weak vector (V) and axial-
vector (A) currents played an essential role in the re-
markable theoretical developments beginning with the
conserved-vector-current hypothesis and culminating in
the successes of "current algebra. ""

The weak decay processes aH involve rather limited
ranges in the energy and momentum-transfer variables.
The neutrino scattering processes, which are just be-
coming experimentaHy feasible (both in existing labora-
tories and with the projected new generation of acceler-
ators) promise to extend the range of these variables to
entirely new territories. This wiH open up vast domains
of the weak interaction hitherto unavailable for our
scrutiny. ' The erst obvious questions are whether at
these high energies and large momentum transfers,
these processes are still describable by an eRective
current-current local interaction Hamiltonian and, if so,
whether this interaction is still a V and A combination.
These questions must, in principle, be answered by
experiments in the afhrmative before further comparison
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with more detailed theoretical predictions based on this
basic structure together with other dynamical assump-
tions can be made truly meaningful.

Consequences of the local V—A current-current
interaction in neutrino scattering processes have been
studied before. 4 5 Pais and Treiman, in particular, have
exhibited the "full content" of the locality assumption
for such processes by giving the energy and angular
distributions for the outgoing lepton. ' Assuming the
most general form of local (nonderivative) interaction,
we study in this paper in considerable detail the result-
ing energy and angle spectrums as well as angular and
spin correlations in an arbitrary neutrino scattering
process with the specihc aim of seeking particular cases
in which the presence of any local scalar (5), pseudo-
scalar (P), and tensor (T) admixture to the V—A
interaction can be experimentally detected.

The systematic investigation of al/ possible processes
of this type for our particular purpose is facilitated by a
helicity-like formalism'r which (a) suggests the most
natural variables to use in analyzing such processes,
(b) defines helicity form factors for arbitrary current
vertices which are natural generalizations of the
famihar Gg and G~ form factors for nucleon electro-
magnetic current vertex, and (c) allows us to write
down a general cxpI'csslon foI' the scattcllng amplitude
which compactly displays all the kinematical contents
of current-current interaction in a factorized form (in
terms of the helicity form factors) and leads to expres-

4 T. D. I.ee and C. N. Vang, Phys. Rev. 126, 22S9 (1963).
~A. Pais and S. Treiman, Contribution to the Anniversary

Volume Dedicated to N. N. Bogoliubov ("Nauka, " Moscow, 1969).
6 I. Muzinich, J. M. Wang, and L. L. Wang, Phys. Rev. D 2,

1985 (1970).
7 The essence of the method used in the present paper is the

same as that of Ref. 6 although the role played by the form factors
is largely by-passed in the latter.
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sions for angular and spin correlation functions in the
form of simple matrix products.

In Sec. II we spell out our basic assumptions. In Sec.
III we introduce the helicity expansion for the current
vertices functions. In Sec. IV we give the general ex-
pressions for the transition amplitude and intensity
distribution of an arbitrary neutrino scattering process
with general local interactions. It is pointed out, as is
undoubtedly known to others, that if the lepton mass
can be neglected, the most unambiguous way to dis-
tinguish the V—A interaction from the other types
(S, 2', or P) is to look at the polarization of the outgoing
lepton. For neutrino-initiated reactions, this should be
purely left-handed if V—A is the only interaction
involved and purely right-handed if any combination of
5, T, and P interaction is responsible. For antineutrino-
initiated reactions, the result is the converse. Since the
measurement of lepton (mainly muon) polarization at
very high energies is an extremely difficult task, we
examine possibilities for testing the V—A theory
through angular and (target) spin correlation experi-
ments. The method used is explained at the end of Sec.
IV and specific examples are given in Sec. V. These
neutrino processes include (i) pure leptonic scatterings,
(ii) quasi-elastic scattering off spin-zero (nuclear)
targets, (iii) quasi-elastic scattering off polarized-
nucleon targets, (iv) decay angular correlations in
hyperon production, and (v) angular correlations in
single-pion production in the S* region. These tests
involve the measurement of the outgoing lepton angular
distribution (one variable only) in either the differential
cross section [(i) and (ii)] or in. certain asymmetry
functions [(iii)—(v)]. For maximum statistics, data ob-
tained. at different incident energies can be combined
and integrated over to obtain the needed spectrum.

For high-energy scattering processes, the lepton mass
can, for all practical purposes, be neglected. In Ap-
pendix A we brieAy indicate the lepton-mass correction
effects. In Appendix 8 we describe some properties of
the helicity form factors and give the explicit relations
to the conventional invariant form factors for the case
of spin--, particles. In Appendix C we give some detailed
formulas on the single-pion-production process discussed
in the text.

II. BASIC ASSUMPTIONS

We are interested in the neutrino scattering processes
(Fig. 1)

+A —+ +8,

where 1 stands for either the electron or muon and A

and B can be leptons (pure leptonic processes) or had-
ronic systems (semileptonic processes). In the latter
case, A is usually a single-particle state while 8 may be
g, single-particle or multiparticle hadronic system with

B
P

l'zG. 1. A general neutrino
scattering process.

f. .=(G/v2)[(k. 'Vlstlk, —-', )(p'o'I5lpo)
+&k" I .'Ik, —:&(p'-'II"

I p-&

+&k'~'I4'Ik, —l&(p'o'I 2'""Ipo&] (4)

The first factor of each term is given by an expression
of the form (3).

We shall neglect the lepton mass for most of our con-
siderations since we are mainly interested in high-energy
regions where the existing theory has not been tested
before. The lepton mass can be easily incorporated,
however, in the ensuing considerations. Appendix A
indicates how this can be done should it become neces-

or without additional lepton pairs. For definiteness, we
shall consider explicitly the neutrino-initiated processes
[first line in (1)] and refer to the A, 8 systems as
hadrons; all considerations obviously remain valid for
the antineutrino-initiated reactions and for the case
where A, 8 are leptons with little change in the resulting
formulas. We shall remark on the necessary changes at
the appropriate places. We denote by k, k', p, p' the
4-momenta and X, X', a, o' the polarization indices of the
states v, /, A, and 8, respectively. In general, charge
labels will be omitted for conservation of indices.

We assume a general local current-current inter-
action. The transition amplitude for the process (1)
(first line) is of the form

f=(G/&2)(k'X'I j (0)lkX)(P'o'I J'(0)IPo), (2)

where j(x) and J(x) are the weak currents associated
with the v l(leptonic) -and A 8("hadronic")-vertices,
respectively. These currents can be an arbitrary com-
bination of the five types of possible currents —5, V, T,
A, and I'.

