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We discuss a set of patterns for Reggeon exchanges in elastic scattering. Each pattern corresponds to a
particular set, of t-channel quantum numbers, and aHows only certain s-channel helicity amplitudes f,q., f,

' to
be present to order s». These dominant amphtudes are those such that ~c&o~ =I, and (d&b

~

=I, where
n and m are integers, and the pattern is labeled by e,m and the choice of + or —in each case. Any Regge
residue may be constructed as a linear combination of the basic "—"patterns; any Regge residue which
vanishes suKciently rapidly at 5=0 may be constructed as a linear combination of the basic "+"patterns.
Correct behavior for both s- and t-channel amplitudes at t=o and t-channel thresholds is ensured by the
formalism.

I. INTRODUCTION
' 'T has been customary to interpret high-energy

~ results in terms of crossed-channel exchanges. Thus
the patterns of t-channel helicity amplitudes created by
exchange of particular quantum numbers, and their
implications for various experimental quantities, are
well known. ' Recent developments in theory have made
it useful to study these patterns in terms of direct-
channel amplitudes. In particular, incorporation of
spin into "duality"-type models requires knowledge of
those couplings for the direct-channel towers which will

yield particular $-channel quantum numbers.
One might think that patterns which seem simple in

terms of 3-channel amplitudes may be hopelessly corn-

plicated in terms of s-channel amplitudes. The work of
Gilman, Pumplin, Schwimmer, and Stodolsky (GPSS)'
has shown us that this is not necessarily so. They show

that in elastic scattering residues for Pomeranchukon
exchange (a natural-parity Reggeon) can be chosen in

such a way that only those direct-channel helicity
amplitudes with zero helicity Qip survive to order' s . In
other words, we can choose Regge residues in such a way
that the Reggeon contribution obeys a simple pattern
in the s channel.

In this paper we demonstrate that the results of GPSS
can be extended to a number of diferent direct-channel

patterns, and also to exchanges with quantum numbers

different from the Pomeranchukon. For any exchange,
in elastic scattering, we 6nd a set of possible s-channel

patterns. Any Regge residue can be expressed simply in

terms of the members of this set. The residues thus

obtained explicitly incorporate proper behavior at 3 =0
and at t-channel thresholds.

For s-channel helicity amplitudes f,d, ,s' we can
define helicity differences x =c—a, x' =d —b, and helicity
sums y =c+tr, y' =d+b. A pattern of the type discussed

here ensures that only s-channel helicity amplitudes

*%'ork supported in part by the National Science Foundation
under Grants No. NSF GP 19433 and %SF GP 13671.

'K. Gottfried and J. D. Jackson, Nuovo Cimento 33, 309
(1964).'F. G. Gilman, J. Pumplin, A. Schwimmer, and L, Stodolsky,
Phys. Letters 31B,387 (1970).
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with )x) =I (or
~ y~ =n) for some integer n be present

to order s . A different pattern (with different integers')
may apply to the other vertex (x' or y'). (In this
language, the result of GPSS suppresses amplitudes
with x/0, x'&0.) Patterns of this type are naturally
studied in terms of the amplitudes derived in the pre-
ceeding paper' (referred to hereafter as I), and we use
the techniques and results of that work.

Studies of O(4) have shown that, at t =0, exchange of
an 0(4) representation with quantum number M will

allow only those s-channd helicity amplitudes with
x=x' =M to survive. 4 Thus O(4) also relates particular
s-channel patterns to particular f-channel patterns. Our
results are complementary to these in several ways: (i)
We deal only with f-channel states of single quantum
numbers Lwhereas all O(4) representations with M)0
contain parity mixturesj, and (ii) we deal with a,ll small

3, not just /=0. Compatibility between the two theories
is assured by the fact that our results for n&0 vanish at
/ =0 and thus do not have to fall into the O(4) classifica-
tion scheme.

The general organization of the paper is as follows.

Section II describes some details of the two special
cases pp and pp scattering, which aided us in formulating
the general case. The analyticity properties of helicity
amplitudes near 1=0 and t-channel threshold are sum-

marized in Sec. III. In Sec. IV we propose a basis set of
Regge vertices, and demonstrate that these have the
correct analyticity properties and provide patterns of

energy suppression in the direct-channel amplitudes.
We return to our special cases (pp and pp scattering) in

Sec. V, and discuss them in terms of the pattern
formalism. Behavior of our solution for lower orders of
s is briefly discussed in Sec. 4 I; however, this cannot be

treated adequately without induding contributions

from the daughter trajectories. Comparison with low-

order perturbation theory is given in the Appendix.

'Lorella M. Jones and D. G. Ravenhall, preceding paper,
Phys. Rev. D 3, 690 (1971).

4 This rule by now is common knowledge. It appears to have
been first stated by R. F. Sawyer in Phys. Rev. Letters 18, 1212
(1967).
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II. SPECIAL CASES

The existence of the patterns discussed in the follow-
ing sections was first noticed by the authors in detailed
studies of elastic pp and pp (or deuteron-deuteron)
scattering. In this section we point out some features of
these examples which help one to develop intuition for
the general case.

