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The large-angle high-energy 7tE elastic amplitude is conjectured to obey a modified scaling law, which
states that this amplitude is of the form E(/)&( —5/s), where t is the momentum-transfer variable, s the
energy variable, and Il (5) a vector form factor. The presence of the function H, which depends only on the
ratio of large kinematical variables, suggests a connection with Bjorken s scaling law for electroproduction,
Such a form is in. good agreement with the large-angle data currently available. The conjecture is based on

(1) pion current commutators applied to mass-shell amplitudes, and (2) Feynman-graph experiments
motivated by recent calculations in the eikonal (small-angle) region.

I. INTRODUCTION
' 'N the extensive literature on high-energy scattering,

& ~ one 6nds relatively few papers on large-angle pro-
cesses, compared to the large number of papers on
diffractive processes. Large-angle scattering is difFicult

both experimentally (because of the smallness of the
cross sections) and theoretically; one standard ap-
proach' is to use a Glauber multiple-scattering formal-
ism' (eikonal approach) and push it to values of the
momentum transfer to where the formalism may be of
doubtful validity. "

Nonetheless, some very interesting results have been
obtained in this way. A classic example is Chou and
Yang's' extension of the %u-Yang conjecture' that the

pp elastic scattering amplitude is proportional to the

square of the electric form factor F(t). Chou and Yang
proposed that the Fourier transform of the eikonal X(b)
was proportional to a product of form factors for the

two incident particles involved in elastic scattering, and

were able to fit do/dt for ltl (I GeV' and F(t) for

ltl &25 GeV'.

Unfortunately, if Chou and Yang are correct, we are
still far from the asymptotic region; the measured
differential cross section for

l
t

l
)5 deviates drastically

from Chou and Yang's proposed asymptotic limits, even

at incident momenta of 30 GeV (see their Fig. I). It is
dificult to assess the significance of calculations of do/dt

out to
I tl 6 or more, based on various models of the
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eikonal X(b),' '0 since it is not clear that the eikonai
formalism itself is valid for such large $.'4

In this paper, we explore high-energy large-angle
meson-baryon elastic scattering from two comple-
mentary points of view. In the first, we reexamine the
work of Domokos and Karplus, " who studied the
consequences of the hypothesis that the equal-time
commutator of two meson currents is essentially the
time component of the vector current. These authors
were not quite correct in their treatment of current
commutators with all particles on the mass shell, so that
our conclusions differ somewhat from theirs.

The second point of view both confirms and extends
the mass-shell current-commutator arguments. In it, we
look at Feynman graphs based on a certain effective
Lagrangian, the main feature of which is that at high
energy, forces between hadrons come from the exchange
of massive neutral vector mesons coupled to the baryon
current. It is precisely this feature which is important in
th.c DlRny clkonal CRlculRtlons of high-cncigy scRttc11ng
at finite t (small angles). " "However, the graphs which
add up to eikonal form for small t do rot yield the leading
terms at asymptotically large/; a diferent set of graphs
must be used, but they share with the eikonal graphs the
features that forces are transmitted by vector exchange.

Either of these two points of view yields essentially
the same result in the large-angle high-energy scattering

' L. Durand III and R. Lipes, Phys. Rev. Letters 20, 637 (1968).
ST. T. Chou and C. ¹ Yang, Phys. Rev. Letters 20, 1213

(1968).
9 C. B. Chiu and J. Finkelstein, Nuovo Cimento 5/A, 649
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'0 S. Frautschi and B. Margolis, Nuovo Cimento 56A, 1.155;

57A, 427 (1968).
"G. Domokos and R. Karplus, Phys. Rev. 153, 1492 (1967).
'~ H. D. I. Abarbanel and C. Itzykson, Phys. Rev. Letters 23,

53 (1969)."M. Levy and J. Sucher, Phys. Rev. 186, 1656 (1969).
"H. Cheng and T. T. Wu, Phys. Rev. 180, 1852 (1969); 180,

1868 (19N); 180, 1873 (1969);180, 1899 (19N); 186, 1611 (19N);
D 1, 10N (1970);D 1) 1083 (1970)."S.J. Chang and S. Ma, Phys. Rev. Letters 22, 1334 (19N).