Since the incoming neutrinos usually come from pion
(or X-meson) decay in flight and are known to be purely
left-handed, we can assume they are described by the
two-component theory with

(k'~'I j"(o) I
k~& =u, .(k') r(1+y )ug(k), (3)

where I" stands for some combination of 1, yi", and o.&"

and X—= ——,
' because of the factor (1+y~). Since Eq. (3)

automatically implies parity nonconservation in these
processes, the distinction between the scalar and pseudo-
scalar currents as well as the vector and axial-vector
currents at the hadronic vertex [Eq. (2)7 becomes un-
necessary. From now on, J stands for some combination
of 5 (scalar as well as pseudoscalar), V (vector as well
as axial-vector), and T (tensor) currents, and Eq. (2)
becomes
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sary. Ke shall not consider radiative corrections which
modify strict locality, nor shall we consider second-
order weak interaction eRects for which we know of no
reliable estimates.

To begin with, we study the kinematical structure of
each of the current vertex functions appearing in Kq. {4)

III. CURRENT VERTEX FUNCTIONS

The current vertex function' &p'X'
I J(0) I pl(& is related

to the decay current matrix element {p')',p)(l J{0)IO)
by crossing. It is a familiar fact that in such decay
processes, the kinematics of the angular and spin cor-
relations are much simplified if the transition ampli-
tudes are expressed in terms of the center of mass-(c-.m.)
variables of the (p', p) pair and if X', $, are chosen to be
the helicity indices. o This suggests that for the matrix
element &p')('

I J(0)
I p», it is most natural to choose our

variables in the brick r()all (BW-) frame in which the
spacelike 4-momentum transfer q=p —p' is of the
standard form (0,0,0+q'). Referring back to Eq. (2)
or (4), because of the relation q= p —p'=k' —k we see
that both current vertices can be simplihed at the same
time by this choice. Furthermore, since the transition
amplitude f is a Lorentz invariant (j and J are always
contracted), there is no loss of generality in choosing a
particular frame to evaluate the vertex functions.

A. De6nition of States

In analogy to the well-known Jacob-Wick' c.m. sys-
tern hehcity states, we proceed to dehne'0 the particle
states

I pl(& and
I
p'l('& in the BW frame as follows: the

s/andard BW-frame state for the "incoming" (or first)
particle is dered to be

lp, )(&=Br(u) IO»,

while that for the "outgoing" (or second) particle is

I p, ') '&=a, (—u') IO, —V&. (6)

Here Bs(u) denotes a boost along the positive 3-direction
characterized by the hyperbolic angle u, and I0,7(& are
the usual rest-frame angular momentum states. The
standard BW-frame vectors (p„p,') are of the form

p, =M(coshu, 0,0, sllillu),

p, ' =W(coshu', 0, 0, —sinhu'),

with M'= —p' W'= —p" and

M sinhu = (q' —M'+ W')/2+q'
W sinhu' = (q' —14's+M')/2V'q'

8For earlier studies of the current vertex functions see, for
example, L. Durand, III, P. C. DeCelles, and R. B. Marr, Phys.
Rev. &26, i882 (1962); M. Scad.on, a~d. ~6S, 1640 (1968); M.
Bander, ibid. 173, 1568 (1968); T. L. Trueman, ibid. 182, 1569
(1969).

9 M. Jacob and G. C. %Vice, Ann, Phys. (N. Y.) '7, 404 (1959).
"The choice of dehnition of states used here is one of the

possibilities enumerated in J. Strathdee, J. F. Boyce, R. Del-
bourgo, and A. Salam, Trieste Report No. IC/67/9 (unpublishedl.

O(e,~) =&sQ)B)Q) {10)

The general BW-frame momenta (p,p') are therefore
parametrized as'

p =M(coshu cosh)p, coshu sinh)p cos(t,

(11)
coshu sinh)p sing, sinhu),

P' =W(coshu' cosh)P, coshu' sinh)P cos(t,
coshu' sinh)p sin(t), —sinhu') .

Kith these de6nitions, let us turn to the various
vertex functions that enter Kqs. (2) and (4).

B. Scalar Current

Using definition (9), the scalar vertex function in the
brick-mall frame can be written

&p'7'Isl p»=&p') '!o 'QA) ~oQA) I p.~&

={p.')'ISI p.7&=S' (q'), (»)
where we used the fact that O 'SO=S (S is a scalar)
and that p, and p, ' depend only on the invariant vari-
able q', Eq. (7). The second line in Eq. (12) defines the
"scalar form factor" or "reduced matrix element"
Si ),(q'). This equation shows that the vertex function
&p'I('I Sl p» is independent of the variables )p and p.
It is shown in Appendix 8 that

S), ),(q') = ()p, ),~), S),(q'),

which expresses angular momentum conservation.

(13)

C. Vector Currents

Let the unit vectors in the BW frame be {e(o)",e(r)"
e(,)s,e(o)"). We define

e(gr)"= (~e(1) ie(s) )/~2

arid use the set {e( )"; (r=+1) OP
—1) 3} as our basis

vectors. They satisfy the orthonormality and complete-
Iless condItIons:

e{ )u*e{P) —g P

e(e}pe t + p)i
{13)

{a)

where e'o) = —e{o) and e"'=e{;),i=&1, 3. The vector

so that q= p —p' is of the standard form (0,0,0,+q'). A
general configuration of the vectors (p,p') in the BW
frame ca,n be obtained from the standard vectors, Eq.
(7), by a cor)scion SO(2, 1) transformation which leaves
the vector q invariant {i.e., Lorentz transformations
involving the 0, 1, 2 axes only). Denoting this tranfor-
mation by O()P,P), we have

I p»=oQA) I p.»
I
p') '&=O()pe) I p') '&,

where 0{)p(t)) is chosen. to be a boost along the 1-axis
by the (hyperbolic) angle )P followed by a rotation
around the 3-axis by the angle P, i.e.,
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V~=e& &~V& &=e&3&~V&'&+e& &~V& & (16)

The antisymmetric tensor current operator may be
written as

7 pv p pp jP&sl&+e /vs &ÃL)
)

where m=+1, 0, —1 and V& '=e&»*V„. In analogy
with the scalar case, we can now write down the general
expression for the vector vertex function in the BW
frame:

T (m) ~(m, ) ~@~ y

~(m) ~ (m) ~p. v ~

(26)

(p'&&'I V"(o)
I
p&&&=(p'~'Io '(0,0) v"(0)O(WA) I p & &

=&& &"D(P,&&) BV» "&(q'),
where

Using (24) and (25) we obtain

{17) (p'l&'I 7'""(0)Ip&&=«&""D(O'A')" T» '"'(q')

+e&„& "D{&P,y)"„T» "'(q'), (27)
V~""'(q') =(p'& 'I V"(0) I p»

DQ,4)'3=1, DQA)'-=DR A)"3=0,

D(g, y)I e imbed(P)
tN—

where the tensor form factors are defined by

&wa&(q2) (p &),~
I

T&m&{0)
I p &&)

(19) 2 ~ ~&"'(q') =(p'&'I2'&"'(0)
I p & &

(28)

,'(1+—cosh&P) —sinh&P/K2 —',(1—cosh&P)

d{&p) „= —sinh&p/v2 cosh&p sinh&p/v2

—,'(1—cosh&P) sinh&P/K2 —',(1+cosh&P).

