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Systematics of Elastic Scattering*
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We point out a simplification of the crossing matrix for elastic scattering. New amplitudes, with partic-
ularly simple properties under parity and time reversal, are defined. These are useful in theories where the
quantity of interest is the amount of direct-channel helicity Qip or sum. For example, in the accompanying
paper, wc employ this formalism to study suppression of direct-channel hchclty Alp for Pomcranchukon
exchange, as well as other patterns of direct-channel amplitude suppression induced by exchange of
particular quantum numbers in the crossed channel.

I. INTRODUCTION
' +ARTICLE physics abounds with methods for

describing scattering amplitudes involving particles
with spin: LoreI1tz-sca18, r lnvaI'1Rnt amplitudes) hcllclty
amplitudes, transversity Rmphtudes, M functions, etc,
Frequently, one type of amplitude is much more con-
venient for a given purpose than the others. For this
reason, we are not embarrassed to define yet another
set of amplitudes, for elastic scattering, which are
particularly useful in the study of one type of theory.

Ke begin by noting that the crossing matrix between
s- and $-channel hclicity RInplltudcs simplifies glcatly
when the masses in the Anal state of the s channel are
the same as those in the initial state (elastic scattering):
Only two independent crossing angles are present in
this case. Ke can then use a property of the rotation
functions dq„~ to reduce the crossing matrix to two d),„~
'fllllctlolls (lllstead of tile ollglIlal folll). By taking
suitable linear combinations of the s- and 3-channel

helicity amplitudes, we obtain new amplitudes which
cross according to the simplihed matrix. Essentially,
the matrix crosses each t-channel vertex separately.

Symmetry properties of these new amplitudes under
operations such as parity and time reversal are discussed
in Sec. III. In Sec. IV, we go on to study the conse-
quences (for both s- and t-channel amplitudes) of
exchange of a particular set of quantum numbers in
the t channel.

Further sirnplihcations result if the initial particles
are identical {as in pp scattering). These are presented
in Sec. V.

This work was motivated by a hypothesis of Gilman,
Pumplin, Schwimmer, and Stodolsky' that true diGrac-
tion scattering (Pomeranchukon exchange) suppresses
direct-channel hclicity-Aip amplitudes by at least one

power of s. Our s-channel amplitudes can be labeled by
helicity Sip, and thus provide a natural framework for
theoretical study of this hypothesis. In the following

paper, 2 we study various patterns of s-channel ampli-
tude suppression induced by exchange of paI'ticular
3-channel quantum numbers.

*Work supported in part by the National Science Foundation
under Grant No. NSF GP 19433 and NSF GP 13671.

' F. G. Gilman, J. Pumplin, A. Schwimmer, and L. Stodolsky,
Phys. Letters 318, 387 (1970).' Lorella M. Jones and D. G. Ravenhall, following paper, Phys,
Rev. D 3, 696 41971).
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H. DERIVATION OF SIMPLIPIED
CROSSING MATRIX

Kc begin with the Trueman-Kick crossing matrix
for helicity amplitudes':

f.~;.s'= P d~.'(X.)ds ~"(X~)
c1pig) l gf

Xd;.'(X,)dn. "(X,)f;,', ,',

(I+IIIg' m. ') (t—+III1' III'') —2 bI'II6-'
cosXg =

(2 &)

(S+IIIg—' III,I)(-t+—llsg' IIII,') —2IIId'a-'
cos+tg = ——

For elastic scattering, my=md, m, =m„and, therefore,
xg=m' —xy) +~=x'—xc. Also) Jg= Jg) J~=Jc. Hcncc
thc matrix I'cduccs to

f.~:."= 2 d~ .'(~—X.)ds s'"(Xs)
clglL) l $1

gd, ,l.(X,)dn dl"(Ir X,)f;~ II.I,
'—(2.2). .

allow us to make the arguIQcnts of thc functions in
Eq. (2.2) all either XI, or X, in a number of ways. For

'T. L. Trnelnan and G.-C. Vhck, Ann. Phys. (N. Y.) 26, 322
(1964).