'~ B.W. Lee, Phys. Rev. D 1, 2361 (1970)."D. J. Levy, SLAC Report No. SLAC-PUB-771, 1970 (un-
published).
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region. We find the following: In the limit s —+~,
f—~oo, —I~on, with t'—= t/—4v fixed" [v = is (s—st)],

the differential cross section for ~p elastic scattering
obeys

0.12—

I I T T I ~ T I T I

do-, i G'
IF(t)!'IH(l-) I'(I-I'),

dt 4ms'
(la)

0.08—

H(()

where G'/47r~15 and H(f) is a (complex) function of f',

nominally of order unity, constrained to vanish at l =0
if there are no right-signature fixed poles in mE scat-
tering (see Sec. IV). F(f) is a form factor, given in the
second point of view by a set of Feynman graphs already
discussed by Levy" in connection with the eikonal ap-
proximation. The precise nature of F(f) is somewhat
model dependent; there are hints that F(t) is the form
factor of the baryon current, rather than of the usual
vector octet, but in the models we study, the asymptotic
behavior of both currents is the same. Kinematically,
the models suggest that F (f) is either the magnetic form
factor Gsr (t) or the Dirac form factor Fr (f); these are the
same thing asymptotically. In a comparison of (1a) with
pion data (Sec. II), a quite reasonable function H(f) is
obtained when the proton magnetic form factor GM is
used for F(f).

Equation (1a) does not, in itself, suggest an immediate
generalization to other processes. For mw elastic scat-
tering, Sec. IV shows that F(f) in (1a) should be re-

placed by the pion form factor, while there is (as yet) no
easy generalization to pp scattering (however, see the
discussion in Sec. V).

The appearance of the function H(l ) (whose nature
depends on detailed dynamics) is reminiscent of the
scaling law proposed by Bjorken" for electroproduction,
involving a highly virtual photon. For mass-shell
processes, Bjorken and Paschos'0 have used the parton
model for ieetustic Compton scattering to And that the
cross section summed over all final hadron states (an
inclusive experiment in Feynman's" language) depends
on a scale-invariant function of f, with no form factors
F(t) Our results f.or eltJsHc Compton scattering (an
exclusive experiment) look like (1a), with G4 replaced by
e4. It is tempting to speculate that various powers of
F(f) distinguish the scaling-law behavior of inclusive
and exclusive cross sections.

The theories discussed in the present paper give little
insight into the structure of H(t). In later work, we
shall discuss possible dynamic schemes for calculating
H(f'), which incorporate parton-like models.

II. COMPARISON WITH EXPERIMENT

There are perhaps many readers whose greatest
interest in (1a) is as an ansatz to be tested against data,

' In the infinite-energy limit, f= (1—cosg) (3+cos8), where tt

is the c.m. scattering angle.
'9 J. D. Bjorken, Phys. Rev. 179, 1547 (1969).

J.D. Bjorken and E.A. Paschos, Phys. Rev. 185, 1975 (1969)."R. P. Feynman, Phys. Rev. Letters 23, 1415 (1969).
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FiG. 1. Experimental test of the modified scaling law. Data
points are taken from Refs. 22 and 23, for It1 values from 3 to 12
GeV'. I'z, is the pion laboratory momentum.

quite apart from detailed theoretical motivations.
Therefore, we begin with a comparison with experiment.
The equation used was very similar to (1a):

do- G4—= —[s—(3E+m.) ']—'[s—(tlat —m. ) ']—'
dt 4x

X(1-fs)
I G»(t) I slH(f)

I

s

"J.Orear, R. Rubinstein, D. B. Scarl, D. H. White, A. D.
Krisch, W. R. Frisken, A. L. Read, and H. Ruderman, Phys. Rev.
152, 1162 (1966).

23 D. P. Owen, F. C. Peterson, J.Orear, A. L. Read, D. G. Ryan,
D. H. White, A. Ashmore, C. J. S. Damerell, W. R. Frisken, and
R. Rubinstein, Phys. Rev. 181, 1794 (1969).

with G'/4s-~15, M the proton mass, m the pion mass,
Gir the magneticformfactor of theproton, and f = f/4v—~—t(2s+f) '. The specific form of (1b) is based on the
considerations of Sec. IV, which suggest that the A
amplitude of pion scattering vanishes asymptotically
one power of t faster than the 8 amplitude, which is
proportional to Gttr(t) v '; therefore, the A amplitude has
been set equal to zero in deriving (1b).