A. Proton-Proton Scattering

There are five independent helicity amplitudes re-
maining after imposition of symmetry relations' (parity,
time reversal, and Pauli principle in the s channel; or
parity, charge conjugation, and time reversal in the
t channel). These are

Amplitude

fl —f++,++
f2'=f++, --'

f+—+-
f4'= f+-.-+'
f~'=f++, +-'

gP=1, ac=1 'gP= 1) QC=

fl
0

fls
0
0

gP= I) QC= 1

0
f2'
0

~f2s
0

to order s . Although this relationship can be found by
working with invariant amplitudes (as GPSS did), it is
simplest just to study the Trueman-Wick' crossing
matrix at infinite momentum,

TABLE II. Relations between s-channel p-p amplitudes ob-
tained by crossing the t-channel relations of Table I, to leading
powers in s only. The column qP ——1, pz ———1 is not included,
since no such exchanges are possible.

fa f+ +—
f4= f+ —+, -f,s-= f++:+

fl f++;+—+ 1 f"=f++;——
1

(2.1) f';.b'=Z d~"'(~ —)t') db ~'*()t')d".'(&')

Xdr& a'(7r &)f, ~—; D g, (2.2)

TABLE I. Relations between t-channel p-p amplitudes arising
from exchange of a Reggeon of spin S, with parity P=pP( —1)
charge conjugation C= pz( —1)~. The symbol ~ indicates equality
for the highest power of cos set.

Amplitude
gP = 1) rjP= 1) YJP = —1)
pc= —1 ye= —1 pc=i

f1 f++;++
f"=f++,--'
f3'=f+-, +-'
f4 f+- -+
f5'= f++.+-'
Number of

independent
amplitudes

f t

f3'
f t

f t

0
0

~f t

0

f t

f t

0
0
0

'M. L. Goldberger, M. T. Grisaru, S. W. MacDowell, and
D. Y. Wong, Phys. Rev. 120, 2250 (1960).

where % indicates helicities &-, .
Exchange of a Reggeon of spin 5 in the t channel,

with parity P = rlr ( 1)s a—nd charge conjugation
C = rtc( —1)s, produces the constraints on the t-channel
amplitudes listed in Table I.After crossing, the resulting
s-channel amplitudes to the leading power in s are
those listed in Table II. The exchange q~=1, g~= —1
does not occur for pp scattering. Both qr = —1 ex-
changes involve only one independent t-channel ampli-
tude. This means that their s-channel amplitudes are
uniquely determined; notice that p p = —1, p& =+1
exchanges populate only direct-channel helicity-flip
amplitudes, whereas q~ ———1, gq ———1 exchanges popu-
late only helicity-nonAip amplitudes (to this order in s).

For an exchange with )tp =gc = 1 (such as the
Pomeranchukon), the presence of three independent
t-channel amplitudes means that in general all five of
the s-channel amplitudes are populated, with the re-
lationships given. As GPSS have pointed out, it is
possible to choose a particular relationship between the
t-channel residues so that only fr' and f3* are nonzero

where

cosXo=

It is then clear tha, t there exists a choice of f"s to
make f++, ', f+, +', and f++,+ ' all equal to zero,
and that it will be such that the ratios fr'/f3', and fr'/f5'
can be expressed as ratios of trigonometric functions of
X'. lt is also clear that this is not the only possible
choice of direct-channel helicity pattern. One can also
find a relation between t-channel residues which results
in only f~' and f4', the double-fhp amplitudes, being
nonzero to order s .

The crossing matrix for pp scattering is so simple that
the combined amplitudes dehned in I are not especially
advantageous for this study. However, because we will
return in Sec. V to compare the results obtained above
by "brute force" with our general formula, we take this
opportunity to list the combined amplitudes for the
process. The symmetries T (s channel) or C (t channel),
when imposed on the combined amplitudes of I, require
that fjj sr~ '& -' and fjjsr)j + +~ be ze'ro unless
2J,+2Jb J J' is a—n ev—en integer. Thus we have only
the amplitudes with J=J'=1 and with J=J'=0. The
additional constraint of the Pauli principle (s channel)
or time-reversal invariance (t channel) imposes the
condition that these amplitudes be symmetric in M and
3II'. It is then simPle to count that flqsrsr ~"~ has four
independent components, and foa& '& has one, making
five in all.

B. y-y Scattering

Direct application of the symmetries appropriate to
elastic scattering of identical particles reduces the
number of independent helicity amplitudes from 3'=81
to 17.The detailed examination of this case, in the same

'T. L. Trueman and G. C. Wick, Ann. Phys. (N. Y.) 26, 322
(1964).
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TABLE III. Numbers of helicity amplitudes, for p-p scattering,
for various Reggeon exchanges, to order s". (The numbers listed
in the third row add to more than 17 because not all contributions
are independent. )

when we exhibit the forms taken by our general solution.
We now go on to examine kinematic constraints which

any model must obey.

Amplitude gp=qt. = 1
III. BEHAVIOR OF AMPLITUDES NEAR t=O AND

f-CHANNEL THRESHOLDS
Independent

t-channel
Nonzero

s-channel
nonflip

~

~

fli

10

13

manner as for pp scattering, has been ca,rried through,
as a guide and check on the general method discussed
in later sections. The details are clearly too lengthy to be
included here, and we summarize the main features.

