
COULOMB P ROD tj CTION METHOD FOR STUDYING

tion that the mass of the beam particle is negligible may
not be true when kaons produce low-mass states.
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s- and d-wave ratios of g~z~, and g~z~* couplings have been determined using Veneziano representations
for E'z~ —+ Em amplitudes. The results are in agreement with those obtained by the hard-meson techniques
of current algebra. Assuming that the axial-vector current is dominated by Ez- and E-meson poles only,
we obtain the E~4 form factors from E~~ Egvf and E7f- —+ Ex scattering amplitudes when the Eg and
one of the E mesons are taken off shell. Current-algebra constraints due to steinberg, when both pions are
soft, are then used to fix the arbitrary parameters of the theory. We hand that consistency of our results
with current-algebra predictions requires the presence of nonleading Veneziano amplitudes.

I. INTRODUCTION
'
PRESCRIPTIONS for writing down an amplitude

with crossing symmetry and Regge behavior with-
out unitarity for four-point functions have been given
by Veneziano. ' I,ovelace' has shown how this amplitude
could even be used for off-shell amplitudes. Further,
a host' ' of chiral-symmetry and current-algebra pre-
dictions have been obtained by using the Veneziano
representations and consistency conditions derived
from partial conservation of axial-vector current
(PCAC). ' This raises the hope that the Veneziano rep-
resentation, if coupled to unitarity, may lead to a good
understanding of elementary-particle interactions.

In this paper we first consider the Veneziano repre-
sentations for E7r —+ E~~ scattering amplitudes and
obtain the s—to—d-wave ratios of the coupling constants
g~g+p and g+g++ Oui lesults are in agreement with
the calculations of I ai, '0 who used the hard-meson

' G. Veneziano, Nuovo Cimento 57A, 190 (1968).
2 C. Lovelace, Phys. Letters 288, 265 (1968).
'M. Ademollo, G. Veneziano, and S. Weinberg, Phys. Rev.

Letters 22, 83 (1969).
'H. Goldberg and Y. Srivastava, Phys. Rev. Letters 22, 749

5 H. J. Schnitzer, Phys. Rev. Letters 22, 1154 (1969).
'R. Arnowitt, P. Nath, Y. Srivastava, and M. H. Friedman,

Phys. Rev. Letters 22, 1158 (1969).' H. Osborn, Queen Mary College, London report (unpublished),
where further references will be found; see also S.. Fubini, Com-
ments Nucl. Phys. Elementary Particles 3, 22 (1969).

8 Riazuddin and Fayyazuddin, Phys. Letters 28B, 561 (1969);
Ann. Phys. (N. Y.) 55, 131 (1969).

S. L. Adler, Phys. Rev. 137, 81022 (1965}.' C. S.Lai, Phys. Rev. 170, 1443 (1968);K. C. Gupta and J. S.
Vaishya, ibid. 170, 1530 (1968).

techniques of the current-algebra approach due to
Weinberg and Schnitzer. " Next, assuming that the
Veneziano form for the Ear —+ E~~ scattering ampli-
tude can be used even when E~ is taken o6 the mass
shell, we discuss the E~4 form factors. For a complete
knowledge of these form factors, we also consider Em.
—+ Ew scattering; this particular amplitude appears be-
cause the Emeson can interact with two pions, continue
as a E-meson, and finally couple to lepton pairs. ""

In writing down the Veneziano representations for
EE4 decay, we use the same forms of amplitudes as used
in Ex —+ E~x and E~~Em scattering amplitudes,
except for the arbitrary parameters. We then attempt
to determine these constants from the constraints due
to current algebra when both pions are made soft, as
calculated by Weinberg. We find that of the three form
factors Ii, (i = I, 2, 3), the form factor F3, which can be
shown to arise only through virtual Ear ~ Em scatter-
ing under the assumption of kaon PCAC, ' 7 is consistent
with the current-algebra prediction, and the arbitrary
parameter associated with it is uniquely given, whereas
the form factors Ii1 and Ii2, if determined from Ex—& E~m scattering amplitudes, are inconsistent with the

"H. J. Schnitzer and S. Weinberg, Phys. Rev. 164, 1828
(1967)."S.Weinberg, Phys. Rev. Letters 17, 336 (1966); 18, 1178 (E)
(1967).