For the comparison, data on large-angle rr p elastic
scattering cross sections was taken from the work of
Orear et al."and Owen ef a/. "Values of H(f') computed
from these works and from Eq. (1b) are shown in Fig. 1;
the ranges of s and t covered are 3& Itl &13 GeV',
12(s(19.4 GeV'. The solid line is a least-squares
polynomial 6t, and has no basic theoretical signi6cance.
The line passes through the error bars of all but a few
points, and most of these points have ltl~3 GeV',
where it is very possible that the scaling limit (1b) is not
very good; in fact, the cross sections near

I tl =3 show
a dip structure very much like the multiple-scattering
breaks found in, e.g., the works of Chou and Yang' and
Durand and Lipes7 based on the eikonal approximation.
There is, of course, no necessary contradiction between
the eikonal (finite-f) theory and our scaling (infinite-f)
theory; if our theory is correct, the two regions should
overlap in a domain where features common to both the
eikonal and the scaling limits appear. Note that H(P)
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appears to vanish near )=0, in accordance with the
arguments of Sec. IV.

The scale of H(t') ( 0.1) is rather small, compared to
the Born approximation, which would suggest II 1.
This is perhaps reminiscent of the small scale of the
electroproduction structure function'4 which seems to
reRect a rather small mean-square charge per parton
(cf. Bjorken and Paschos").

It is diTI'cult to say what the scale of H(f) really
should be, at the present crude level of theory, and
numerical factors such as G'/4ir in (1b) might be
differently chosen. For example, if Glr in (1b) is replaced

by Girth ' (where @=2.79 is the proton magnetic mo-
ment in Bohr magnetons),

i II(f)! as shown in Fig. 1
should be multiplied by p, which brings the scale of H
intriguingly close to that of the electr oproduction
structure functions.

In the ranges of t and s quoted above, the cross
sections vary by almost three orders of magnitude,
while the points in Fig. 1 fall on a common line within

(roughly)%20%. This is impressive evidence for scaling
as described in Eq. (1b).

provided that F (xo, . . .) does not explicitly depend on Qo,
i.e., provided that all other momenta in the problem are
held fixed. It is thus necessary, for the 8 limit to be
applied, that qP and q22 also approach infinity.

Our interest is in the case where the J's are pion
currents, and it is necessary for us to keep q&' and q&'

fixed, with the value ng, '. In such a case, since

d»dPdP'h(», P,P' t)

(Q+PF+ ',P'A)' —»+i. - (7)

qi'=Q'+Q &+4t q~'=Q' —Q 6+-'t

(here t=A'), it follows that either Q' or t must become
infinite with Qo'. In either case, F(xo, . . .) does depend
on Qo, and the 8 limit is not applicable.

To see what can be learned in such circumstances, we
use a convenient form of the Jost-Lehmann-Dyson
representation, which extends the often-used Deser-
Gilbert-Sudarshan (DGS)" representation for forward
matrix elements, and which was first written in essen-
tially the form below by Xakanishi":

III. MASS-SHELL CURRENT ALGEBRA

Here we contrast the Bjorken limit for extracting
matrix elements of equal-time commutators with the
injjnite momentum limit of the mass-shell scattering
amplitude.

Consider the Fourier transform of the retarded
commutator of the currents a, b, and moments q~, q2,

taken between (covariantly normalized) free-particle
states of momenta P» and I'2.

g(P,Q, A) =i d'x ' eoe( )x

X&F.!L~.(-:.),J'(-!.)jlF )

where T is the time-ordered product corresponding to
the retarded commutator R. The weight function h has
support in X'&0,

!P'! & 1. In the limit 6~ 0, the DGS
representation is obtained.

)We digress to give a simple heuristic derivation of

(7). The commutator

C('» A . t)=&F it~'(l*),J'(—l )]lF)
depends on the listed invariants. As C vanishes for
x &0, it has the representation (like the Kallen-
Lehmann representation)

d»A(x; X')G(F x,A x,t; X'),

dxo F(xo )e'oo*o (2)

where

F(xo, . . .) =~ d'x e-"*&&2lP'(kx),~'(—lx)PIFi) (3)

Z(F,Q, A)
Qo~~

F(0, . .).
1

+ polynomials+ o — (5)

~4 K. D. Bloom et t2l. , Phys. Rev. Letters 23, 930 (1,969); M.
Preidenbach et al. , ibid. 23, 935 (1969).

~~ J. D. Bjorken, Phys. Rev. 148, 1467 (1966).

F=k(pi+p. ), Q=l(si+V~) A=Vi V=P2 Pi (4)— —

If the equal-time commutator F(0, . . .) exists, its value

can be determined from the Bjorken limit (8)":

where 0 (x; ») is the free-Geld commutator with mass X.

6 has a Fourier transform with respect to I' x, h. x of
arguments P, —,'P', respectively. In the cases we are
interested in, the time-ordered product can be gotten
from C by the replacement 5~ Az, the Feynman
propagator; Fourier transforming with respect to Q
yields (7).]