First, this case is more interesting that that of pp
scattering because all exchanges are allowed, and the
unnatural-parity (rj p = —1) excha, nges (which were
limited to one amplitude each in pp scattering) now
have several possible independent residues. The number
of independent t-channel amplitudes involved in each
case is listed in Table III. Second, all cases except
pp=pc=+1 are still simple enough to reveal helicity
patterns similar to those found in pp scattering.

For example, the "pion" exchange q p ———1, qc ——+1'
automatically populates only those s-channel helicity
amplitudes with some helicity Rip at each vertex
[Eq. (4.3) of I].By choice of the relative magnitudes of
the three t-channel residues, it is possible to suppress
some s-channel amplitudes to orders s just as we did
with the g p =gc =+1 case in pp scattering. Now, how-

ever, the choice would appear to be a suppression of
either the helicity-Qip-one vertices or of the helicity-
Aip-two vertices. Since the three independent s-channel
amplitudes involuted are frr, oo*, fn, o ~', and f~r, ~ ~',

the choice might also be expressed in terms of suppres-
sion of helicity sly zero or one. This feature has a
natural place in our general solution.

The case of Pomeranchukon exchange (or more
generally any gz=gc=+1 exchange), however, in-

volves ten independent t-channel amplitudes, and is too
iritractable for a direct solution. The combined ampli-
tudes greatly facilitate the consideration of this case.

We observe that counting of independent combined
amplitudes for this case is formally identical to the
corresponding enumeration for nonrelativistic scatter-
ing, using states of total spin. The numbers of nonzero
independent combined amplitudes fJJ'hfdf''& &and--
fJz M~'&++& allowed by the symmetries are, respec-
tively: for J=J' =2, M& M' (9); for J=2, J' =0, M) 0
(3); for J=J' = 1, M) M' (4); and for J =J' =0 (1).
The numbers in parentheses add up to 17, as expected.

The two examples will be further discussed in Sec. V,

7 As we are ignoring isospin, g parity does not matter and the
impossibility of a ppm vertex is irrelevant. By "pion" we mean
any pz= —1, pz=+1 exchange.

Any model to be used in the small-t region, such as
the Regge model, must incorporate proper behavior
near t=0 (for elastic scattering, this is the forward
point). If the t-channel thresholds happen to be near to
the s-channel physical region, proper behavior at them
must be included also. In any case, it is useful to have a
model which automatically both provides the correct
singularity in each helicity amplitude and satisfies the
constraint equations at these singular points. In the
paragraphs below, we list the desired behavior for
elastic scattering.

A. Singularities at 1=0

For the t-channel helicity amplitudes, the behavior
found by Wang' must apply'.

f,~, n~' gt if ~D b c+A ~is—od—d
1 if

~
D b c+A

~

—is e—ven. (3.1)

01

(i) Pnb (gt) f(t) for D bodd-
g(t) for D beven—

(ii) PDb f(t) for D bodd-
(gt)g(t) for D beven. —

Study of perturbation-theory models for nucleon-
nucleon and p-p scattering (see the Appendix) indicates
that if the exchanged Reggeon has normal parity
I'=(—1)s, the residues follow pattern (i), whereas if
the exchange has abnormal parity I'= —(—1)s, the
residues follow pattern (ii).

The s-channel helicity amplitudes f,z, ,&' must vanish
in the forward direction in a manner dictated by
angular momentum conservation:

f d &a~ (sin tt )la—5 c+dl~ (Qt) lu —&—c+dl (3 2)

Because each s-channel helicity amplitude is a linear
combination of t-channel helicity amplitudes, this
behavior provides a constraint equation which the
t-channel amplitudes must satisfy in addition to the
behavior of (3.1). Conversely, if the s-channel ampli-
tudes are found to have appropriate behavior, the

' I . L. Wang Phys. Rev. 142) 1187 (1966).

These results can be multiplied by powers of t without
changing the analyticity properties of the amplitude.

In a Regge model, this behavior is assigned to the
Regge residue function, which is assumed to factor in
the form P,zPz&. The singularity structure given in
Eq. (3.1) may be ensured by either of two possible
mechanisms:
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constraint equation is automatically satisfied. [Note
tllat. tllc behavior glvcll 111 Eq. (3.2) cR11 bc lnultlpllcd
by any power of 1 without violating any principles of
analyticity. j

B. Singularities at t-Channel Threshold

Behavior of the t-channel helicity amplitudes near
threshoM is given by standard angular momentum
arguments. s For spin S exchanged in the t channel, the
contribution to the t-channel helicity amplitude f,J,o

looks like

ft~;Do'=Tt~;ao (t)dn o;. Jt "(-&t).

For D,b a particle-antiparticle pair, the behavior of the
partial-wave amplitude T,~ , Dos(t) n.ear the threshold
3 =4mD' is T,JI , I)os qz [L. is the lowest orbital angular
momentum allowed the particle-antiparticle pair, and

q is their relative momentum q= —',(t—4mD')I"]. The
t-channel scattering angle behaves like cos8t 1/q, so
the over-all behavior of the helicity amplitude is

f.x; rt o

I'or exchanges with CI' =+1, the lowest angular mo-
mentum is I.=S 2Jrt, and—we expect f,Jt;Db q

When CI' = —1, L =5—2Jrt+1 so that

f ~ not~ q
2JD+I—

Oul' combined amphtudes fJJ xxt ' I with trI=-
represent the particle-antiparticle pair combined into
spin J. For this combination, an exchange with
C = (—1)e has a minimum orbital momentum L=S J, —
whereas exchanges with C= —(—1)s have L=S J+1. —
The expected threshold behavior for these combinations
is then q

~ and q
~+', respectively.