4 Much of the simplification of our method remains even when
the particle spins are not equal in pairs. See the note at the end of
Sec. II.
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example,

f A bc — Q ( I) Ja+Jb+A+D d, Ja(X )dbb »J)(xb)
c'A'D'b'

are three other ways in which this may be done, namely~

f A bc — p ( ])Ja+ Jb a—+D'd AJ, a(x )dD, AJ»(xb)
c'A'D'b'

Xdc', c '(xc)dD'; A-( b)f 'A'D'b' (

Two rotation functions with the same angle can be
combined according to the formula

c'A'D'b'

Xdb b"(xb)d. .'(x.)f. A', D b' (2 3b)

( I)Ja+Jb+A' Ad— ,J (ax )d D&AJ»(xb)

Xd, , »J»(x»)dc. cJ (X&)f,,„., , D b' (2.3c)

dM, K,"(tt)dM. K) "(&)= P dMKJ(tt)
JMK

X(J1J2M1M2~ JM)(J1J K21K2~ Jli). (2.4)

Thus Eq. (2.3a) can be rewritten more compactly in a
form involving only two d functions:

f bc p ( I)Ja+Jb+A&+D&

c'A'D' b'

X p dMKJ(x, )dM K' (xb)
JMK J'M'K'

X(J J,A'c'~ JM)(J,J, ac~ JK)—

X( J»J»D'b'~ J'M')(J»J» db~ J'K')f—:A,D b
' (2.5).

( I) a+Jb a A—d —
A, Ja(x ')d D, AJ»(xb)

c'A'D' b'

Xd» b"(&b)d. .'(X,.)f. A', D b '. (2.3d)

Similar manipulations allow us to define amplitudes
identical to (2.8) and (2.9) except for signs on the
helicity indices and for sign factors. The four possible
s- and t-channel amplitudes may be expressed succinctly
in the form

fJJ KK

(J,J ac~ JM—)(J»J» db~ J'—M')

XCaa (01)s)C&)&) '(o2,s)f«ab' (2.8c)

The Clebsch-Gordan coefhcient identity,

(J1J2M1Mmi JM)(J1J2M1M. i
J'M')

MIM2

fJJ KK

A' b'c'D'A 'D '
(J.J. Jl'c'~ JK)(—J.J» D'b'~ J'K'—)

= b JJ t)MM& ) (2.6)

allows us to write

Q (J»J» db~ J"'K—"')(J,J, acj J"K"—)f,A, ,»'
abed

dMK" (xc)dM'K'" (xb)

(—l.)'+»+"'+ '(J J.A'c'i J"M)
A'c'D' b'

X(J»J»D'b'~ J"'M')f,.A. , D b '. (2.7)

If we now define new amplitudes fJJMM*' '1 and

fJJ zz't++', which are combinations of helicity
amplitudes,

fJJ MM"t i= E (J J —ac~ JM)
abed

X(.r»J» db~ J'M')f„.;,—(2.8a.)f, , (++i)— g ( I)Ja+Jb+A'+D'(J J g c
~
JK)

c'A'D' b'

X( J»J»D'biJK')f, A, D b', (2.8b)

Eq. (2.7) becomes the simplified crossing relation

JJ'MM'

=Q dKMJ(&.)dz M J'(~b)fJJ KK "++&. (2.9a)

The superscripts (——) and (++) are related to
the manner in which the argument replacement is
performed in going from Eq. (2.2) to Eq. (2.3a). There

C,„J(—,s) =C,,„J(—,t) =b„,
C.„J(+,s)=(—i)J- b. „,
C,„J(+,t) = (—I)J+ob,

(2.10)

These amplitudes all satisfy the one crossing relation

fJJ MM" "'"
=2 dKM (Xc)dz'M' (Xb)fJJ'KK' '

~ (2 9b)

We see that amplitudes fJJ MM" &" "& labeled by
o-&= —contain only amplitudes with helicity difference
at the a cvertex equal -to M', whereas those with o 1=+
contain only amplitudes with helicity sum equal to 3E
(and similarly for M' and the b dvertex). In thi-s

notation, therefore, the amplitudes useful for study of
direct-channel helicity fhp are the fJJ MM" ~

Eq. (2.8a), which we obtained first.
Note that the character 0. of a vertex changes sign

under crossing in Eq. (2.9b). This can be understood
by the following argument: Eq. (2.9b) can be inter-
preted as the crossing relation for one spin-J "particle"
and one spin- J' "particle. "Hence we are first combining
the individual pa, rticle spins into a total spin (at each
vertex) and then performing the crossing operation.
Clebsch-Gordan coeKcients (J1J1M1M2~ JM) combine