Equation (17) is an expansion of the vertex functions
in terms of the form factors t/'), q(~), which depend only
on the invariant variable q' (together with possible
"internal variables" if the 6nal state is a complex
system). The {&p,p) dependence of the vector vertex
function is exphcitly exhibited in the D-functions.
Angular-momentum-conservation conditions again im-

pose the constraints:

Vv&, &"(q') = 3o,&+&. V», "(q'),
(20)

Vg &, &"&(q') = 3 , &+&, Vz&"&(q'), n&= +1, 0, —1 .

The last equation indicates that the index ns has the

physical interpretation of being the "helicity" &&f the

current (with 4-momentum q).

D, Tensor Current

We define basis tensors" (e& &"",e& &"",' n&=+1, 0,—1):
«&""=iL«3&"~& &"—e& &"e&8&"]/~2~

21
e(m)""= —~i&"" e( )),

They satisfy the orthonormality and completeness
conditions:

&&m&@vs xe e&m&gee xe 2{gy&geo gprrgv&) ~ (23)

Again we have the constraints

T», , &"&(q') =3,&~& 2'&, &"&(q'),

7 », ,™(q') =&,~+ ~ T& &"&(q')

E. Remarks

(a) The expansions (12), (17), and (27) separate out
the dependence of the vertex function on the (&P,P)
variables in the form of D functions (reflecting the
Lorentz-transformation properties of the speciic current
involved) from the dependences on q' and other internal
variables which are determined by dynamics.

(b) WhatwehavecalledS&, q, V~ &,
&3& V&, &,

& ' T&, &,
&"&,

and T)&„~y ) can in a certain scIlsc bc icgaidcd as th.c
"helicity amplitudes" for the process' (Fig. 2)

(30)

on account of the physical meaning given to the index

(&n). For convenience, let us call them heliciiy farm
factors. These form factors are the natural generaliza-
tions of the familiar GE and G~ form factors to general
currents and arbitrary states A and 8.They diagonalize
the (unpolarized) intensity distribution function for the
general process (1) (as will be shown in Sec. IV) and,
when q is small and a nonrelativistic reduction pro-
cedure makes sense, are simply related to the familiar
mmlti pole moments with the associated physical interpre-
tations. "Some further properties of these form factors
are brieAy enumerated in Appendix 3.

It is easy to see that under the SO(2, 1) transforma-
tions (10), the two sets (e& &&"} and (e& &"") transform

separately as vectors in the (0,1,2) subspace. Thus, for
example,

:B
P,~

FD . 2, The effective current-hadron
scatterirlg process.

where DQ,P) is given by Eq. (19).

"The factors of i adopted in the following de6nitions are to
render the resulting form factors real whenever time-reversal
invariance can be applied.

"For a discussion of Gp and G~, see F. J. Ernst, R. G. Sachs,
and K. C. Wali, Phys. Rev. 119, 1105 (1960). Generalization of
Gz and G~ to the arbitrary-spin case and the relation to multi-
pole moments are studied by Durand et ul. , Ref. 8. However, this
paper used the Jacob-Kick definition of the states and chose a
BW frame in which p3

———p3' (instead of p3 p3 —gq' and
p0 =p0'). As a result, many of the appealing features of the helicity
form factors are lost.



GENERAL LOCAL INTERACTIONS AN 0 TESTS OF V —2

We should emphasize, however, the polarization
indices X, X' are helicities in the BK frame and shouM
not be identified with the Jacob-Wick helicities' defined
for two-particle states in the c.m. frame for scattering
processes.

Iv. TRANSITION AMPLITUDE AND
INTENSITY DISTRUCTIONS

Fxo. 3. The brick-wall-frame kinematics. l

p l)l/ pl

q
=p —p'=k' —k = (o,o,o,gq'),

p=(p'o o,p),
t'2 =k(cosh(P, sinh)P cos(t, sinh)p sin(t, —1),

(32)

p (q2 ~2ylV2)/2+q2 PO (P2+~2)1/2

k = (q2+m/2)/2+q2,

M being the mass of the target particle A, mI, that of
the lepton /, and H/' the effective mass of the system 8
(see Fig. 3).These variables a,re related to the laboratory

fr/JrNe incoming neutrino energy e, the outgoing lepton
energy e' and scattering angle OI., and the magnitude
of the 3-momentum transfer ~ql, ~

by

cosh)P = (~+2')/
i qr, i,

»nh0 =L(&q')/lq~l] cot2t/~,
(33)

in the approximation of m~=0.
The leptonic form factors are, of course, explicitly

known from (3). Straightforward calculations yield

p, (—&) —],(O) —],(0)—

2(2q2) 1/2(j +2/2 2/q2) 1/2 (34a)

p, (0) p, (3} &L, (—1) &L, (—1}
s —s 2 —s

=2~,(1+~/2/q2)'/', (34b)

We can nowuse the results of Sec. III to evaluate
the transition amplitude, Eq. (4), for the general local
interaction. In the brick-wall frame we can choose the
coordinate axes such that the rnomenta (p,p') associated
with the A Evert-ex are of the standard form (p„p,'),
Eq. (7). Then, using (12), (17), and (27) for the current
vertices and the orthonormality conditions for the
basis vectors, we obtain

f) ",.(4 A,q' )
=(G/v2)f'")*(q')D*(A(b) ~o(.)..( 'q. )
=(G/v2)(D*Q, (t))"„[~i "*V( );,+t), "'*T(~).,

+O' T(m) ~~ ~]+s) ' Sg' g+1)y' V (2) g~ ~} . (31)

Note that Eq. (31) (first line) appears in a "factorized. "
form consisting of two vertex functions each depending
only on q' (and its own internal variables, if any) and
they are connected by a D-function depending on the
variables ()P,1P) which specify the relative coordinates
of the two vertices (cf. Fig. 1).

To make the choice of variables clearer, we recall
that our HW frame is chosen such that

f;",.= —2G(V'q') &'"'d(4') "—1V ( )". (35b)

where, for simplicity, we have written. T( ) for the
combination T( )

—T( ) and absorbed a factor (—1/v2)
into the definition of S(r&(r.

Equation. (35) exhibits very compactly the full
kinematic content of the general local current-current
interaction for all neutrino scattering processes. The
most obvious feature of this equation is the separation
of the S-T and V interactions according to the helicity
of the outgoing lepton. This is expected Las can be seen

by a close examination of (3)] and holds true for all

possible targets A and final states 8. This points to the
most unambiguous way of testing the structure of the
local current-current interaction at high energies and
large momentum transfers: to the extent that the
lepton mass can be neglected, a purely left-handed out-
going lepton indicates I/' interaction, a purely right-
handed one indicates 5-T interac. tion, and the coexist-
ence of both helicities indicates a mixture of the two.
Although this sounds very simple, the practical diAi-

culties of measuring the polarization of the very high-
energy outgoing lepton (muon in almost all planned
experiments) are quite formidable though perhaps not
entirely insurmountable.