There is no reason for s-channel helicity amplitudes
to have kinematic singularities near t-channel threshold
points. The absence of such singularities gives us
another set of constraint equations for the t-channel
helicity amplitudes to obey.

IV. BASIC SETS OF REGGE RESIDUES

The detailed algebra of Pomeranchukon exchange in

pp scattering showed us that the ratios of f-channel
residues needed to produce given s-channel helicity
patterns are simple functions of cot(olxo). Here xo is the
crossing angle for the appropriate mass, necessarily
taken in the limit s —+~, since suppression involves
only leading powers of s. Thus, the structure of the
combined amplitudes introduced in I, and their simple
crossing relation,

fJJ MM
' "'" p dxM (x )

XX'

helicity-Hip suppression'.

fJJ xx"++'=s gJgJ dox'( X—.')dox "( X—o'), (42)

glvlng

fJJ'MM' ' S g J'g J'dOM (Xn Xt )
XdoM'(Xo —Xo') - (4.3)

Because x—xo —+0 as s —+~, and doMJ(p) (sing)'M~,

this form clearly achieves its s-channel objective.
It can be interpreted physically as follows: as s —+~,

the pattern is dered by the nonzero set of amplitudes
fJJ'oo'(s~tc t) Clos.slllg to tile t cllaIlllel at s —+&a,

this produces the pattern (4.2). So far as leading powers
of s are concerned, this may be taken to be the form of
f' at finite s also. Crossing back to the s channel then
produces the result shown.

This argument suggests that there ls a family of such
helicity patterns. %e now present them, and demon-
strate that they possess the requisite symmetries.

A. Generalized f-Channel Amylitudes

Ke assume that all s contributions to the 3-channel

amplitudes take the form

fJ J'xx' ' s +gJ gJ' Pn (trl)Pn' (tro) ~ (4 4)

The couplings g~" and gg
"' are functions of t regular at

1=0 and 3-channel thresholds; Z is the Regge signature
factor, Z=(1&e ' )/sin7rn. The Regge vertex func-

tions, generalized from (4.2), are defined by

p x,J(& ) (gt)oJo+ [d nJ( x o)

+ap( —1)"""« -x'( —&.')3, (4 ~)

p."(.=+)=(V'~).[d- '(—~.')
+~ ( 1) Ja Jo+n«J'( —x 0)] (4 6)

As in the special case e =0, X,o is the limit of the crossing
angl«. Rs s~", so tha«os&. '=[t/(& —4~-')j"'.

B. Behavior under Reylacement of X by —K

In Sec. IV of paper I, a number of symmetries of the
amplitudes fJJ xx'I" "' in order sn were derived. Use
of (4.4) allows us to translate these into symmetries of
the residue functions P:

0- '(—)=nc(—1) P '(—),
~e=Vp( —1)" ', (47R)

~ "(+)=~(-1) ~ -"(+)
t1 =I1p( 1)'J J. (4.7b)—

The rotation functions d),„~ have the property

d),„J=( 1)' t'd ), „J. —-
Xdx M J'(~o)fJJ xx'& " '» (4.1)

Substitution into (4.5) and (4.6) then shows that the
suggest the following form for the f' appropriate to vertices suggested have the symmetry required by (4.7).



700 L. M. JONES AND D. G. RA VEN HALL

if o, =+
(4 9)

In the limit as s approaches infinity, the difference
X,—X,' approaches zero in such a way that

sin(x, —x,') 2(«)222./s. (4.10)

[d„orJ(X,—x,o)+2tp( —1)'J -J+"d „22J(x,—x,o)]

vanishes like [sin(X, —X

')]il�ail

"l. Thus we see that for
a given 22 and I' the only amplitudes fJJ JJJJ '& "»
which survive to power s are those with IMI =n
and IM'I =n'.

When o1=o2=+, these dominating amplitudes are
ones with s-channel helicity difference (at the t-channel
vertices) of n and I', respectively. If either o. is —,the
sum of the helicities must be n, etc. Hence each integer
n specihes a pattern for its vertex. Because the only
particles we are presently able to scatter elastically are
baryons, pseudoscalars, and photons, the only integers
of practical importance are 0, 1, and 2.

D. Analytic Behavior near 1=0

We now check that the powers of gt inserted in our
postulated Regge vertices (4.5) and (4.6) ensure the
analytic behavior near 1=0 established in Sec. III.
First, note that because of the relationship between
d ~~andd „~~, thecombination

[d J( X 0)+~ ( 1)2Jn J+nd J'( X-0)]

contains either all even or all odd powers of nJ t. (This is

good because we do not want the vertex functions to
have mixed singularity structure. )

Second, we observe that at 3=0, &0= ~m, and for this
special value the d functions have an additional sym-
metry, d„xJ(—22r) =(—1)J+xd „xJ(—22r). Hence the
combination

V J=d xJ( X 0)+2tp( —1)2Ja J+nd xJ( X 0)

has the following properties near 3=0:

K=O, 2tp( —1)'J J= —1
V„~~=0 if

22=0, rtp( 1)'J J = —1;—

C. Energy Dependence in s Channel

Use of the crossing relations (4.1) derived in I, with
the t-channel amplitudes of Eq. (4.4), gives s-channel
amplitudes of the form

f J, , (n—rn, -n21~Sagg ng, n'(«)n+n'(«)ny+n2

d MJ(X X 0)+2t ( 1)'J.—J+ d J(X X o)]
X[d.~ '(&0—XP)+op( —1)"' '+"

Xd .~'(&0—&00)]. (4.&)

Here we have used the shorthand function p, as follows:

V xJ nJJtif K=O, J—22 odd, ( 1)2Jn—J—+1
.22=0, J—K odd, 2tp( 1)'J'—J=+1.

(4.11c)

We conclude that, provided the vertex exists, V ~~ 1

if2tp( —1)'J+" x=+1and V„xJ «if2tp( 1)'J+—" x
= —1. Thus the behavior of the vertex functions near
f =0 can be summarized as follows:

p x,J( ) (gt)2J +nV J («)f(t)
if 2tp( —1) x= —1

—(«)2Jn+n V J~g(t)
if rtp( —1)-x=+1;

if ~ ( 1)2Jn X+1—
(Here f, f', g, and g' are arbitrary functions of t).

We recall that the residue function must have a
squalc-loot s111gulallty wllcll either (1) tile hchclty
difference at the vertex is odd and 2tp=+1, or (ii) the
helicity difference at the vertex is even and q~= —1.
Suppose the character 0. at the t-channel vertex is —,
Then E is the difference in helicities. Our criterion then
requires the residue (gt)2J +"V„xJ to behave like gt if
2t p( —1)x= —1 and to be regular if 2tp( 1)x=+—1. We
have seen that this is satisfied.

If, on the other hand, the character at the vertex is +,
the integer E is the sum of helicities, not the difference.
However, the helicity difference is odd or even according
to whether K+2J, is odd or even. We then require the
residue (gt)nV xJ to have square-root behavior if

2tp( 1)'J +x = ——1, and regular behavior if 2tp( 1)'J+x-
=+1. Again, we have seen that our residue has this
behavior.

To determine whether the constraint equations have
been satisfied, we examine the behavior of the s-channel
amplitudes given by Eq. (4.8). Use of (4.10) indicates
that the highest remaining power of s behaves like

f, , a(—&1, If2)~'(«) n+'n («)0—'1+@2

g(«)ln loril(«)ln lor lls *, (4 1.2)

~h~~~ ~=II~I —22I+II~'I —~'I Thc exponent of «
is then

I
JM I+ I

~'I+021+022+2&& (positive integer or
zero), independent of J and J'. The helicity amplitudes
[which may be reexpressed in terms of our combined
amphtudes by Eq. (2.9c) of I] will therefore also have
tllls dependence oil Qt.

'KWO, 22WO, 2tp( 1—)'J"+" x=+1,
V„xJ.~1 if& K=O, J—22 even, 2tp( 1—)'Jo—J=+1,

.I=0, J K—even, 2tp( 1)'—J J=+1;
(4.11b)

~KWO, 22WO, 2tp( 1)-'J—+ x = —1,
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E. Behavior at t-Channel Thresholds

Near the t-channel threshold (=4m, ', cosX,~ —+~. In
this limit,

j( x 0) ( ])0« j( x 0)

and d„~~o-q ~. The phase factor involved in the def-
initions (4.5) and (4.6) of the vertices simplifies because
of the symmetry conditions (4.7). Thus the leading
singularity given to t-channel amplitudes fjj zz is

q j(1+go) for 0 = —vertices (4.13a)

q j(1+q) for o =+ vertices. (4.13b)

Formula (4.13a) clearly agrees with the threshold be-
havior derived from angular momentum considerations
for 0 = —vertices in Sec. III B. To examine the o =+
combinations, we reconstruct helicity amplitudes ac-
cording to Eq. (2.9c) of I. The most singular contribu-
tion comes from the maximum J value allowed by the
Clebsch-Gordan coe%cient, i.e., J=2J,. Thus we find
that formula (4.13b) predicts a singiilarity of q

'j for
exchanges with CP=+, and behavior of q

' .+' for
exchanges with CP= —.This also agrees with the
considerations in Sec. III.

Because the angle X,—X,' is regular at t=4m ', the
s-channel amplitudes have no singularities at this point.
Hence the t-channel Regge residues automatically
satisfy the threshold constraint equations. This in
itself makes the model interesting.

F. Patterns as Basis Set for General Regge Residue

We have seen in Secs. IV A—IV E that the residues
given in (4.5) and (4.6) have many desirable kinematic
properties, and produce a set of patterns in the energy
dependence of the s-channel helicity amplitudes. The
question naturally arises whether these vertices form a
basis for all Regge residues; i.e., is it possible to express
all Regge residues in the form of a linear combination of
either the o.=+ or o = —vertices?