XCA'A. ' (Ol)t)CD'D' (O2)t) fc'A'; D'b' ) (2 8d)

where oi, o2 are & independently. )The superscripts in
Eqs. (2.8) and (2.9) follow this notation. ] The metric
tensors C,„J in these equations have the following
values:
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two representations Jj and J~ of the rotation group to
make representation J in a particular way. In the
crossed channel, however, we have the antiparticle
represented by the conjugate representation of spin J~.
In order to use the same coupling by Clebsch-Gordan
coe%cients, we must first convert the conjugate repre-
sentation to a standard one. This involves the metric
tensor C,„~(+, appropriate channel), ' and multipli-
cation by &.„'(+) changes the sign of the character o.
(The argument is somewhat more transparent if one
uses transversity amplitudes, because in that case all

the spin projections are taken on the same axis. )
The t-channel couplings have fairly simple physical

interpretations. If the character 0- of, say, the c-a vertex
is minus, we are couphng together spins J, and J, to
form total spin J in the standard way. If the character
0. is plus, we are using the "contravariant" coupling. 5 It
is more difFicult to make a physical interpretation of
the s-channel couplings because the helicities of (for
example) c and (2 do not represent projections of spin

along a single direction. However, if one chooses the
normal to the scattering plane as the direction of spin
quantization, by using transversity amplitudes, it
becomes clear that the 0.= —amphtudes in the s channel

again correspond to standard coupling of spins at a
(t-channel) vertex, wherea, s the tr =+ amplitudes
col respond to contravariant coupbng.

Simplification of the matrix by the trick we use does
not require J~——J&, J,=J,. Ke concentrate on this case
because it applies to elastic scattering, discussed in

detail in the following paper. Formulas for the more

general case mal=md, m =m„with all spins diHerent,

are summarized in the Appendix. These may be useful

in treatment of more general reactions.

III. SYMMETRY PROPERTIES OF
f++, , s (st, s2) HAND f++, t (si, ss)

The properties of helicity amplitudes which follow

from parity, time-reversal, and charge-conjugation
invariance' are

f .-',—.-b''=( —-1) ' ""f', b" (p«ity)

f,b, ,z' ( 1)u ' '+~——f,q, ,—b' —(ti—me reversal),

fz, b, ' ——( 1)' " .s+~f,q—,,bt (c—harge conjugation).

These can be combined with symmetry properties of

Clebsch-Gordan coefFicients

(J&J2MiM2i JM)
=(—1)»+»-~(J,J2—M, —M2~ J—M), (3.1a)

(J(J2M2M2 i
JM)

=(—1)»+~2—~(J2J,M2M, I JM), (3.1b)

to yield relationships between our amplitudes.

5 E. P. signer, Grolp Theory (Acad. emic, New York, 1959), p,
292.' M. Jacob and G.-C. Kick, Ann Phys. I',N. V.) V, 404 I'I959).

From. the behavior of helicity amplitudes under
purity, we can deduce

fez')tr22" "'"
—( 1)2Ju+2Jb Jz—' '—)tr M—'f— , , (ss, ts)s(3 2a)

f2'')bl)W'

( 1)2zu+2zb z s'—2—r —))If—, , (ts,tss} (3 2b)

Symmetry of elastic scattering (the direct channel)
under Hme reversal gives

f, ,s (+,+) —( 1)2Js+2zb J J'f— —, , (+s,+) (3 3a)

fez )b(22
'( '= ('1) ~fry' )bl )bI'— — (3.3b)

fzz')tr)tr" +' ) = ( 1)' ( 1)™f&s')br)bl" +— t(3'3c)

,s(—,+) ( 1)—2r( 1)2Jb &'f&&, —,s(—,+) (3 3d)

The corresponding symmetry in the t channel is
charge coejlga6oe. This gives

fez )212r"++' = ( 1)"+"'—' fez )tr~ "++' (3 4a)

f, , t(—,—) —( \) i)I )tr'f—, — , t(—,—) (3 4b)

kg )tr)b(
+' =(—1) (—1) 'fez br )bl +', (3.4c)

fz.r )tr)tr" '+ = ( 1) ( 1)' —' fez' —)tr)tr'( '+' (3-4d)

%e shall be concerned primarily with strong inter-
actions, where all three symmetries are present. For
this case, the above answers can be checked by use of
the CPT theorem: Lorentz invariance (the crossing
relations) plus two of the three symmetries, P, C, and T,
guarantee the third symmetry.