Ke are thus led to explore the more detailed struc-,
ture of Eq. (35) and to seek to distinguish the two
types of interaction through angular or (target) spin
correlation experiments. To this end, we write down
the transition probability for the general reaction (1)
when the lepton helicity is not observed:

I= t -"o""'(f:",.f ."..*+f.*"-,.f;",.-*)-(36)--
Here p" and p~ are the density matrices for the states
A and 8, respectively. Substituting (35) into (36) and
using the explicit expressions for d()P), we obtain' the

and all other form factors vanish due to the conditions

(13), (20), and (29). We note also that the form factors
glveil 111 Eq. (34b) ale pl'opol tloilal to the leptoll iilass.
In the limit m~=O, which is a good approximation for
high-energy processes, the only surviving (leptonic)
form factors are those in Eq. (34a), and they are all
proportional to Qq'. The transition amplitude (31) can,
therefore, be written

f*,;,.= 2-G(V'q—')L~. .+&'"'d(0)"2T(-)".] (35a)
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following general distribution in the variables (P,@):

I=2G'q'(sinh'iPII+(1 —cosh/) 'Is+ (1+cosh/) 'Is
+slnhl//(1 —coshlp) (cosp I4+s&nf Is)
+sinhg{1+cosh&) (cosg Is+sing II)

+sinhsf (cos2(t Is+sin24 Is)), (37)

where the coeKcients I; are given by

II—V(())V(o)s+ T(+)T(+)4+T(-)T(-)@+T(())T(s)+

I =I)V(+)V(+)4'+(T(())+5')(T(())+g)4]

Is —I)V(-)V(-)4'+(T(()) g)(T(()) 5')4:]

v2 ReLV(+)V(())*+(T(+) T(—))(T(())+g)*]

Is ——V2 ImLV(+) V(s)~y(T(+)+ T( ))(T(s)+S)~], (38)

Is — 1t(2 ReLV(()) V(-)4'+(T(+) T(-)){ T(())+5')4]

II——v2 ImLV(') V( &*+(T'+)+T' ))(—T(s)+5)*],
Is —g' Ret V—'—+)V' )*/2T(+) T( &*]1

Is ———', Imt V(+) V( )*+2T(+)T(-)*].

For simphcity, in Eq. (38) we have (a) used (&) in
place of (+1) for the superscript (I)s) and (b) omitted a
common factor consisting of the density matrices p~p~.
In other words, each term in Eq. (38) stands for

j(~)j(II)+—p Ap sj' (I)J (s)+ (39)

We note a few features of Eqs. (37)—(39). (a) The
form of the nine-term distribution function is the same
for V and T Sinteractions in-general. ' ' (b) When the
state 8 consists only of a single particle or includes all
possible 6nal states, the form factors can be taken to be
real provided time-reversal invariance holds. In tha, t
case, the sing terms (Is, II, and Is) vanish and we have
a six-term distribution function. In all of these processes,
time-reversal invariance can be tested by measuring the
asymmetry in p with all other variables integrated
over. "(c) The f&rst three terms in (37) (II, Is, and Is),
which are the only surviving terms in the unpolarized
quasi-two-body cross sections, are diagonal in the
helicity form factors. Thc other terms involve simple
interference terms. The same distribution. functions
when written in terms of the lab or c.m. frame variables
and the conventional invariant form factors are invari-
ably so complicated as to be almost untractable ex-
cept in. the simplest cases.

As a result of the diGerence in the outgoing lepton
hehcity for the 5-T and V—A interactions, the lepton
current has helicity 0 in the 6rst case and —1 in the
second. This is reAcctcd in thc appI'carancc of thc func-
tion d(g)~() in Eq. (35a) and d(p)" I in (35b). In an

experiment where the hadronic current vertexes are
nonvanishing for all three values of the current helicity
I)s (I)4=1,0, —1), the differential distribution function

13 To observe the asymmetry, one needs a preferred direction
with respect to which the asymmetry is deGned. This can only be
supplied by the polarization vector of either A (polarized target}
or B (6Ilal polarization Illeasuled}.

I 1+3' —+(+II, (40)

which is among the experiments being comtemplated
at NAL. "The intensity distribution for this reaction
can be easily obtained from the general formulas of the
previous section by setting V~ ~=~& '), 5=-,'s, and all
other form factors zero (in particular, note T( '
—f (M) t (1' ) 0) We get

I(q', P) =SG'q4(1+cosh/) ' (41)

if V—A interaction still hoMs at high energies. The 5-P
interaction, if present, would contribute

I(q', f) =SG"q4, (42)

'4 R. Feynman, Phys. Rev. Letters 23, 1415 (1969};in I'roceed-
Asgs of the Third International Conference on High-Energy Colli-
sqons, Stony Brook, lg6g, edited by C. N. Pang et gl. (Gordon and
Breach, New York, 1969}.

"National Accelerator Laboratory, Summer Study, 1968 and
1969 (unpublished}.

1s always of the 'general fol Ill. (37), wlllcll does llot clls-

tinguish the two types of interactions. This is the case
in a11 "inclusive experiments, "'4 where part of the 6nal
states are left undetected and in "exclusive experi-
ments"'4 involving particles of nonzero spin and with
no information available on the polarization of the
initial and 6nal hadrons. On the other hand, if the
polarization indices {(I,o') for the hadrons are suitably
limited (either because the particles are spinless or that
one or more of them are polarized) so that the hadromc
current helicity )Is is restricted (4)s=o+o'), then the
distribution function for the two cases are distinguish-
able t d(p) "() versus d(p)" I].This means that different
terms in the general distribution function Eq. (37)
vanish, depending on which type of current are re-
sponsible for the decay process under these special
circumstances. In the next section we explicitly work
out several examples of this latter type as possible
places to look. for tests of the V—A interaction. These
examples also serve as illustrations from which it should
be apparent how the general formalism developed
earlier can be applied to any other special cases of
interest.

%c remark at this point some necessary sign changes
in the formulas presented so far if they are to be applied
to antineutrino scattering. The erst change comes in

Eqs. (34) where all the signs of the polarization indices
(&(' and I)s) should be reversed. In addition, all form
factors appearing in Eq. (34a) change sign. These
changes imply that the right-hand sides of Eqs. (35)
change sign andd(iP) I is replaced by d(f) 1. These,
in turn, imply that in Eq. (37) we should replace sinhg

by (—s1nhlp) Rll(l 111tel cllRIlge (1—cosh/) Rnd

(1+cosh( ).
V. EXAMPLES

A. I eyton-Leyton "Elastic" Scattering

Ke erst consider the reaction
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where we wrote 6' in place of G to allow for a different
coupling constant. The tensor interaction does not con-
tribute to this process. "

We also mention another lepton-lepton interaction
which will be investigated experimentally for its own
right as well as in connection with the search for the
intermediate boson. " This is neutrino lepton-pair
creation in the Coulomb field of nuclei, e.g. ,

It is perhaps worth noting, however, that this type of
process is again very closely related to the E,4 decay"
in its kinematics.