Now we take up tile llllllt of (7) as Qo ~cc', wltll
qi2= qP =m, ' [here Q 6=0, from (6)j, defined as the 3f
limit. In terms of the quantities v—=F Q and t, we con-
struct a dimensionless quantity I'=— t/4v; in the c.m. —
frame of I'j and qi, we And

"S.Deser, tA'. Gilbert, and E. C. G. Sudarshan, Phys. Rev. 115,
731 (1959); M. Ida, Progr. Theoret. Phys. (Kyoto) 23, 1151
(1960); N. Nakanishi, iNd. 26, 337 (1961); Suppl. 18, 70 (1961).

27 N Nakanishi, Ref. 26.
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Then it is easy to find (we take Pi2= PP, so P 6=0)

in'dPdP'h(X', P,P' t)
T(P,Q,~1)

2P+I (1+O' P—")
But in the Bjorken limit,

which has the usual pion coupling, plus a coupling of the
baryon current to a singlet vector meson 8 (this L will
be used in the graphical studies of Sec. V). We easily find

8 (xp) t J.'(x),J.'(0)]=4iG'b. b, V,'(x)84(x), (14)

where V„'(x) is not exactly the whole vector current,
but just the baryonic portion:

T(P,Q,a) ~ u. 'dPdP'h(X'O P' t). (10)
V.'(x) =kv. 2rV. (15)

Although (9) and (10) are different, it is plausible that
the ratio of the two integrals is a function (of order
unity) of t only, in the limit t +~—, if the P limit in (10)
leads to a rapidly decreasing function of t. Ke suppose,
then, that the t dependence of h(X',P,P'; t) in some sense
factors out when t becomes very large, and that there is
no delicate cancellation of oscillating terms in (10)
which leads to the decrease with t. Our conjecture, then,
is that the 8 limit and the M limit of a scattering
amplitude differ by a function of the dimensionless
variable i, and otherwise show the same asymptotic
rate of decrease in t.

IV. APPLICATION TO PION SCATTERING

For pion scattering, (7) is replaced by

T(P,Q,~) =.(P )(&+& Q&).(P ), (11)

h, (l ',P,P', t)
A=P Q (12a)

(Q+PP+ ~ P'6) 2 A+i r. —

hg(X', P,P', t)
(12b)

(Q+PP+ ,'P'a)' X'+i~-—
where for convenience we now delete the differentials
dX'dPdP'. The extra power of P Q in A allows us to
accommodate certain commutation relations to be given
below; it also allows for Regge behavior with trajectories
rising as high as 7= 1, although we are not concerned
with the Regge region presently. Superscripts (&) will
be used, when necessary, to distinguish the isospin-even
and -odd mal amplitudes.

The limit of T is governed by the equal-time com-
mutator of pion currents. If one takes the Qb —+~ limit
of (11) and (12), the resulting equal-time commutator
Lsee (17) below] is the time component of a J"o=1
current; it would be very surprising if this current had
totally dissimilar properties to the usual vector currents
which participate in weak and electromagnetic inter-
actions. Many readers may find this simple argument at
least as compelling as the special models we study below.

As Domokos and Karplus" have pointed out, in
standard pseudoscalar mÃ field theory, the commutator
of two pion currents is a piece of the vector current.
Consider, for example, the Lagrangian

L=Li...+b~V n PP+V0V ~&V

The full vector current J„'has a pion contribution:

J„'=V„'+b, b.qi'B,gb

With the aid of the Bjorken limit (5) and the commu-
tator (14), Eqs. (11) and (12) yield a sum rule for the
isospin-odd spectral functions:

N(Pg) ', r, Po -hg& &(X'p p't)

hst &(Z'P P-', t) u(P, )

= —2G'(P
I Vo'(0) IP & (17)

To the extent that V„' can be related to an inde-
pendently measurable physical current, (17) can be used
(as in Sec. III) to discuss ~1V elastic scattering in the M
limit of large angles and high energy.