By combining the results of C and P symmetry, we

see that only those fez br2r" ) are PoPulated which

have 2J,—J+2Jb —J' an even integer. This can easily
be derived by physical arguments. If a and t," are in or-
bital state I.,„t,in the t channel, and in total spin state J,
then the parity of the (bc state is P = (—1)2~ +~'"2, and
the charge conjugation is C= (—1)~+~ 2. Similar
formulas (with I.;„replacing I,„b) apply to the (Ib state.
Hence conservation of parity gives

( 1)2Zs+&out —( 1)2&b+&tu

and invariance under C gives

( 1)/+&out —( 1)&'+&tu

Combining these equations yields (—1)'Js ~

=(—1)2~2 ~'2 as expected.
Charge-conjugation invariance alone gives the condi-

tion (—1)'~ ~+2~' ~'=+1 for f ~
'(++' and

fg~ )tr)tr
' ' As we do not oft.en use the 0.=+ coupling

in nonrelativistic arguments, the corresponding
"physical" arguments are less transparent and we will

omit them.



SYSTEMATICS OF ELASTIC SCATTERING

IV. CONSEQUENCES OF EXCHANGE OF
DEFINITE SETS OF QUANTUM

NUMBERS

For exchanges of a single Reggeon or particle of spin 5,
we can write f;j&'n &; =R, ~'n &, dD y, ; ~. (8,).(f), Bf

The functions R, A ,.» have symmetries which depend
on the quantum numbers exchanged (see Table I).
These can be summarized by introducing the notation
Jla~'n b =qQ:~' g) &, R;g'n &, q,R——, g &, D, w. here
rl, =&1 if P=W( —1)s and q.=~1 if C=~(—1)s.
From these we see that for exchange with CI'=q„
~c'A'; D' b' 'g+c'A. ™—O'—D'

Once we know that only exchanges with a particular
set of quantum numbers are present, these relationships
lead to additional simple properties of the amplitudes
fjj'MM' ' ' and fjj'MM '&"'"~ Tllere. are two types
of new relationships: those which hold exactly and
those which are true only to highest power in cosa~, and
thus are useful for large cose&. %e treat these separately.
In each case we list both the constraint on fjj MM

'&" "~
and the constraint on fjjMM"& " "' that crossing
produces. Sometimes the s-channel results are par-
ticularly interesting when expressed in terms of helicity
amplitudes. These may be obtained by inverting
Eq. (2.8c):

Q C..j.(0 g,s)-Cgg j'(o2,s)f.j,..&,
'

(J,J,—acl JM)

TAIIxx I. Symmetries of t-channel partial-wave amplitudes
for exchange with spin S.

Quantum number
of exchange Symmetry

I'= (—1)~
I' = —I' —I)~

C= I
—1)8

( y)8

c'A' D

~c'A' D' b'

~c'A', D' b' =
~c'A', D'b'

It-ctAI ~ D

+c'A;-D'-b'
~c'A', O'D'

~c'A' O' D'

2J,—J and 2Jq —J' even; whereas for CI'= —ex-
changes, the other J,J' values are populated. This
result may also be derived by physical arguments: For
a particle-antiparticle pair of spin J, constituents, in
orbital angular momentum state L, and total spin J, we
have C= (—1)~+j, I' = (—1)'j +~. Hence CI'
= (—1)'j j.The constraints on the helicity amplitudes
are, of course, the same as Eq. (43).

(&») fjj'MM' & '

fjj'MM'&+' =n( 1) f—jj' MM '+-

=n( 1)"' 'f—jjMM"+ ' (4 ~a)

fjj MM
'& +=rl( '1) fjj—' MM"—

=n( 1) ' —'fjjMM" '+
~ (45b)

Only those states such that CI' = ( 1)'j—b j' are
populated, as predicted by the physical argument in (ii).
Note that this argument can be applied only to the
o = —ver tex.