"Previously, current-algebra constraints due to Callan and
Treiman have also been used to determine the arbitrary parame-
ters in Ef4 form factors in the context of the Veneziano represen-
tation by R. G. Roberts and F. Wagner tCERN Report No.
Th-990, 1969 (unpublished) j. The Veneziano forms in their
analysis, however, do no t display the maximal high-energy
behavior predicted by Regge theory.
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current-algebra predictions. To make our Veneziano
amplitudes consistent with current-algebra results, we
need to introduce an additional (nonleading) Veneziano
amplitude. The determination of the parameters as-
sociated with Ii ~ and I'~ is discussed in Sec. V.

II. DECAY WIDTHS QF Kg MESON

The invariant amplitude Tq(s, t) for

K+(Ir)+n( .—k+—) ~ Kg), (l)+a. (k ) (1)

can be written as Tq{s,t) =(k+0—
)&C(s,&)+(lr —k )&,

XD(s,t), when s= (k —k+)', &= (k++0—)', and
u=(k —k )', k, k+, etc., are the four-momenta of the
particles as shown in Eq. (1).The helicity decomposi-
tion of our amplitudes can be written down, from which
we easily infer the Regge high-energy behavior. Con-
sistent with this, we assume'4 "the following Vcneziano
representations for C and D:

1"(1-.*())1(1-,(i))
C(s,t,n) =aLnp(t) —«rz (s)] (2)«2---*()--,(i»
and

D(s, t,u) =bL1 —«rz (s) —«r, ())g

1'(1—rrz "(s))1'(1—«r, (t))
X— —, (3)

1'(2 «*(—r) ~.(~)—)

where a and b are two arbitrary parameters. %C can
now use Kqs. (2) and (3) to obtain the decay param-
eters of thc K~ meson. Consldcring p and its daughtcl
e in the t channel and K~ and. its daughter & in the
s channel, we can easily obtain the real residues from

(2) and (3). We then compare with the corresponding
residues from Fcynman amphtudcs 'fol the saHlc pole
diagrams. %e note here the contributions to the ampli-

tudes duc to p) 6) K) and K poles.
These are, for the C amplitude,

and fol the D amplitude)

le ...PHs+HD(~z. '+~z' &
—»)—3

«r, (t) -1
&zg««V«««««& (6)

Q ASK

r'vz'z. Hs' 3+
~z (r) —1

+2 (m, ''+2m«' 2t «———52K
[m« '+s))

SZK*

—Vz~ -Vz ~, (7)

(Sb)

The values of the couphng of ~ and ~ are given by"

QK„eK+e7r 1r
—0)

7K'«)r'7K')r a~p ~K / ~K* ~
2/ 2

(9a)

(9b)

where 0.', the universal slope of the linear trajectory, is

1/(2m, '); Hs and Hn are the s- and d-wave Kg-meson

couplings to p and K; and JIB' and HD' are similar

couplings to E* and x. The couplings are given by

Hs(e" e«') 2Hr«(e—~ p )(e«' pg) (p~+pz ——p )

Vz,.z(p.+pz) e" (p~+pz =p.),
and similar expressions. %'e neglect terms of the order
of m, '/mz'.

Now if we use Adler's PCAC consistency condition
when the kaon or the pion is taken oR-shell, we obtain
mz„'+rlz'=2mz«'. Further, using nz*(mz') =a, we

6nd from (4) and (6) and from (5) and (7), respectively,
that

Pv u-Ãs Hn(~z. '+~z—-"I '-&)1——
«r p(t) 1— From our analysis it turns out that

Pp)r)rIID fKsrK)r+D ~

Q ASK'

g7K*K~ ~8
nz (s) —1 mz*'

—BD SSK& 2fÃK —2t —S—— 85K~ 5

III. VENEZIANO AMPLITUDES FOR
j.")4 FORM FACTORS

Consider now the decay

K(k) ~ a..(k+)+m. p(k )+l«(l);

as usual, the axial-vector current Aq is written as

a„=I,F,(s,~,~)+q,p, (s,t,N)+(a —I')&F,(s,S,N), (12)

+Vz~-Vz-, (5)

"These forms coincide with those for the ~+++ ~ m +21+
scattering Veneziano amplitudes. In that case, C becomes anti-
symmetric and D symmetric under s+-+t, as it should be. The
predicted high-energy behavior of C and D from Eqs. (2) and (3)

are consistent with those of .4 and 8 amplitudes given in Ref. 8.
See also Refs. 5 and 6."There is a set of amplitudes due to C. J. Goebel, M. I . Black-
mon, and K. C. Wali, Phys. Rev. 182) j.487 (19N)) which differs
from our D amplitudes. This is discussed in Sec. V.

