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We point out a simplification of the crossing matrix for elastic scattering. New amplitudes, with partic-
ularly simple properties under parity and time reversal, are defined. These are useful in theories where the
quantity of interest is the amount of direct-channel helicity flip or sum. For example, in the accompanying
paper, we employ this formalism to study suppression of direct-channel helicity flip for Pomeranchukon
exchange, as well as other patterns of direct-channel amplitude suppression induced by exchange of

particular quantum numbers in the crossed channel.

I. INTRODUCTION

ARTICLE physics abounds with methods for
describing scattering amplitudes involving particles
with spin: Lorentz-scalar invariant amplitudes, helicity
amplitudes, transversity amplitudes, M functions, etc.
Frequently, one type of amplitude is much more con-
venient for a given purpose than the others. For this
reason, we are not embarrassed to define yet another
set of amplitudes, for elastic scattering, which are
particularly useful in the study of one type of theory.

We begin by noting that the crossing matrix between
s- and ¢-channel helicity amplitudes simplifies greatly
when the masses in the final state of the s channel are
the same as those in the initial state (elastic scattering):
Only two independent crossing angles are present in
this case. We can then use a property of the rotation
functions dy,” to reduce the crossing matrix to two da,’
functions (instead of the original four). By taking
suitable linear combinations of the s- and #-channel
helicity amplitudes, we obtain new amplitudes which
cross according to the simplified matrix. Essentially,
the matrix crosses each {-channel vertex separately.

Symmetry properties of these new amplitudes under
operations such as parity and time reversal are discussed
in Sec. III. In Sec. IV, we go on to study the conse-
quences (for both s- and f-channel amplitudes) of
exchange of a particular set of quantum numbers in
the ¢ channel.

Further simplifications result if the initial particles
are identical (as in pp scattering). These are presented
in Sec. V.

This work was motivated by a hypothesis of Gilman,
Pumplin, Schwimmer, and Stodolsky! that true diffrac-
tion scattering (Pomeranchukon exchange) suppresses
direct-channel helicity-flip amplitudes by at least one
power of s. Our s-channel amplitudes can be labeled by
helicity flip, and thus provide a natural framework for
theoretical study of this hypothesis. In the following
paper,? we study various patterns of s-channel ampli-
tude suppression induced by exchange of particular
t-channel quantum numbers.

* Work supported in part by the National Science Foundation
under Grant No. NSF GP 19433 and NSF GP 13671.
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II. DERIVATION OF SIMPLIFIED
CROSSING MATRIX

We begin with the Trueman-Wick crossing matrix
for helicity amplitudes?:

fcd;absz Z dA’aJa(Xa)db'be(Xb)
¢/ AD'Y
Xdor T (Xe)dpra?d(Xa) ferar,prot,
—(sFma2—mp?) (t+ma2—m.2) — 2m A2
CosX,=

’
SabTac

(sHmp2—m2) (t+mp2—ma?) — 2my2A2

cosXp= )
SabTba
(s+m2—ma®) (t+m2—my%) —2m,2A2
cosX,= , (2.1
ScdTac
—(sFma*—m2) (t+ma>—mp?) — 2ma2A2
cosXg=

2
ScdTbd

A?=mlr—ma*+m*—mad®,
siit=[s—(mitm;))s— (mi—m;)*],
7t =[t— (mitmy) "t — (mi—m;)*].

For elastic scattering, my,=mg4, m,=m., and, therefore,
Xg=m—Xp, Xg=m—X,. Also, Jpy=J4, Ja=J.* Hence
the matrix reduces to

> dard (m—Xa)dp 7 0(Xy)

¢’ A'D'Y

Kde T (Xe)dpra”"(m—Xo) forar; prort.

fcd;abe =

(2.2)
Properties of the d operators, namely,

d?(0) = (—1)7dy ,(r—0),
=(=1*dni(0),
= (=1)**d_y —(9),

allow us to make the arguments of the functions in
Eq. (2.2) all either X; or X, in a number of ways. For

( 3T, L. Trueman and G.-C. Wick, Ann. Phys. (N. Y.) 26, 322
1964).

4 Much of the simplification of our method remains even when
the particle spins are not equal in pairs. See the note at the end of
Sec. II
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example,
fcd;abs= Z ("‘1)Ju+']b+d’+bl(£/17‘_aJ‘Z(Xc)db’,th(Xb)

¢’ AD'b

Xdc',cJa(Xc)dD’,—‘de(Xb)_fc’A';D’b't . (2.3{:\,)

Two rotation functions with the same angle can be
combined according to the formula

iy (0)doroc,(0) = 3 darx?(6)
JMK

X (I T oMM | TM)(J1J KiK. JK). (2.4)

Thus Eq. (2.3a) can be rewritten more compactly in a
form involving only two d functions:

farart= 3 (D)t

' CIA/D’bI

X X dur? (Xo)dpy xr? (Xs)

IMET' MK’

X (T oT A" | TMY(J oJ s—ac| TK)

X(ToJ D'V | J' M) (T oJ 5—db | J' K forariprwt. (2.5)
The Clebsch-Gordan coefficient identity,
> (oMM | TM)(J T M Mo\ T M)
MiMy
=8s70mm, (2.6)

allows us to write

Y (o o—db| T K" (T T a—ac| J"K") fozsas’

abed

=3 dur’" X)duw g7 (Xs)
MM’

X Z (_1)Ja+Jb+A’+D'(]aJaA/C/l]HM)
A’c/DIbl
X(ToJo D' | " M) forar,prwt. (2.7)
If we now define new amplitudes frram*C™ and

frrggt®), which are combinations of helicity
amplitudes,

Jorruu*CO =3 (JoJu—ac|JM)

abed

X (T4 T o—db| J' M) foasar®, (2.82)

froretGP= 3 (_1)Ja+Jb+A'+D'(]a]aArczUK)