There are two points of view one may take with
regard to the difference between J„' and V„'. In the
first, the fact that 27-, sits between the baryon fields in
(15) is ignored, and one thinks of V„' as somehow
related to the baryon current. The graphical studies of
Sec. V actually suggest this point of view. In the second,
one tries to relate V„' to the isovector current J„' by
evaluating the correction terms Lsee (16)]

(J~. V,)=,~b~(P,
~

y.(x)8 yb(x)
~
P,) (18)

This can actually be expressed in terms of the ~E
amplitude T(P,Q,E):

&abc

(J ' —V ')= d4Q
(2')'

Q„T"(P,Q,a)

L(Q+l~)'- -']L(Q-l~)*- .']
as one sees by looking at Feynman graphs. Unfortu-
nately, when expressions (11) and (12) for T are used in
(19), the integral over Q diverges logarithmically if the
integrals in (17) do not vanish. The divergence itself can
be absorbed into a renormalization constant, leaving the
question of finite corrections. Very roughly speaking,
the structure of these finite corrections is such that (18)
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FIG. 2. SuIn of all crossed and uncrossed ladders.

is replaced by something like

G'
(~.' —V.')- »I — 1(V.')~)

%hile this equation should not be taken too seriously, it
indicates that there might be non-negligible corrections
in going from J„' to V„'.Nonetheless, within a factor o
2 or 3 (J ') is essentially the same as (V„') except at
extremely high f, which is all that we need for our
purposes.

Let us simply ignore the complications of such cor-
rections, and identify (J„)with (V„).Then the sum rule

(17) becomes

M hei &{li2,-p, p'; i) =2G'[Pe&(t) —Fs (t)j,

These equations define the functions H(1) (if they
exist). Here, to be definite, we choose Fe(/) to be the
Dirac form factor of the proton, and Gir(i) to be the
magnetic form factor of the proton. There is, of course,
no justification for (24) based on current commutators
for the (+) amplitudes, but the graphical experiments
of the following section give similar results for the (+)
and (—) amplitudes. LIf (24) is considered to be true
only for the (—) amplitudes, it is possible to make pre-
dictions only for large-angle charge-exchange cross
sections. g

The elastic differential cross sections for Ir+P scat-
tering depend on both invariants A and 8. However,
granted that Gai(i) and GII{i) fall at the same rate for
large i, Eq. (19) shows that F2(t) falls one power of i
faster than Gxr(i) and it is easy to calculate that the A
amphtude has an asymptotically vanishing contribu-
tion, compared to the 8 amplitude. The differentia

0

cross section becomes, as in Eq. (1),

do. 64
-(1—1)'IHs(f ) I

'G~(&) I
',

dt ~ 4ms'

h. & &(~',p-,p', i) = 2G'L-G "(i) G "-(i)j, (»b)

where P2 is the Pauli form factor, dehned in terms of the
electric and magnetic form factors GE, 6~ by

Gir(i) —G~(i)
P2 [

1 r/4M'—
The corresponding integrals for the (+) amplitudes
vanish because h~, s'+ is even in P.

In the mass-shell (3f) hmit of Sec. III, T becomes

— J'b, (ke,P,P', i)

7 Q J'hII(li', P,P'; i) I pi i 23
~ 2P+f(1+P' P")--

Integrands in (23) differ Lat least for the (—) amph-
tudcsj from those in (17) only by the denominators, and
lt, ls not unI"casonablc to conjecture that thc lntcgI'als ln

(23) are equal to the ones in {17),multiplied by func-
tions of f which are of order unity.

Let us assume that boih the (+) and (—) amplitudes
behave as follows, in the large-angle high-energy limit:

:O'Hg &+&(f')Pe(i), (24a)
2P+i-(1+0' P")-

where H~ ——H~&+~&II~( ) for m+ scattering on protons.
Clearly~ Hoi 1(f) vallisllcs at /=0, s111ccho is evcI1

in p Lsee (24b) j. Hsi+&(i) may also vanish at &=0,
according to the following Regge arguments. Suppose
that for suKciently large negative t, all moving singu-
larities {cuts and poles) in the i-channel angular mo-
mentum plane retreat to the left of |=0. With i fixed,
an —' term in 8&+' as p ~~ {l~ 0) must come from
a right-signature Axed pole at J=0, but this is forbidden
by bilinear unitarity.

We conclude that Hs&+'(0) =0 and HII (0)=0 for both
Ir+p and Ir p scattering. This conclusion is supported by
the experimental data (see Fig. 1).