C. Quasi-Elastic Scattering off Polarized Target

We now consider the process

v&+Z ~ i+L +v &+Z. (43)
v&+1V —+i+S', (45)

Here, because of the photon interaction, the strict
locality of the four-fermion interaction is modified.
However, it has been shown'~ that the p and p+ energy
spectra are markedly different for V—A and S-I' inter-
actions. (Again the tensor current, even if it is present,
does not contribute to this process. ")

B. Quasi-Elastic Scattering off Spinless Targets

The cases where both A and 8 in reaction (1) consist
of spinless particles (nuclei) offer the only possibilities
for testing the V—A interaction in semileptonic pro-
cesses from the lepton intensity distribution alone.
~Consider the quasi-elastic process where both A and
8 are single particles of spin 0. There is only one form
factor for each type of current and we get, from Eqs.
(37) and (38),

I=2G q L(l Vl +I Tls ISI ) sinh'f

+—', i
T+5['(1—cosh@)'+P T—Si '(1+cosh/)'j.

(44)

We should therefore observe a pure sinh'f distribution
if the vector (V—A in usual language) action is the
only one present. Deviation from such a distribution
indicates the presence of tensor or scalar admixtures.
This case is completely analogous to that of the E,3

decay where the hyperbolic angle P should be replaced
by the decay angle 0 in the c.m. system of the leptons. "

The case where the final state 8 consists of two
spinless particles is also, in principle, capable of dis-

tinguishing the V—A interaction from the other possi-
bilities. There are only three independent vector —axial-
vector form factors, Vo ' ', entering the nine-term
intensity distribution (37). We shall not enter into the
details here because of the lack of practical applications.

"The vanishing of the tensor contribution to four-point lepton
processes (of which this is one example) can be proved in another
way. By using the Fierz transformation, one obtains

4'« .(1+& )4"4'"(1—v5)&"V'&
= —'-4" (1—v )& .(1+vs)4 4i~""pi

+44"'(1—V5) (1+V5)4"4'lA +44"(1—V5)75(1+V5)4"kn'54'l'
=0.

We thank Dr. K. Fujikawa (see Ref. 17) for pointing out this
proof to us.

'7 K. I'ujikawa, thesis, Princeton University, 1970 (un-
published).

's The latest experimental upper limits for ~S/U) and )T/V )

are 0.23 and 0.58, respectively, in K,3 decay. See D. Botterill
et al. , Phys. Rev. 174, 1661 (1968).

where the initial nucleon is polarized. The final particle
S' can be any spin-2 baryon. Our standard BW frame
is related to the laboratory frame by a boost along the
recoil Ã direction which can be chosen conveniently to
be the negative 3-axis. Let us further choose the polari-
zation vector of the target X to lie in the 1-3 plane and
form an angle 8 with the Positive 3-axis in the laboratory
system. The scattering amplitudes depend on four
variables which we choose to be q', P, P, and 8.

The general formulas (37)—(39) can be applied to this
case with the following substitutions for the initial and
final density matrices:

p., =-', (1+pc n).,=P d.„l(8)p„d„,l( —8),
(46)

where P is the polarization of the target, P+l ——sr(1&P),
and d'&'(8) is the usual spin- —', rotational matrix. Sub-
stituting into (39), one obtains

J"'J"'*=l(lJ-+I'+I J+-I')
+p cos8X-.'(I J +I'—

I
J I'),

J&+&J&~&*=-', (1&&I& cos8)
~
J~,~ ~

'

J&+&J&'&*=rsP sin8 J++J+ *,
J &'&J&-&*=-'p s&n8 J +J
y(+)y~—)*—0

where we have omitted the superscript (m) on the right-
hand side since tr&=&r'+o The result. s can be applied
to each term in Eq. (38), yielding

I,=a~+P cos8 f&; for

=p sin8 a; for

=0 for

z —123
i=4, 5, 6, 7

i=8, 9.

» A. Pais and S. Treiman, Phys. Rev. 168, 1858 (1968); 178,
2365 (1969).

Equation (48), when substituted into Eq. (37), gives
rise to a ten-term combined correlation function in the
variables P, Q, and 8. The contribution of the vector
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where ~, the lab neutrino energy, is given in terms of the
BW-frame variables by

e = (1/4M) {(q2 M2+M&2)+[q2+(M/+ M) 2)1/2

X[q +(M' —M) ]'t coshlb}.

The first three terms (a;) give the spectrum function for
unpolarized target,

dg d0
~+(q'4) = +

dftt e=o
(51)

The last three terms (b~) can be isolated by forming the
asymmetry function

dg da
~-(q'A) = —,

& 0
(52)

form factors to the coeScient functions are

a =l(l V-+I'+
I
V+-I'&,

a2=b2=4
I ~++I '~

a, = —b, =-',
I
J

a4 ———(1/V2) ReU+ 1.V+ ",
a,.-=(1/K2) ImVp1Vp *,
a2 ———(1/K2) ReV +V

a2 ——(1/K2) ImV +V

The four vector form factors appearing above are
essentially the usual Gz, G~, and their axial-vector
counterparts. The exact relations between the two sets
are given in Appendix B. It is clear from (49) that if
this process is mediated only by the usual vector current
then there exist four relations among the ten coeKcient
functions a;, b;. The two more useful ones among these
relations are already explicitly displayed in the third
and fourth equations in (49). From Eqs. (37)—(39),
(47), and (48), it is straightforward to verify that the
presence of any scalar or tensor currents will spoil these
relations. This suggests the possibility of testing the
structure of the basic interaction by measuring the
correlation functions and checking these relations
among the coefficients. In practice, it is very unlikely
that the complete correlation distributions (37), (38),
and (48) can be obtained experimentally. It is therefore
desirable to see how much of the phase-space volume
can be integrated over without distroying the relevent
information to be extracted.

First of all, the @ dependence is not of particular
interest for our purpose; thus it can be integrated over.
The resulting differential cross section (for fixed incident
energy) is

do- G'q"-—{sinh21pa, (q') +(1—cosh') 'a2(q')
dq2 32~g2~2

+(1+cosh') 'a2(q')+ p cos8[sinh21pbi(q2)

+(1—cosh') 2b.(q2)+(1+cosh') 2b2(q')]}, (50)

The q' and 1P dependences can be separated only by
measuring A~ at many different incident energies.
(At fixed energy, the two variables a,re related. ) With
these available, one can divide A~ by the common
factor (G2q2/322re2M2) and integrate over the experi-
mentally available range of the variable q' at axed 1P.
The resulting 1P spectra for the two cases are

(ai) (a2)
sinh 21' +(1—cosh') '

(b) b2()
, (a2)+(1+cosh')', (53)

(b,&
where

(a;) = dq'a, (q') and (b,&
= dq'b; (q') .