To prove an expansion of this type, we must not only
show that there are as many independent patterns as
independent amplitudes, and demonstrate how to make

For o ~
——o2 ——+, the behavior near t =0 is

f,~ 0'~ (Qt) I ~—~ I+I d ~
I g+(t)

This is compatible with the analyticity requirement

f & &s~(+t)Ia 0 —c+—dI

For the case o.z=o&= —,involving helicity sums, the
behavior is

f „s (gt)[0+cI+I j+0I+2j +0j0g (t)—

Again this is compatible with analyticity. Hence we can
be assured that all 3=0 constraint equations have been
satisfied.

the expansion, but we must also be sure that the
patterns given have the "minimal" possible behavior at
t =0. This is to ensure that all expansion coeScients are
regular at t=0, as postulated in (4.4). On the basis of
comparisons with perturbation theory for low-spin
cases (see the application to ArAr scattering in Sec. V)
we know that the expression given in Eq. (4.5) (for
t-channel a = —vertices) is nonminimal. As far as we
can tell, the solution given in Eq. (4.6) for t-channel
o =+ vertices is minimal in the sense that no perturba-
tion-theory exchange produces Regge residues (and
s-channel amplitudes to order s ) which vanish less
rapidly at 1=0. Hence we will limit the discussion of
basis states for Regge residues to the o =+ vertices.
However, if a minimal modification of (4.5) is foun. d,
the same arguments will apply to it.

For a given J the set of residues {P,x j) is clearly
linearly independent from the set {P„,x j), provided
n&&n2. We can therefore count independent patterns by
counting n's: For each J there are 1+1 independent
patterns. Similarly for each J, J', and K' there are 7+1
independent amplitudes fjj rex '&" '». Thus there are
enough patterns to span all the vertices. It would

appear that the easiest way to express a general Regge
contribution in terms of the patterns would be to
identify its s-channel helicity amplitudes with those of
a general expansion.

Our patterns for the t-channel a =+ case are quite
similar to those which Klein' has obtained, starting
from a different motivation and using a more elegant
formalism. He has treated the expansion problem iri
much more detail, and has included the eGects of
daughter trajectories and unequal masses. We feel that
recent developments in the direct channel warrant a
new study of these formulas, and that the simplifications
introduced by restricting the study to elastic scattering
make the work accessible to a broader range of readers.
To our knowledge, no previous study has been made of
s-channel patterns caused by the o.= —type vertices.

V. EXAMPLES: PATTERNS IN NUCLEON-
NUCLEON AND g-y SCATTERING

We now make detailed comparison with the results of
nucleon-nucleon and p-p scattering that were sum-
rn.arixed in Sec. II.

A. Nucleon-Nucleon Scattering

1. Pion Trajectory Exchang-e(rtp= —,rto=+)
For the t-channel 0 =+ vertex,

no=+=( —1)" '= —(—1)'
Hence the s" contribution will appear only in J=1
amplitudes. The residue functions then have the form

0- '(+)-(v't) "L«-x'( —&.') —(—1)"«--x'(—&.')]
' S. Klein, Phys. Rev. D 1, 609 (1970}.
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The n=0 contribution will vanish. Thus we have only
one pattern, n=1. Note that the vertex will contribute
only to the %=&1 amplitudes and hence to f++,++'
and f++,'=T.he behavior

Pl'(+) («)Ldll( x )+d—»( x )j v&

is just what perturbation theory gives for one-pion
exchange.

Now consider the other character, o-= —.Vertices of
this type require q =(—1)'I' ~ for the contribution to
be of order s . Since q= —,we must have J=O and
hence only n=0 is allowed. The vertex will then
behave like

Pp '( )-(4—t) '(d'+d') -v'&

Only E =0 is allowed but E is now the helicity differ-
ence; thus again the exchange only populates ampli-
tudes f++,++' and f++, '. The enumeration of
independent f' must be independent of o, of course,
although convenience usually suggests a particular one.

Z. A& Traj ectory Ex-change (gr = —,gc ———)

Again we begin with the o. =+vertex. From

no=( —1)" '
we see that J=O. Only n=0 will then be allowed, and
only %=0 states will be populated. Thus only f+,+
and f+, +' will be present to order s and these do
not vanish at 1=0 (i.e., each vertex behave like 1 at
f =0 and the t-channel threshold).

For the other possibility, 0.= —,the identity

rj=(—1)'~ r =+1

requires J=1.Again onlyn=1 is allowed. For thiscase
the individual vertices given by Eq. (4.5) behave like

t, and the t-channel amplitudes vanish like t'. This is

clearly nonminimal behavior.

3. natural-Parity, Xatlral-C-Parity Exchange

Many important trajectories fall into this category.
The Pomeranchukon and the p meson are sample ones

with different isospins.
Consider first the 0 =+ case. Here we find J=1 for

the s contributions. Both n=0 and n=1 patterns may
exist. The vertex for the n =0 case behaves like
t $2dpx'( —vr/2) J, so that for nucleon-antinucleon

helicities +-', , +-', , with X=1, it is -t'. For helicities

+-,', ——,', with E=O, the zero of the d function sup-

presses the vertex in the desired manner so that it acts
like Qt This is the pat. tern found by GPSS in pion-
nucleon and nucleon-nucleon scattering. The other case,
n =1, enhances direct-channel amplitudes with helicity
fhp. It gives (Qt)d„' Qt for the +—',, ——', vertex and

(Qt) [dye'( —x,P) —d»'( —x,') ] t for the +-,', +-',

vertex.