7. EXPERIMENTS WITH FEYNMAN GRAPHS

Recently, a large number of authors" '~ have con-
sidered high-energy scattering in the eikonal (fixed-i)
region, as represented by the sum of an in6nite number
of Feynman graphs. The basic ingredient of many such
calculations (insofar as they apply to strong inter-
actions) is that forces are transmitted by neutral vector

esons coupled to a conserved SU(3) singlet current,
presumably the baryon current. The fundamenta al
graphical building block is the sum of all crossed and
uncrossed laddres of vector exchange between the,
baryon lines, as shown in Fig. 2. The spin of the ex-
changed particle ls important; generahzed ladder graphs
of scalar or pseudoscalar rungs vanish asymptotically
compared to the vector ladders. It is for this reason that
we have added the vector-meson term in the Lagrangian

G'H""'(|.)G {i) (24b)
2P+~-(1+P'-P")

FIG. 3. m.X scattering in the
il eikonal (finite4) approximation.
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of Eq. (13); otherwise, there would be no pion scat-
tering in the eikonal region at large s. As it is, noiete~~M1
pion lines need be considered in any of the high-energy
graphs; such graphs are asymptotically negligible.

More complicated versions of the eikonal scheme are
sometimes considered, in which the vector particle is not
elementary but is a Regge pole; of course, scalar
particles may be used to generate the Regge pole. In
this sense, internal pion lines could be important. .

In the eikonal region, the important pion scattering
graphs are as shown in Fig. 3, where it is understood
that only exchanges of an even number of vector mesons
are allowed. Both these graphs, and the EE scattering
graphs of Fig. 2, are finite even with elementary vector-
meson exchange and bare vertices.

Levy" has carried these considerations a step further,
by looking at graphs for baryonic form factors. For large
t (i.e., in leading order of logt), it can be shown that the
only important graphs are of the type in Fig. 4, if the
baryonic form factors are decreasing. "These graphs,
unlike those of Figs. 2 and 3, do not converge with bare
vertices, of course; they have the usual logarithmic
divergence. But self-consistency demands that each of
the internal vertices of Fig. 2 have a form factor with
the same asymptotic behavior in the meson mass
variables as the form factor (Fig. 4) which is constructed
from the graphs of Fig. 2. Imposition of this self-
consistency requirement makes the graphs in Fig. 4
finite, and allows one to fit a large body of nucleon-
nucleon and meson-nucleon scattering data at small /, as
well as the asymptotic behavior of form factors at large
t, with three adjustable parameters. "

FiG. 4. "Eikonal" graphs for
vector form factors.

We now turn to the large-angle region of mX scat-
tering, where a quite different set of graphs becomes
important, as shown in Fig. 5. These graphs are of the
same general type as studied by Fried and Moreno" for
high-energy electroproduction. It is a straightforward,
if lengthy, exercise to show that the eikonal graphs of
Fig. 3 are asymptotically small as s, t —+~ (with t/s
fixed and finite) compared to those of Fig. 5. (On the
other hand, the graphs in Fig. 5 vanish at finite t as
s ~~, and thus are unimportant in the eikonal region. )
Figure 5 indicates that the dynamics of mX scattering is
determined by the dynamics of off-shell iVE scattering.

Obviously we can be more general and allow in Fig. 5
any EX amplitude, not just the generalized ladders of
Fig. 2 with form factors at the vertices. The general
conclusions will be unchanged, as long as the graphs of
Figs. 4 and 5 are finite. One virtue of the generalized
ladder graphs is that their spin dependence is particu-
larly simple, being of the form NpI"NNp„N asymptotically,
which simplifies calculations. It is also possible to
ignore the loop momentum k in the mlmerutors of all

integrals because of the high degree of convergence,
which further simplifies spin problems.

The off-shell Ã/ amplitude satisfies a causal repre-
sentation of the type given in Sec. III. This, plus the
remarks of the preceding paragraph, allows us to write
the form-factor graphs of Fig. 4 at large t as

z d4k J"dh'dpdp'h»(Z2 p p', t)
F„(t)=q„1+

(2~)' L(k k~)' ~'l—[(k+2—~)' ~'1[( k+—pP+l—p'~)' ~'j-—
and the high-energy limit of the pion scattering amplitude of Fig. 5 as

(26)

2"~(P,Q, A) = G'u(P2—) rgr, Qu(Pi) +
(P+Q) ' —M' (2~) 4

d4kfdX'dPdP'h~~P ' P P', t)
X—,+(~~o, Q —Q), (»)

[(Qyk) —u ][(k—', ~) —&'g[(k+-,'~)' —&'][(—k+P +P-'P'~)' —l ']

where h~~ is the spectral function for off-shell 3'~
scattering. Note that asymptotically the form factor is
pure Dirac type, and the mE amplitude is pure 8 type
(no helicity flip).