= IaI'X-2, (1—no n), ... (58)
where a+, are the V-decay amplitudes for & helicity
outgoing E' [they are simply (1/V2) times the sum and
difference of the conventional a„a~j, respectively;
IaI'= fa~I'+ Ia I'= Ia, f'+Ia„I'; n is theasymmetry
parameter (I a+ I

' —
I
a

I

')
I
a

I
'=2(Rea, a„*)

I
a

I

' and
n is the polarization vector with components
(sin8, 0, cos8).

From (49) we infer that if the weak current remains a
vector at high energies, we should expect

( )=(b.&, ("&=-(b&. (54)
tAte also point out that if second-class currents are
absent, then V+ ——U + (cf. Appendix Il) and conse-
quently [cf. Eq. (49)j,

bi ——(bi) =0. (55)
It is worth noting that although we integrate over

q' in order to gain maximum statistics, the tests (54) and
(55) are free from any assumption on the q' dependence
of the form factors

For antineutrino scattering, the coeAicients of the
(1&cosh1P) terms are interchanged. Consequently, the
relevant relations are

&a)= —(b,&, (a,&=(b,&, a d (b,&=0.
D. Quasi-Elastic Hyperon Production

Here we consider processes of the type

r+lq —1 l+ Y

(57)
Ã'+m,

where E is a target nucleon (unpolarized) and V a
hyperon. Ke choose the hyperon decay plane to be the
1-3 plane and denote by 8 the decay angle of N' in the
hyperon c.m. frame. The over-all process (57) is specified
by the four independent variables q', 1P, g, and 8.

The density matrixes for the initial and final states
are

A
P o.v g t) o.). )

p"" =2 ~-" '(8)
I
a. l'd. .-"'(-8)
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The similarity between this process and the polari-
zed-target case is obvious I compare Eq. (58) with (46)].
All consldclatlons of Scc. V C can bc carllcd over with
very little change. In particular, the combined corre-
lation distribution in the variables P, Q, and 8 is given
by Eqs. (3/) and (48). The coefficients (a;,0;} are
expressed in terms of the vector form factors by formu-
las similar to Eqs. (49) with the following changes:
(a) an over-all factor of -,'I a

I

' =
2 (I a,

I
'+

I a„ I
') is

inserted, (b) the form factors V+ a,nd V + are inter-
changed, and (c) bi, b2, fi3, a4, a5, aa, and az acquire an
additional minus sign. The phase space for the present
process involves one more integration in the 8 variable.
The two spectrum functions A+(q', P) are obtained in
this case by integrating over the entire 8 range for A+
and taking the difference of a twofold division of events
with 0(e(—',m and ~~or(0&~ for A (asymmetry of 1P
with respect to X in the V c.m. frame). Again the q'
variable may be integrated over in the manner de-
scribed before. The relations which serve as tests of the
V—A structure of the weak current are now (56) for
the neutrino-initiated reactions and (54) for the anti-
neutrino-initiated reactions.

It may be interesting to note that similar tests of the
V—2 interaction can be carried out in polarized-
hyperon P decay. Essentially all the above analyses go
through if the variables (f,Q) are replaced by the decay
angles of the lepton in the (l,v) c.m. frame. Data on these
processes are being accumulated at such a rate that it
appears such an analysis may be feasible in the very
near future '~

E. Single-Pion Production in ¹ Region

Finally, we consider the single-pion production
process

with the final (S'm.) invariant mass in the low-energy
region where S* dominates. As a first approximation,
we assume that the 6nal (E'm) system is in a pure
Ji'=~3+ state (S") in its c.m. frame. Then the initial
and final density matrices can be written

The vector-current contributions to a;, b; can be easily
worked out; they are

=& =lCI v+"'I'+I v-"'I'j,
=-:LI v+"'I'+

I
v-"'I'j

&2=8I:I V+"'I'—
I
V-"'I'3,

=ll
I
v-' 'I'+I v+' 'I'j,

f =ll
I
v-' 'I' —lv+' 'I'3

(62)

Here the form factors are labeled by the current helicity
(m) and initial X polarization, o, with o =m —o omitted.
The first equation in (62) can be used as a test of the
V—A interaction in the same manner as described in
the previous two sections.

In order to improve on the (rather drastic) approxi-
mation made above, we may include into our consider-
ation correction terms brought about by other partial
waves. In the E region, the J =-~+ states are expected
to have some inRuence. An analysis may be carried out re-
taining the three partial waves 2+ and ~+. The procedure
used is the same as before, the algebra becomes slightly
more involved. Kc give the detailed results in Appendix
C. The combined P, g, and 0 correlation distribution
consists of 19 independent terms. Since the number of
form factors proliferates with the inclusion of more
states, we found it convenient to assume time-reversal
invariance. This enables us to invoke the Watson's
theorem to fix the phases of the form factors in terms
of the measured (s.X) phase shifts, thus reducing the
number of unknowns. This way, the 19 coefficients in
the correlation function can be expressed in terms of
three known phase shifts and 14 (modulus of) vector
form factors if V—A interaction alone contributes.
Thus, 6ve relations among the 19 coefIicients exist and
again serve as the basis for a test of the V—2 inter-
action at high energies. For the details of this calcu-
lation we again refer the reader to Appendix C. Here we
only note that the procedure used is, in a sense, the
reverse of that used by Pais and Treiman in E,4 and

~4 decays. " There, the V—2 interaction is assumed
and the phase shifts treated as unknowns to be solved
from the coefFicients of the correlation function.

po't

~, ,a
I al 2 P d, 3/2(0)d, 3j2(0)

(60) F. Concluslon3

where I@I stands for the magnitude of the S" decay
matrix element (X*lÃs). Substituting (60) into (39),
one can obtain the expected distribution in the variables
g, g, and 8 from (37) and (38).

As before, we integrate over the P variable obtaining
a six-term distribution expressed by

I;=a;+0; cos'0 for i = j., 2, 3
(61)

0 for i=4, 5, 6, 7, 8, 9.
"For example, J. I indquist eI, al. (Chicago-Washington-Ohio

State-Argonne collaboration), in Proceedings of the Fifteenth
International Conference on High-Energy Physics, Kiev, 1970
(unpublished).

We have given a formula for the general intensity
distribution function for an arbitrary neutrino scatter-
ing process in the local current-current picture in terms
of helicity form factors. We have discussed various
ways to test whether the basic V—A interaction struc-
ture of the weak-interaction Hamiltonian deduced
from low-energy decay experiments still remains valid
for high-energy neutrino scattering processes. All con-
siderations are independent of dynamical assumptions. "
It is quite evident that none of these proposed tests are
easy to carry out in the laboratory. The analyses of

"There is one exception. That is the omission of other partial
~aves in the (Ã'm) sys.em in Sec. V E. This assumption can be
independently checked experimentally.
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this paper showed, however, that there does not seem
to be any easier alternative for settling this very
important question. The "inclusive experiments"
(without detection of the outgoing lepton polarization)
which are the most practical reactions to measure in
the laboratory can serve to test some aspects of
locality" but not the V—A structure of the weak
interaction. The "exclusive experiments" examined in
detail in this paper as well as the measurement of the
outgoing lepton polarization mentioned previously are
undoubtedly much harder experiments. We hope,
however, with the rapid advancement in experimental
techniques some of these tests will be carried out."