JJ'MM'

X(J&~b dbl ~'~')f j—j MM *'"'"' (4 1) (») fjj'MM & '

Because of the properties of the tensor C,„j,Eq. (2.10),
this expression, despite its appearance, involves only
one helicity amplitude.

A. Exact Relations

(i) fjj MM"'++':

fjj MM "+'+'=n( 1) fjj MM"+—'+'-
=g( 1) 'fjjM M—"'+'+' (4—2a)

fjjMM ' '=n( '1) fjj' MM"' —' '—
=n( 1) 'fjjM M—"& '

&
(4—2b)

(4.3)

For g= —1, as in pion exchange, Eq. (4.3) shows that
only direct-channel hehcitygfp amplitudes may be
populated. This places fairly strong constraints on
"dual" models of CI' = —1 exchanges.

(») fjj'MM'

fjj'MM' & ' ~=a(—1) ' fjj'MM'&
= (—)"''f " ' ( )

Thus we see that for CI'=+ exchanges, the only
no»zero fjj MM " ' and fjjMM"'++' occur for

fjjMM" '+~ =a( 1)' fj—j'imr'
=g( 1) 'fjj'M M—' '+' (4—.6a)

f Tj'MM' ' '9( 1) fjj'MM''
=n( 1) 'fjj'M—M"&+' ~. —(46b)

B. Relations Good to Highest Order in cos8&

There are relatively few exact relations because, for
given values of &rq and a2, the fjj MM '&" "' for different
M tend. to involve diferent d),„ functions. However, at
very large values of cos9„di,„"(0,)=(—1) "d

&,„(8i).
This allows us to obtain more relations. Many of these
relations will be used in the accompanying paper about
suppression of energy dependence in s-channel
amplitudes.

(i) fjj M '"":By pplyi g C

fjj'MM'&+'+i =LI+g.(—1) ' ]0(& )
+(lower-order terms), (4.'/a)

fjj MM"'——' ——[1.+g, (—1)' j0(s )
+(lower-order terms), (4.7b)

and similar relationships with J ~ J~, J—& J . Thus,
the only fjj.MM ' & populated to order s are those
with I, J' such that q, =(—1)' '— '

q =(—1)'
The others are of order s
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By applying I', or alternatively combining (4.7) with
cxRct, I'cia'tlo11 (4.2R)) we gct to ol'(lcl' s"

fzs'MM'(+'+)

~( 1)2Ja z~ —
( 1)Mf, ,((++)

fats MM"( ' )

( 1)—" r(p( 1—) fez' MM—'( ' ' (4.gb)

fez'MM'( '+) =t1+))c( 1)' ~ —]O(s")
+(lower-order terms). (4.13)

At this point we can see a pattern developing: (I=+
vertices are present to orders s only if )Ic——(—1)'~'—~

for J; the constituents' spin 8nd J the resultant spin,

This is in contras~ to the exec& relation for &=-
vertices: )) = (—1)'~' ~ or the contribution is zero.

I,ikcvrise, for o2= —vertices, to order s", the ampli-

tudes arc related by

fr@ MM""' ) )Ic( 1) 'fry M —M'("' ) -~
The corresponding exact relation for o~=+ amplitudes

is

fJ'Z'MM' "+=a( 1) ''fats'M M' —"+'. —

There arc t%'o essential s1IDpl16catioIls if thc two

s-channel incident particles happen to be identical, as

lri thc case of pp scRttcllllg. First, wc CR11 invoke tl1c

Pauli principle in the s channel and time-reversal

1QVRI'1Rncc ln the f cllanncl. Second thc two CI'ossing

angles X, Rnd Xq are now identical. Hence the tvro re-

maining dq„~ functions can be combined. to form one,

RDd nc% amplitudes dc6ned %'hick. cI'oss according to
this rotatloIl IIl.Rt1"1x.

and I'clRtlons with J~~ Jg) J~J ~

{ll) fsgrMM ~
' '. By applying I Rnd C& WC get~

respectively,

fss MM'( ' ) ( 1) (—1)' '—~epfzz MM'( -' )

=(—1) I)cfear' MM" —' ), (4»)
fsgiMM" +'+ (—1 ) (—1 )' " gpf gJ' MM" +—'+'