The next step is to take the large-t limit of (26), and
the large-angle limit of (27). Both integrals can be

"Graphs of this structure, but with bare vertices, have been
studied extensively in quantum electrodynamics: see V. V.
Sudakov, Zh. Kksperim. i Teor. Fiz. 30, 87 (1956) /Soviet Phys.
JETP 3, b5 (1956)g; D. R. Yennie, S. C. Frautschi, and H. Suura,
Ann. Phys. (N. Y.) 13, 379 (1961);M. Cassandro and M. Cini,
Nuovo Cimento 34, 1719 (1964); R. Jackiw, Ann. Phys. (N. Y.)
4S, 292 (1968).

expressed as weighted integrals over h~~, after doing the
integrals over k and taking limits. In this fashion, one

Q+h, /2 Q+k Q-h, /2

k-h/2 k&-b, /2

P-Z /2 P+Z /2

M11P

FIG. 5. Dominant graphs for m N scattering in the large-angle
(—t —+~) region.

"H. M. Fried and H. Moreno, Phys. Rev. Letters 25, 625
(1970).
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finds by saving only leading terms in t that

6'7 gr 1 Eh~"~
B(v t) ~ —— - +-

2v 1+f P+l

direct information only about .8( ). Incidentally, it is
easy to verify thRt tile Blorkcn (Qo ~~ ) limit of tllc
graphs of Fig. 5 is precisely equivalent to the com-
mutator (24), with the matrix elements of the vector
current V„' given by 2r,y„F(1).Note that, in our simple
model, P(t) serves as matrix element both for the
isovector current and the baryon current.

VI. SUMMARY AND CONCLUSIONS

where 8 is the coeihcient of Q in the II' amplitude and

t/4v a—s before. The kernel If. need not be recorded
in detail; it is a complicated integral over Feynman
parameters. The property of interest to us is that the
kernel for the scattering amplitude is (P+f) ' times the
kernel for the form factor, in leading order of log/.

Were it not for the Born terms Lthe 1 in (28), the

(1+f') ' in (29)j, we would have already established a
result essentially equivalent to (24). As it is, there must
be a cancellation of these Born terms against the
integrals in (28) and (29), if the final results are to
decrease rapidly in t. Levy" has shown that the form
factor does decrease, so the cancellation needed for (28)
actually occurs. To leading order of log/, the same
cancellation occurs in (29) because the dominant

asymptotic behavior of the integral comes from the
neighborhood of P= 1, for all the graphs of Fig. 5. The
lengthy but straightforward proof of this statement uses

the techniques already devised for high-energy limits of
Fcynman graphs in the eikonal calculations, ""and will

be omitted. LIt is particularly simple for the reader to
check this result in the lowest-order box graph of Fig. 5,
III which Ii»~5(P —1)

&
ln highcl orders, II» has

dcnom1nators of thc type {j8 1)/+x wllcl'c s is flnltc Rt

large t.j As a result, (29) reads

B(v,t) —+—

where the omitted terms are, graph by graph, one order

of log/ smaller. t A quick but unjustified way to get to
(30) is to change the loop momentum in Fig. 5 by
k= 4'+P, then to set k'=0 in the nucleon propagator
which joins the two pion vertices. ]

While this simple model does illustrate the points
made in Sec. IV, there are drawbacks: the scale function

H{t) is too simple, and the scale function does not
vanish at l'=0 for 8&+&. Also, the nonleading terms are

only one power of log/ smaller, graph by graph, which

means that only at very high t ( 100 GCV') would one

see the behavior in (30) as dominant.

One feature we hope would survive in a more complete

theory is the simple isospin structure, which is totally
determined by the two external pion vertices. Because
of this simple structure, both 8(+& and 8&—

& have an

asymptotic decrease governed by the vector form factor,
while the current commutator used in Sec, IV gives

Lct us sRy that Rn clRstic amplitude show's Inodlficd
scaling behavior in the large-angle region if it goes like

HQ)F (/) ~, where F{/) is some vector form factor and E
an integer. For mE scattering, both theory Rnd experi-
ment suggest that X= 1. Figure 1 shows that for

~

f
~

in

the region 3—I2 GCV', the elastic wE amplitude follows
this modified scaling law rather closely. This experi-
mental fact is perhaps much more compelling than the
theoretical motivations given in Secs. III and IV, which
compound a number of optimistic assumptions.

It would, of course, be desirable to test this modified
scaling behavior in other circumstances. But areas
accessible to the theory presented here do not overlap
experimentally accessible areas. Thus, there is a great
deal of data in EE elastic scattering, but our attempts
to interpret the meaning of baryon current commutators,
or to sum up suitable graphs, have been fruitless so far.
On the other hand, it is easy to extend a theory to large-

angle elastic brompton scattering, but the cross sections
are tiny.