Aside from the proposed tests, we hope the analyses
in this paper also succeed. in demonstrating the useful-
ness of the BW-frame variables' ()p,|t) and the helicity
form factors, in describing all types of weak scattering
processes. The variables sinh)P and cosh)P, which appear
widely in our formulas, are rather simply related to
the more familiar laboratory variables through Eq. (33).
The helicity form factors, which are just generalizations
of the familiar G~ and G~, can be used in other types
of weak and electromagnetic processes to great
advantage. "
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APPENDIX A

We brieRy indicate the lepton-mass corrections to

the various formulas in the text. This is rather easy to
do in our formalism. Thus, substituting Eqs. (34a) and

(34b) into Eq. (31), the general scattering amplitudes

are Lcompare with Eq. (35)]

f:",.= 2G(V'+~-)')'"L—~a a+e'"'~Q)"DT(~). .j
+&2Gns) (1+m//q') "'

~t:V".")+ '"'&(~)".V&-)..j, (A1)

f;, .= —2Gt(q'+nsP)'"V( ), ,
—v2mi(1+mP/q') 'I']e' &d(y)

The intensity distribution can then be obtained from

(A1) and (36). The distribution function is again of the

form Eq. (37) but with I; containing more terms than

those given in Eq. (38) due to contributions from the

second terms in Eqs. (A1). They can be easily worked

"A quick look at the list of proposed experiments at the

National Accelerator Laboratory should o6er much encourage-

ment, to one's optimism on this point.
» See, for instance, an application to the p decay of polarized

baryons: P. H. I'rampton and Wu-ki Tung, Phys. Rev. D (to be

published).

out when necessary, we do not give the complete ex-
pl esslons hei.e.

As a consequence of the lepton-mass terms, the out-
going lepton polarization is not 100%%uq for pure V —3
or 5-T interactions. The correction is roughly of the
order mP/q' /see Kq. (A1)j. Similarly, the distribution
functions (41), (44), (49), and (62) and the constraints
(54), (56), and (62) all are subject to additional cor-
rections of this order. For electron-neutrino interactions,
mP/q' is for all practical purposes zero. For muon-
ileutl'lllo llltelac'tloils, ')Nt /g =0.01 fol g = 1 (GeV/C) .

APPENDIX 3
We brieRy enumerate a few relevant properties of

the helicity form factors defined in the text. We recall
the definition of such form factors:

J), ),
'")= (p, 'X'

i
J' '(0)

~
p,) }

=(0—X'iBg( —I')J'")(0)Bg(N)iOX). (81)
Here, as in the text, J'"' denotes the m-component of
some general current operator. The nz-index is dehned
such that

PJ'")(0) J j=esJ~")(0) (82)
where J3 denotes the angular momentum operator along
the 3-axis. (An exception to this statement is V'"
which corresponds to m=o but, for obvious reasons,
we cannot, and did not, label it V'0).) Sandwich Kq.
(82) between the states (P,')'~ and ~P,)}. We get
(X+X')J), g& ) =mJ), )„which implies

J), )
( '=~,x+x A'"'. (83)

The hadronic states ~P,X) and ~P, 'X') have definite
transformation properties under the space- and time-
inversion operators. It is therefore meaningful to sepa-
rate the 5, V, and T currents in the text into the usual
g, I', V, 3, and T currents which also have definite
transformation properties under these discrete trans-
formations. One can then derive consequences due to
covariance under these transformations. This is easy
to do with the explicit definition (81); we shall not go
into it explicitly here but rather confine ourselves to a
few remarks. Constraints on the form factors due to
these symmetries arise only if all the momenta (both
the initial and final states may be composite systems
with internal momenta) lie in a plane Lso that the
operators U~R~(7r) and UrR~(~) will leave the momenta
unchanged'. Otherwise one only relates form factors at
diferent momentum values. As is well known, parity
relates Jg ), & ) to J p, ),™and time-reversal invariance
yields information on the phase of the form factors and,
in the special case where the initial and final states are
identical, symmetry relations in the initial and Anal
variables.

As shown in the text, the helicity form factors
diagonalize the unpolarized cross-section formula and
yield simple expressions for spin- and angular-correla-
tion f'unctions. The relation between these form factors
and the conventional invariant form factors can be
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APPENDIX C

We give some detailed results on single-pion produc-
tion in the N* region. The process under consideration is

V+N ~ IJ+N +Ã ~ (C1)
In our convention, the total momentum of the (1V'ir)

system is p'. Let us denote the relative momentum of
this two-particle state by r and the N' polarization by K.

This process is described by five independent variables
()P, g, q', 8, a,nd W), where W is the invariant mass of
the N'~ system. In the region where t/t/" is near or below
the two-pion production threshold, we assume the
matrix elements of the current operators between the
states (S'2r) and X are dominated by the (1P2r) system
in the J =2+, ~+ states. The helicity form factors
which enter into Eqs. (31), (35), and (38) can be
written

(p.'; «I J'"'I P.Q& =&0; r~l&2( —«')J'"'B(«) I«&
, k(8)[J, (~) (l+)+2)(J, (~)(l—)]

~l

+P d, 1(8)J, (~)(J+) (C2)

worked out easily for any particular case from Eq. (B1)
according to the specific way the latter are defined. They
can be also related to the nonrelativistic multipole
moments familiar in atomic and nuclear physics. To do
this, simply observe that the operator 82(—«')J' '(0)
X82(«) in Eq. (B1) can be decomposed into a sum of
terms irreducible under the rotation group 0(3) (with
parity). When sandwiched between the rest-frame
states in (B1), one obtains reduced matrix elements
which are generalizations of the multipole moments. '

Finally we give the explicit relations between the
vector and axial-vector helicity form factors and the
conventional invariant form factors for spin-~ particles.
From the definition

V) )"=«) (P )[V"f2+2&'"q f2+q"f2
+v"v0gi+2&'"q vC2+q'v0g2]«) (P ) (B4)

q"=P" P"—
straightforward calculations yield

), i(2) = (QMfl+q2f )(1+4M 2/q2) if2

—21'(2Mgi+q2g2) (1+gM2/q2)(&2

(1 =~2)
V g ),("=(2M fi q'f2)(1—+1)M'/q')'"

2),(/Mgi q2g ) (1/4M2/q2)(&2 (B$)

V +"= (2q') '"[—(fi+2M f2) (1+AM'/q') '"
+(g1+QMg2) (1+4M 2/q2) 2/2]

V ~ ' "=(2q')"'[—(fi+2Mf2)(1+AM'/q')"'
(gl+~Mg2) (1+4M'2/q2)1/2]

where AM=M' —M and M= —', (M+M').
The vector parts of the helicity form factors V"' and

V~+" can be readily recognized as multiples of the con-
ventional G~ and G~ form factors, respectively.

where the second superscript indicates the J~ state of
the (S'ir) system.