For the 0.= —case, we again have J=1 and both
n =0 and n = 1 allowed. Now the vertices for the n =0
case behave like gt and 1 for nucleon-antinucleon
helicities +p, ——', and +~p, +'p, respectively. If the
pattern is given by n=1, the corresponding behaviors
for +p, —

p and +p, +xp are tQt and t, respectively.
Again, the 0.= —patterns are nonminimal near t=0.

Just as the Pomeranchukon has long been reputed to
populate mainly the direct-channel helicity-non Aip

amplitudes, the p meson is generally believed to
populate mainly the direct-channel Aip amplitudes.
Thus it is possible that the p meson may be approxi-
mately classi6ed as a o =+, n=1 or o = —,n=0
pattern. While deviations from this pattern are quite
important in data fitting, assignment of an approximate
pattern may facilitate construction of dual models for
the exchange in question.

4. Eatlra/-Parity, Unnatlral-C-Parity Exchange

For both o.=+ and a = —vertices, only J= 1 occurs.
The selection rules on the vertices (4.7) then forbid
either kind of vertex.

B. g-g Scattering

We review a few of the properties mentioned in
Sec II.

1. Eatlra/ Parity, Unnatlral C-Parity

Because of the exact symmetry associated with
o = —vertices, q= —1=(—1)'r' r, we see that only

f»pr~ " ' will be populated. The relations good to
highest power in cos 8& show that for this exchange,
f»pp' ' '=0 and fabri i" ' f»=»''--'so ,that there
is only one independent t-channel amplitude.

Z. "Pion" Exchange (qp= —1, go=+1)

Again because g= —1, the (——) amplitudes offer

the quickest counting, and we have only f»pcpr " ' as
the nonzero (——) amplitudes. There are now three
independent components to f»~pr'~ &. These may be
classified into n=0 and n=1 patterns. Although this

pattern oHers a simple classification of pion exchange,
the t =0 behavior of the vertices is distinctly
no nminimal.

To obtain t=O behavior compatible with perturba-
tion theory, one must examine the (+ +) amplitudes.

Since pc=+=(—1)' ', only fppprpr'++, fpp~p++,
and fpppp~++& can be populated to order s . But from the

formula (4.6) we find that there are no J=O vertices,
and no n=O vertices for the J=2 case. The only non-

zero contributions are for n=1, X=1, 2 and n=2,
K=1, 2. A)vertex with )=0 behavior agreeing with

elementary pseudoscalar exchange is given by the

n =1 pattern.
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3. Xutura/-I'arity, Ãatural-Charge Conjugation

For the case Itl =+1, Itc ——+1, It=+1, if we use the
01——0's ——+ t-channel amplitudes, we have the exact
result that fqq brbr

'++ depends onlyon the magnitude
of M and M'. To the highest power in cos0&, we must
have both J and J' even. We are st~11 left vnth
J=J'=2, M)M'&0 (6); J =2, J'=O,M&0 (3); and
J=J' =0(1),giving ten amplitudes in all. The enumera-
tion of the allowed patterns of helicity suppression given
in Sec. IV follows the same form as this. Hence among
the 17 s-channel amplitudes we have produced just ten
distinct helicity patterns.

VI. LOWER-ORDER TERMS

From Eq. (4.12) wc scc tllat tile colltl'lblltloll f10111

the leading power of the Reggeon is reduced to

,.&~l, ~sI~Z~l~ Sr~ —~l-l~AI~~-~~i

For some helicity states this gives a reduction of many
powers of s. However, there is no reason to beheve, in
general, that the entire contribution to these amplitudes
will be suppressed by more than one or two powers of s.

The reason for this is that the coeKcients of s ' and
s ' in the combined amplitudes f~~ xx '&" " are
ordinarily not simple d functions. Once the Regge
residue is given by Eq. (4.5) or (4.6), the contributions
of the parent Regge trajectory are determined to all
orders in s by the behavior

t,"A'O'O' Tt."A'; D'5' tt D' —5't."—A'

=R~'A';D'b'S +R~'A', D'b'S +R~'Al;D'b'S"

We can now calculate the combined amplitudes by
using Eq. (2.8d) of I. Although

~(J.J. Alv
I
Jlf:)—(JbJb D'f'I J'&'—)

XCA'A (&1)t)C'D'D' (&s)t)Rc'A', D'b'
—

g ng~, n'P Ir J(~I)P,K' J'(g )

by construction, the other sums such as

Z(J.J. ~V
I
JZ)(JbJb DVI J'Z')-

XCA'A' (wl&t)CD'D' {(Ts&t)R&'A', D'b'

will in general have no such simple form. Hence they do
not collaborate with the crossing matrix to produce a
suppressed energy dependence. As a consequence, if all
the contributions of the parent trajectory are con-
sidered, the suppressed helicity amplitudes will in
general be suppressed by only one or two powers of s.