It would be of considerable interest to sec whether EE
elastic scattering obeys an empirical modified scaling
law (perhaps with X=2), but we have not analyzed the
data to test this hypothesis.

The very restricted theory presented here might be
extended in several directions. First, a dynamical frame-
work for calculating the scale function H(l ) in elastic
scattering is needed; investigations are now under way
with pal toIl models. It would bc satlsfplng to dcvclop R

framework which could be extended to the eikonal re-

gion and compared with the large body of theoretical
ideas used there, so that we could understand what
values of t' RI'c finite Rnd wllRt values arc RsyIllp-

totically large. " It should also be possible to give
modi6ed scaling laws for exclusive" processes which are

slightly inelastic, e.g., mcV —+mxE, in the kinematic
region where all invariants are large. The theory of Sec.
III relates this amplitude to the amplitude yE —+ mE,
which may itself show modi6cd scaling with X=1.
Ultimately, it might be possible to add up all the results

for exclusive experiments, to discuss inclusive processes
like xE —+ x+anything, which Feynman" argues should

show unmodified (i.e., X=O) scahng. 30

Finally, a discussion of scaling laws brings to mind the

'0 N. F. Bali, L. S. Brown, R. D. Peccei, and A. Pignotti, Phys.
Rev. Letters 25, 55'7 (1970),have discussed experimental evidence
for scaling in pp ~ ++anything.
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possibility that conformal invariance" might be in-
volved. Naive conformal-invariance arguments would
suggest that elastic amplitudes depend only on dimen-
sionless ratios asymptotically, which is equivalent to
taking X=o. This is clearly wrong experimentally.
Castelp' has suggested that particle-mass effects can be
partially accounted for by using representations of the
conformal group with nonzero mass. This is, of course,
questionable because such representations involve mass
continua. Castell shows that any elastic differential

"For a review of recent work, see P. Carruthers, Nucl. Phys.
(to be published)."L.Castell, Phys. Rev. D 2, 1161 (1970).

cross section should behave like

dg 1——+ —(—t)™H(cosg)
dt s'

in the large-angle region. The integer 3EI depends on the
conformal group representations used, but in any case
3f& 4. Since form factors fall like t ', it seems that 3I=4
for ~E scattering. The possibility of making such
conformal group arguments physically respectable is
intriguing, since a great deal of generality would be
gained, as contrasted to the very special nature of the
theory presented here.
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We estimate the cross section for e+e ~ mesons using (i) p dominance of the electromagnetic current,
(ii) known couplings of resonances to states involving the on-shell p meson, and (iii) the assumption, for the
purpose of obtaining numerical estimates, that the meson couplings vary slowly with virtual p mass. We
conclude that the cross section at 2-GeV total energy could be comparable to the e+e ~ p, +p, cross section.
We also attempt to estimate a cross section from the statistical model of Bjorken and Brodsky.

I. INTRODUCTION

HE recent commencement of operations at the
ADONE facility in Frascati opens an era when

multi-GeV energies will be available for hadron produc-
tion experiments resulting from e+e annihilation. It is
of considerable interest, therefore, to speculate upon
production mechanisms and consider possible experi-
ments that might be performed at clashing-beam facili-
ties. Some speculations have already been advanced by
Cabibbo et a/. , ' Ferrara et al. ,

' Gatto, ' and Bjorken and
Brodsky. 4

* Permanent address.' N. Cabibbo, G. Parisi, and M. Testa, Nuovo Cimento Letters
4, 35 (1970). See also, S. D. Drell, D. J. Levy, and T-M Van,
Phys. Rev. D 1, 1617 (1970).

~ S. Ferrara, M. Greco, and A, F. Grillo, Nuovo Cimento Letters
4, 1 (1970).

3R. Gatto, in Proceedings of the International Symposium on

The discussions in Refs. 1 and 2 are based upon parton
model agruments and predict asymptotic total cross
sections for hadron production that depend upon the
"parton charges, " which are unknown. The energy de-
pendence of the cross section is predicted to be s ' (s
is the square of the barycentric four-momentum), and
it is proposed in Ref. 1 that the high-energy hadron
production will be characterized by pairs of "jets"
(emanating from the production of "parton pairs").
Three-pion production is strictly forbidden in this
model.

The discussion of Ref. 3 deals mainly with particle
pair production (~~, KE, etc.) and is more applicable to

1& lectron and Photon Interactions at High Energies (Springer,
Berlin, 1965), p. 106.

4 J. D. Bjorken and S. J. Brodsky, Phys. Rev. D 1, 1416 (1970).