In the region of 8' variable of interest to us, elastic
unitarity in the (S'ir) channel holds. If one assumes
time-reversal invariance, as is consistent with present
experimental evidences in high-energy scattering, then
the phases of the form factors in (C2) are identical to
the elastic scattering phase shifts in the appropriate
(1V'vr) states. For simplicity in notation, let us denote
the phase shifts in the -',+, -', , and -', + states by n, p, v,
and the form factors J, ,' ) & ") in these states by
n, ( ', p, ' ', v, ( ), respectively. Then, substituting
(C2) into Eqs. (37) and (38) yields the combined corre-
lation distribution in )P, P, 8, with the result

I;=a,+b; cos'8+c, cos8
= (a,+c;cos8) sin8

=a; sin'0

for i=1, 2, 3
for i=4, 5, 6, 7

for i=8, 9.
(C3)

We give the contribution of the vector-current form
factors to the coefficients {a;,b, ,c,}:
a —(n 0)2+(n 0)2+(P 0)2+2[(v 0)2+(v 0)2]

—(p+'v+' —p 'v ') cos(p —v),
bi =3{4L(v+')'+(v-')']+(P+'v+' —P-'v-') «s(P —v) },
ci 2(n+0P——+0 n0P 0—) cos(n P), —
a2 =2[(n++)'+(P++)']+l L(v++)'+(v-+)']
b2 =

2 {4[(V++)'—(V—+)']—P++V++ cos(P —V) }
c,= —Q++p„+ cos(n —p) +v4+Q4.+ cos(v —n),
~ =![(-=)'+(p=)']+l[(v+-)'+(v--)']

—-',p:v cos(p —v),
b =-:{-.'L(v -)'-(v.-)']+P=v--- (P-v)},
C2 =Q P COS(n —P)+V n COS(V n),
a4 ———&2[(n++P+0+P++Q4.0) cos(n —P)

+l(V++ +'+ +'V '+l3V-+ -') cos(V —)], (C4)

hll){v '—'+[l/3(-P '-v '+v 'P ') v +P ']---
Xcos(P—v) }

a.- =l/2[(n++P+' P++n+') sin(Q —P—)
+-2, (v++n+'+n++v+'+v3v++Q ') sin(v —n)],

c0=(+2)[l3(p++v+' —v++p+')+v +p '] sin(p —v),
a0 ———v2[(n 'P:+P "Q ) cos(n —P)

+2(V-'Q- —n-'V —V3Q+'V+ ) C-OS(V —n)],
c4 = —(v'2) {—v+"v+ + [v3 (p-'v —+v-'p:)

P+'v+ ]«s(P —v) }, —
ai =&2[(n 'p:—p 'n:) Sill(Q —p)

+-', (v "n -+n 'v ——Wan~'v+-) sin(v —n)],
ci=(V'2)[le(P 'V V 'P:) -P+-'V—+ ]-»n(P —V), —
as=4'/3[2(V +V +V++V+ -)+-(P++V+ V +P:)—-

Xcos(P —v)],
a, =4'K3( P++V+ -V+P:—) sin(P

-——V) .

The 19 coefficients are given in terms of three known
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phase shifts and 14 unknown form factors. Thus, in
principle there exist five relations among the corre-
lation coeKcients which can provide as tests of the
V—A interaction. It is not hard. to see from Eqs. (C4)
however, that these relations are rather complicated in
general. In the text me considered the zeroth-order
approximation of setting n, ' '=P, & '=0 and obtained
one simple constraint relation a» ——3b». One can improve

on these results by attempting to solve the equations
in (C4) in the approximation that (n, & &/y, ™&)and

(P & &/y, & '&) are small but nonzero. We shall not do
this here explicitly. It can be carried out in a straight-
forward manner when the result is called for. Let us
simply state that the aforementioned relation a»=3b»
still holds to the first-order approximation in the small
parameters (n/y) and (P/y).
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Broken Scale Invariance an~» Kinematic Mom~its of Electroprot»nction Cross Sections*
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Expressions for high-energy limits of electroproduction cross sections freighted by —q'a, ~p 2, and q4 at
constant s, 8, and u, respectively, are derived from sum rules in the broken-scale-invariance scheme of
Ciccariello, Gatto, Sartori, and Tonin.

HE structure functions Wi, i(q', v) which deter-
mine the cross section for electron-nucleon scat-

tering were predicted by Bjorken» to have the following
scale-invariant limits for highly inelastic scattering

(—q', =pq "—):
MW, (q', v) ~ F,{~)& ~,

(v/M) W2(q', v) -+ p~(a&) (~,
where p and M are the four-momentum and mass, re-

spectively, of the nucleon, q is the four-momentum

transferred to the nucleon, and co=——q'/v is fixed. Both
P», ~ are non-negative. In terms of these, the highly in-

elastic cross section assuming one-photon exchange is

d 0" ÃA 2PM

pi(~)
d~q'~dv ME'q' M

M
+ 4E E —+q' —F2(co) . —(2)

M v

Ciccariello, Gatto, Sartori, and Tonin (CGST) de-

rived the folloming sum rules for F», 2 from a set of
current commutators which they had constructed as-

suming broken scale invariance':

d(a Fi(a)) = —3C2,

* Supported in part by the U. S. Atomic Energy Commission.
' J. D. Bjorken, Phys. Rev. 179, 1547 (1969}.My conventions

are identical to his, excepting the definition of v. A typographical
error of the factor M is corrected.

where C» & are unknown constants. Recently Mack
published' an expression relating L~],~—={cv), do/d~q'~
for large E and large constant —q' to C2. The purposes
of this paper are to derive similar kinematic moments
of the differential cross section (KM's) for L

—q'a&]„
where s=(p+q)'=M'+2v+q' is 6xed. ; for ((ov ']I&

mhere 0, the laboratory angle between the electron's
incident and 6nal directions, is 6xed; for Lq ]„;and for
tq47&,«i, and to discuss their implications. The KM's
would be kinematic averages if they were divided by
the integrated cross section. For instance, Lq'],
= (q') „da/d v, however, do/d v and do/ds must be de6ned
delicately because of the q factor in (2).

First the derivation of Mack's average mill be re-
viewed. If (2) is valid for sufFiciently large, fixed. —q',

(~)"
d[q'I

d 0

d
/
q'f dv ME'q4

2(4 g
X F+ «E+ —q' Mp, , (4)

M(u Mk

wllel'e ct&0= —4Eq /(Mq +4ME2). If (gp and p
singular than ~ ' as ~ —+0, the term in the integrand
proportional to 8' dominates in the limit E—& ~.
Therefore,

do
lim
Q ~oo

4m.n'
(—3C~) (5)

q4

s S. Ciccariello, R. Gatto, G. Sartori, and M. Tonin, Phys.
Letters 30B, 546 (1969}.' G. Mack, Phys. Rev. Letters 25, 400 (1970}.