= ( 1) 1)—cfry MM '(—+'+), (4 9b)

and 1clations Kith J&~ Jy, J~J ~

(lil) fgsrMM~ (+ ):By applvlllg C Kt tllc uppcl vcl'tcx,

fzs~MM '" '=L1+(—1)" '))ciao(s )
+(lower-order terms), (4.10)

and by applying C at the lovrcr vertex,

fez'MM"+' ' ))c( 1)+ 'fs—s M M "+' )-(4 11)

(iv) fgg MM " +' By apply. ing C at the upper vertex,

fez'MM'( '+) I)c( 1)+ fJz—MM'( '+) (4 12)

(i) Translating the behavior of helicity amplitudes
into our language, me 6nd that the Pauli principle in the
dllcct channel gives

fzs'MM" (+'+' = ( 1—) 'fz'sM M'+ (51R)

%hen these pI'opcI'ties RI'c coTIlb1ncd ln various %'Rys

vrith the other symmetry relations in Sec. III, @re obtain
as thc coIDInon 1"csult

fZJ'MM' fJ'JM'M (5 2)

Tlc corrcsponcllng $-CIlanncl syminctry 1s tlKLc-reversal

invariance. In a similar fashion, in combination vuth

the C rc18,tions of Scc. III, it yields

fee MM "'"'=fr ZM M"'"' (5 3)

(ii} The combination of the two d functio» ~e~ain-

1ng 1D thc crossing Dlatrix cRD 13c aclllevcd 1Il tvfo %'Rys»

as @re expect from the methods of Sec. II. Ke denote
the tvro possible combinations by yet another super-

script &&, ~3=a. Thc crossing relation becon es

f&M~(~)~w3)(J" J'«)=Q d&M&(X)fez&( ~) ~ms)-(J' J")
vrhere, for both s- and t-channel amplitudes,

AM'"&»(J",J"')= p (J"J"'M"M'"~JM)
M'M' ~3/I" '

g CMrt /Mt' ( 0 3 S)f/IP j'1 IlMIMlll (

Here Cs is the tensor de6ned in (2.10).

The implications of var1ous sylnmctrics foI' the CGID-

bined amplitudes are summarized in Table II. Note
that, vrhen all spvnmetries are taken into account, the

amplitudes f~M" ') (J",J"') are nonzero only for
J"+J"' even. If J"=J'", then J must be even in

addition. Use of the combined. amplitudes vrith these

rules allows R quick countiDg of independent RInplitudcs

1n proccsscs like pp scattcI'1Dg.

A slmph6catlon 1Il thc ciossing IDRtI'ix allo%'ed fox'

clastic scattering (Illolc accul'ately, fol scattcilIig wllcle

the masses are equal in pairs) is exploited to construct

nc% Rmplitudes vAth simpler ciosslng properties. Thcsc
amplitudes pi ovc very convcn1cDt for Glscusslng

channel consequences of t-channel RcggcoD exchanges,

and soIDc s1ID.pic sclcction I'ulcs appear. An Rpplication

of this formahsm may be found in the follovnng paper. '
Our construction uses properties and Clebsch-Gordan

cocKcieIlts of only thc three-dinlcnsloIlal rotation

group. The possibility that our results for elastic

scattering are a simple special case of more coInplicated.

Lorcntz-group properties of the general case has not

fez'MM" ( ''= { 1—) 'fz z M —M'—( ' ), (5.1b}

fss~MMI + ='(—1) '(—1) fg~ g M~M '+, (5.1c)



TAaLE II. Symmetries of combined amplitudes when incident particles are identical. (1) Parity (in both s and I, channels):
JJs&&«««)( J",J"')=( 1)—~ sr' I&«'2"»(J",J'") (2). Other symmetries Am. plitudes on a given iine oi the table are equal. For
s-channel amplitudes, column 8 equals column A by the Pauli principle, and column C equals column A by time-reversal invariance. For
t-channel amplitudes, column 8 equals column A by time-reversal invariance, and column C equals column A by charge-conjugation
in variance.

f (+ + +)(Jf/ J///)

f (+,+,—) (Jff J///)