"Our assumption of retaining only the leading terms leads to
a definite product of c and ~ couplings from each analysis which is
not the case in Ref. 8.
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F;(stu) =5 bF;++i2[r„rbjF,

and because of s ~ I symmetry we have

F;+(stu) =& (—1)'+'F,"(uts) .

(13)

(14)

In writing down the Veneziano forms, we assume fur-
ther that an exotic resonance in I=~ does not exist.
Thus from our knowledge of the Km ~ E~m amplitude,
we assume" the following forms for the F s:

For process I, K+~ m++m +K~+,

when P=(k++k ), Q=(k+ —k ). We introduce the
variable si ——(K—P)'= the invariant lepton pair's mass
squared; s+t+I =san+2m '+m~'. We assume that the
axial-vector current is dominated by Kz- and K-meson
poles. F~ and F2 receive contributions only from the E~
pole. Assuming that the structure of the Veneziano
forms remains unaltered2 when one particle is taken
off shell, we continue the E~ mass to s~ and use the
same forms of amplitudes for F~ and F~ as given in
Eqs. (2) and (3) except for the arbitrary constant a. To
represent the off-shell behavior' of F~ and F2 in the s~

variable, we write a=a(sb). The physical region for s& is
0(si((mx —2m )'. In isospace,

find from (15)—(17) that

where I and II denote the various physical decay ampli-
tudes defined earlier.

Combining (18) with the current-algebra constraint
of Weinberg, "we deduce that A as de6ned in Ref. 12
must vanish. Thus, our choice (17) for Vi, etc. , with
a single leading Veneziano amplitude does not satisfy
the current-algebra result. We propose that additional
Veneziano terms must be taken into consideration.
Thus we replace (15) by

Fi' ——a Vi(nrc. (s),n p(t))+XiB(nice(s), n p(t)),
19

F~' ——a V~(nrem. (s),n p(t))+X2B(nrc. (s),n, (t)),

and corresponding symmetric terms in the other ampli-
tudes II and III. X& and ) 2 are arbitrary parameters.
Imposing the PCAC consistency condition when k+ —+ 0,
we find X~=P&. This corresponds, however, to adding
a nonleading Veneziano amplitude to the invariant
D(s, t) function in our Err ~ Ib.~rr scattering amplitudes.

With 4=X2 =X =A/m, we then immediately recover
the Weinberg limits, i.e.,

Fi' ——aVi(nil. (s),n, (t)),
F2' =a V2(nil*(s), n, (t));

and for process II, K+ —b s'+~'+&&+,

(15) Fj'=F2' ——A )

F3"=A F2"=0)
F III 0 F III

(20)

and
I'(I- ( ))I'(l-,(t))

B(nir (s),n, (!))=-
r(2 —rc (s)—,(t))

(17)

IV. WEINBERG LIMITS

Fi"——-', a(Ui(na*(s), n p(t))+ Vi(nrc. (u),n p(/))], 16
F2"= -~ a [Vz(nx~(s), n, (t))—Vq(nil(u), n, (/)) j.

Further, for process III, K~' —& m +~'+E~+, the F& s
can be easily written down using the AT=-2 rule. The
functions V& and V2 are given by

Vi(nil. (s),n „(t))
=-', [4nrc. (s) —2n„(t) —1]B(nil*(s),n p(t)),

U, (nil*(s),n p(t))
= -', $2n, (t) —1$B(nil*(s),n p(t) ),

To complete our discussion of current-algebra con-
straints, we now discuss the behavior of F3 and note
that, in principle, it receives contributions from both
E- and E&-meson poles. The asymptotic behavior of
the E~-pole contribution to F3 cannot be determined
in a simple fashion since F3 does not occur in the physical
Em —+ K~m amplitude. Following Arnowitt et al. ,

6 we
invoke held-current identities, kaon PCAC, and the
absence of satellite terms in the K~ —& Km amplitude
to argue that the K~-pole contribution to F3 vanishes
identically. Thus the K-meson pole alone contributes
to F3, which therefore has the following structure for
processes I and II:

F3' =cC(nicer(s), n, (t)),
21

Fb"———',cLC(nil. (s),n p(t))+C(nrc*(u), ni, (t))j,
We now discuss the behavior of the amplitude when

both the pions are made soft, when t —& 0 and s=m~'
—2k k+ and N=m~' —2k k, keeping the first-order
terms in k+ and k . In the limit k+ —+ 0, k —+ 0, we then

where

C(x,y) = 1(1—x)r(1 —y)

r(1—x—y)

' We could have started with diRerent forms for our Veneziano
amplitudes consistent with high-energy behavior as discussed by
Riazuddin and Fayyazuddin (Ref. 8). This would entail a number
of parameters which could be determined using the same principles
as used in this paper. Our present choice in conjunction with
current-algebra constraints suggests the presence of nonleading
Veneziano amplitudes also. Our final conclusions are similar to
those obtained in Ref. 8.

Thus near the K-meson pole the full structure of the
amplitude F3 is

C(nil (s),ni, (t)) .
S~

—tÃg
(22)

For consistency, we note that kaon PCAC and the ab-
sence of satellite terms would lead to only nonleading
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contributions to Fi and F2. This agrees with our modi6-
cation of Eq. (19) to get agreement with the Keinberg
results.

For process II, we find that F3" reduces to

k (k++k-)

k (k++k—}
(23)

While taking the limit, we keep the first-order terms in
k+ and k both in the (si —mrr') factor and in the I'

functions appearing in (21). Comparing this with the
current-algebra result F3"—+ 8, we find

which determines the arbitrary parameter c. In a similar

way, using (24) and taking the limits, we find from (21)
that'

k (k+—k—
)

F III~+ (25)
k (k++k )

Hs/Hn Hs'/H g&' ———m p'(1+2——X/a),

yg~~y, =mp9,

7a~„ya.„,—— m'( m'—za mph }/m—

iran'

V. CONCLUSrONS

(26)

We finally write down the complete structure of the
axial-vector current for process I as

A), = —{E),L.",a(4na *(s)—2n, (/) —1)+»
s $ 52gg

and F3' can be calculated using the hT= —,
' rule. This

checks the validity of our assumptions of the form of
Fs given in Eq. (21), etc.

The presence of the extra nonleading terms modihes

Eqs. (8) and (9) and we get

of the axial-vector current by K~- and K-meson poles
Since hs&/mrr„' 0 03. , we can replace 1/(mar„' —si)

1/mir~', The factor 1/(mrr' —si) is due to a K-meson
pole term which is the singularity near the physical
region of K decay.

Further, the constants a and X shouM in principle be
functions of s~ so as to represent the off-shell behavior
of tbe amplitudes F; in the s~ variable. If one assumes

that a(si), etc. , do not depend strongly on si, then one
can continue the a(s~) near s~ =mrr„' and determine the
a directly from the Kx —& K~~ on-shell scattering
amplitudes. In this case a will of course coincide with
a of Eq. (10) and its value will be given by various cou-

pling constants as discussed in Sec. II. It is tempting to
assume further that the variation of X with sl is such
that near s~=mrr~', X(s~) vanishes and the oR-shell

Kx~ K~~ amplitudes occurring in K~4 decay reduce
to the on-shell Veneziano forms for Kw —+ K~& scatter-

ing, "given by Eqs. (2) and (3). It is then needless to
mention that Xi=A~=A/ir has been only determined
near s~ ——no~', which is close to the physical region of K
decay.

There is an alternative method of writing down the
amplitudes, starting from a somewhat diferent inter-
pretation of leading terms due to Goebel, Blackmon,
and Wali. " They construct amplitudes with terms of
the form I'(n nrr*)—I'(m n)/—I'(n +m p n—ir* —n, ),—
where ri, m, and p are integers. This corresponds to
giving a finite value to our X; in particular, X= —a/2
seems indicated by their analysis. This wouM lead to
II8——II8' ——0, and if found to be true experimentally,

may indicate that their interpretation of what is a lead-

ing term is more plausible than ours.
In our discussions we have completely ignored the

question of fixed poles in electromagnetic and weak
amplitudes.
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+ (P—k)),[1—nrr (s) —n, (t))
s~ —fSE

&&C(«*(s),n.(&)), (27)

where the factors grr„/(mrs„' —si) and 1/(mir' —si) are
introduced to demonstrate explicitly the dominance"

'8 This assumption is equivalent to the 6eld-current identity.
This hypothesis has also been adopted in Ref. 8.
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"One obtains such a situation in the xw —+ wA~ amplitude.
See H. Schnitzer, Ref. 5.