Proper treatment of lower powers requires inclusion
of contributions from daughter trajectories. These are
determined at t=0 by 0(4) considerations and may be
continued away from that point. Readers interested in
this aspect of the problem should consult the work of
Iklein' or that of Sitar and Tindle. "

"K, liitar and 6, Tindie, Phys. Rev. 1'7$, 1835 (1968lb,

APPENDIX: PROPERTIES OF VERTEX
FUNCTIONS NEAR 1=0

Analyticity considerations [such as listed in Eq.
(3.1)] tell the t=0 behavior of entire amplitudes, but
they do not in themselves determine the properties of
factorized vertex functions. Such properties can be
found (i) by using factorization and the analytic
structure of several related reactions, or (ii) by examin-
ing perturbation-theory models. In this appendix we
show that both (i) and (ii) lead us to adopt the behavior
listed in Sec. II a.

Factorization

The natural-parity exchanges in the reaction
AB —+AB can be isolated by studying m8 —+xB. The
behavior found by Wangs for this amplitude is

fee;ib&bb ~ 1 lf ill —Xs ls cvcll

~Qt lf xl —xs ls odd.

TAaLE IV. Perturbation-theory results for the behavior of vertices.

Nucleon-nucleon vertices
pion
Ai
scalar

p-p vertices

Coupling
Hellclty
indices Behavior

1

1 3.
2

1

scalar

pseudo scalar

axial-vector

pit pP

&tlb POPI P2 +1 ~2

~:p.Pi~P2'(I'i+I'2) P

11
~11

(io

VII. SUMMARY AND CONCLUSIONS

In elastic scattering, it is possible to choose Regge
residues in such a way that the contributions to direct-
channel helicity amplitudes have strength s" only when

the helicity indices at a t-channel vertex add, or
subtract, to give a particular integer. In some reactions
where the contributions for a particular exchange have
only one vertex function (as pion exchange in X1V
scattering) this takes place automatically. General

Regge contributions may be linear combinations of
these patterns.

The fact that a pattern has special properties in both
the s and t channels may make patterns particularly
useful in dual models. Further work along these lines is
in progress.
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Thus, barring some Qt dependence at the wtr vertex, we

feel that natural-parity couplings to a particle-anti-
particle pair will have square-root dependence if the
helicity difference in the t-channel center-of-mass sys-
tem is odd, and regular behavior otherwise.

Likewise, the unnatural-parity exchanges can be
isolated by studying tran-+oB (here o is a scalar
particle with the same mass as the pion). The behavior
found by Wang' for these amplitudes is

foo;~, ~, '-& if Xr —Xs is odd

if )jr —4 is even.

This leads us to expect that unnatural-parity couplings
to a particle-antiparticle pair will have square-root
dependence if the helicity difference is even, and
regular behavior otherwise.

Perturbation Theory

To check the above conclusions, we compute a
number of vertices in perturbation theory, for the two
examples discussed in the text—pp scattering, and p-p

scattering —and list them in Table IV. All examples are
computed in the f-channel center-of-mass system.
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Motivated by the hypothesis of the asymptotic conservation of helicity, we exploit the hypothesis that

the P and P' Regge trajectories decouple from the A+ amplitude for pion-nucleon scattering. From the

vantage point, of recent theoretical developments, viz, , the concept of duality and the Freund-Harari

conjecture, a set of dispersion relations is selected, by means of which we have shown, in good agreement

with what is known, the correlation between low-energy resonances in the direct channel and non-Pomer-

anchukon t-channel exchanges. Furthermore, we have shown that there exists a dynamical limit in which

the t-channel (p and 0) exchanges decouple, thus providing us with new insight into the relationship be-

tween our present approach and the Chew-Low model, the reciprocal-bootstrap, and the strong-coupling

theories. Finally, some remarks of a speculative nature are given.

I. INTRODUCTION

~ 'HE use of dispersion relations ushered in a new

phase in the study of hadron dynamics'; however,

dispersion relations as originally used could not provide

a detailed picture of strong interactions. Subsequently

the Mandelstam representation was conceived and the

idea of the analytic S matrix was developed. ' Thus

various attempts were made to explain the main

feature of low-energy hadron-hadron scattering through

the contributions of the nearby singularities unitarized

via procedures such as the cV/D method. For example,

in the case of pion-nucleon scattering, the E and Ã*

poles in the s and I channels and the p and 0. poles in

*Research sponsored by the Air Force OKce of Scientihc

Research, Once of Aerospace Research, under AFOSR Grant
No. 70-1866. Present address: Physics Department, Carnegie-
Mellon University, Pittsburgh, Pa. 15213.

' See, for example, G. F. Chew, S-Matrix Theory of Strong
Igtcroctt'orts (Benjamin, New York, 1961).

the ] channel were considered. However, the nature of

the approximations made in such approaches was not

at all clear, and moreover there existed the problem of

possible double counting, as was more recently empha-

sized through the concept of duality. ' The current-

algebra approach, ' on the other hand, while mainly

providing interesting low-energy theorems, suffers from

ambiguities which arise from the nature of the Schwinger

and the so-called a- terms, and the problems of pion-mass

extrapolation. Similarly, chir al dynamics, 4 though

' See, for example, H. Harari, Lectures given at the Brookhaven
Summer School in Elementary Particle Physics, 1969 (unpub-
lished), and references quoted therein.

3 See, for example, S. L. Adler and R. F. Dashen, Current

Algebra (Benjamin, New York, 1968), and references quoted
therein.

' See, for example, K. A. Bardeen and B. %. Lee, in Nuclear

and Particle Physics, edited by B. Margolis and C. S. Lam

(Benjamin, New York, 1968), and references quoted therein,