(—,—,+)(J/f J///}

f {———}(J// Jf//)

f {+—+3 (J/f J///)

f (+ —,—) (J// J///}

(—,+,+)(J/f J/f/)

f s (—+ —}(Jff J///)

( I)—J'f (+ + +)(J// Jf//)

( I) ~f (+ + —) (J// J///)

( I)—~f (-,—,+) (Jf/ Jf//)

( y)
—J'f (———) (Jf/ J///)

( I)gJ J'f (—+ —) (Jf/ Jf//)

( y)
&2J' ~f {—+ +)(J/f J'///)

I)w;mf (+,—,—)(J«J«/)
(—I)'J. ~fJ~(+ +}(J// J«')

( I)—J sr J'r»f (+,+,+) (Jf/ Jf/f)

( y)
—j"f f—J'»ff (+ + —}(J'll J//f)

j)Jf/+gffr J J&frf ( +)(J// Jf//)

( I)Jr/+ Jffr J-J&)/lf (—— )(J// J//f)

( f)2Ja+J "+J'»—J—3If~ ~(+,—,-) (J// J«/)

( ])2J +J»+O''"-J —Mf (+ —+)(J/f J///)
)

( I)2J +J»+J'"f (- + —) (J/f J///)

( ]}Wa+J»+J»"f (—,+,+)(J/f J///)

cscRpcd us. Thc cxploI'Rtlon of IT10rc coITlpllcated
reactions, either by finding this property or by more
elementary cxpRDsloIls Rbout the clastic scattering case)
ls R task wc hope to pursue.

for both s- and f-channel amplitudes. Here P;J, is the
sum of the four partide spins, and g, is the intrinsic
PMlty fRCtol:

APPENDIX

ID thc colTlbination of lotRtlon functions perforlned
ln the main part of this paper, the requirement that
J =J„Jg=Jg is not necessary, although it simplifies
the formalism and the phase factors. Ke give here
expressions obtained for general spins.

Combined amplitudes are

{J,J,—ac~ JM)(J~Js db~ J'M')—

SJ/ZX'( '")

(J,J, A'c'i JE)(JsJ—s D'b'i J'K')—
Af b'c/D/7i/D/

and they also cross according to (2.9b).
Symmetry under parity is given by

fez srsr' ""
( 1)E&z; z z'+sr+sr'ff—, —

sr @
( r& )«s(3 2&)

The results involving direct-channel helicity-Hip amplitudes
are closely related to work by a number of authors LK. Sitar and
G. L. Tindle, Phys. Rev. 175, 1835 (j.968); S. A. Klein, Phys.
Rev. D 1, 609 (j.970};L. Durand III, P. M. Fishbane, S. A. Klein,
and L. M. Simmons, Jr., Phys. Rev. Letters 23, 20I (1969)j.The
direct-channel helicity sum amplitudes do not appear to have
been previously discussed.

'foI' thc 5 chRnncl, with R corlcspondlng 0Dc foI' thc
f channel. Time reversal in the s channel and charge
conjugation in the t channel are no longer symmetries
fol the gcncl al spin CRsc.

In considering the consequences of the t-channel
exch Rngc of R pMtlclc %'1th pMlty fRctor 'gg~ RDd chMgc-
conjugation r)c ())f))c=r(), the case where the particles
at one vertex are a particle-antiparticle pair still retains
half of the symmetries of the elastic scattering case. If
wc choose c,c4 Rs this pai, those IclRtlonshlps ln Scc. IV
which arise by applying CI', or C or I" at the upper
vertex still apply Li.e., the first equalities in (4.2)—(4.6),
and the approximate equalities cited in (4.7)-(4.10)
and (4.12)$. The conclusions drawn at the end of
Sec. IV, applied to the upper vertex (i.e., referring
to or) are still valid.

In the case where all four s-channel particles are
distinguishable, only the parity-exchange symmetry

i s. Spe i6 lly, t highest o de co I9, the ly
t-channel symmetries are

ff&,~~,&(~&,~s) ( 1)z,+7,—f~ ( 1)srf, ,&(~),~s)

with its 5-channel consequence

ffJ'ihfsf'

(—1) '+ ' r)z( —1) f/'' srsr"—
and the obvious corresponding results for the lower
vertex. The lack of other symmetries results in all
fff srsr &(" ") being PoPulated to order s .