A Db
X(IoJ oD | TK') forariprnt,  (2.8b)
Eq. (2.7) becomes the simplified crossing relation
s(—=)
=2 dra’ (Xo)droar” (Xo) fromrt &0

The superscripts (— —) and (4 +) are related to
the manner in which the argument replacement is
performed in going from Eq. (2.2) to Eq. (2.3a). There

fJJ’MM’

(2.9a)
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are three other ways in which this may be done, namely>

fc[l; ab®= Z ( - 1)Jﬂ+Jb‘a+D/d-—-A’uJa(Xc)dD’~—de(Xb)
¢’ A'D'v!
de’be(Xb)dc’cJa(XD)fc'A';D’b't (Zsb)
— Z (__1)Ju+Jb+A’—ddA,_aJa(Xc>d_—D/dJb(Xb)
¢’ A’D’ b’
de'be(Xb)dc’cJa(X(:)fc’A’;D'b't (2‘3C)
= Y (=1)TetTea=dg_,, Ja(X,)d_pra”?(Xs)
¢’ A'D' b’

de’be(Xb)dc'cJa(Xc)fc’A’;D’b’t- (Z'Sd)

Similar manipulations allow us to define amplitudes
identical to (2.8) and (2.9) except for signs on the
helicity indices and for sign factors. The four possible
s- and #-channel amplitudes may be expressed succinctly
in the form

frrgrsoneD
= Y (JoJa—dc|IM)(JpJs—db|J M)
abcdad
X Cza74(01,5)Caa’*(09,) feasar®  (2.8¢)
and
JrrgrtOnow

= Y (JJ—ATK)T T =D | J'K)

A'be¢’'D'AD’

XCar a7 (o1,)Chp"¥(o2l) forarprort, (2.8d)

where o1, 02 are == independently. [The superscripts in
Egs. (2.8) and (2.9) follow this notation.] The metric
tensors C.,’ in these equations have the following
values:

C”’?IJ(_ YS) = C-‘ByJ(_ 7t) = 5a:y ’
nyJ(—{—)s) = (_ 1)']*1!51,—1/ ’
Coy? () =(=1)"*6, .

These amplitudes all satisfy the one crossing relation

(2.10)

fJJ’MM's(”'”)

=3 dru’ (Xo)dgrn?' (Xo) fryrrrtCo0—2 . (2.9b)

We see that amplitudes frja¢t7® labeled by
o1= — contain only amplitudes with helicity difference
at the a-¢ vertex equal to M, whereas those with o;=+
contain only amplitudes with helicity sum equal to M
(and similarly for M’ and the b-d vertex). In this
notation, therefore, the amplitudes useful for study of
direct-channel helicity flip are the frrme*©,
Eq. (2.8a), which we obtained first.

Note that the character ¢ of a vertex changes sign
under crossing in Eq. (2.9b). This can be understood
by the following argument: Eq. (2.9b) can be inter-
preted as the crossing relation for one spin-J “particle”
and one spin-J’ “particle.” Hence we are first combining
the individual particle spins into a total spin (at each
vertex) and then performing the crossing operation.
Clebsch-Gordan coefficients (J1JoM 1M,|JM) combine
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two representations Jy and J, of the rotation group to
make representation J in a particular way. In the
crossed channel, however, we have the antiparticle
represented by the conjugate representation of spin Ji.
In order to use the same coupling by Clebsch-Gordan
coefficients, we must first convert the conjugate repre-
sentation to a standard one. This involves the metric
tensor C,,7(4, appropriate channel),’ and multipli-
cation by C,,7(4) changes the sign of the character o.
(The argument is somewhat more transparent if one
uses transversity amplitudes, because in that case all
the spin projections are taken on the same axis.)

The t-channel couplings have fairly simple physical
interpretations. If the character ¢ of, say, the ¢-a vertex
is minus, we are coupling together spins J, and J, to
form total spin J in the standard way. If the character
o is plus, we are using the “contravariant’ coupling.® It
is more difficult to make a physical interpretation of
the s-channel couplings because the helicities of (for
example) ¢ and a do not represent projections of spin
along a single direction. However, if one chooses the
normal to the scattering plane as the direction of spin
quantization, by using transversity amplitudes, it
becomes clear that the o= — amplitudes in the s channel
again correspond to standard coupling of spins at a
(t-channel) vertex, whereas the o=- amplitudes
correspond to ‘“‘contravariant” coupling.

Simplification of the matrix by the trick we use does
not require Jy=J4, Jo=J .. We concentrate on this case
because it applies to elastic scattering, discussed in
detail in the following paper. Formulas for the more
general case my=mq, Ma="m,, With all spins different,
are summarized in the Appendix. These may be useful
in treatment of more general reactions.

III. SYMMETRY PROPERTIES OF
frrout o AND frparartoto?

The properties of helicity amplitudes which follow
from parity, time-reversal, and charge-conjugation
invariance® are
f—u—d;—a—bs’t —_ (_ 1)a— b——c+dfcd; abs’t

fab; cd’ = (_ 1)a—b_c+dfcd;abs

faesva'=(—1)7"0=ct4f 4.0t (charge conjugation).

(parity),
(time reversal),

These can be combined with symmetry properties of
Clebsch-Gordan coefficients

(J1J M M| TM)
=(=1)IeII(J Jo— M1 —Ms|J—M), (3.1a)
(JuJ MM, |TM) :

= (—‘1)‘]1+J2_J(]2]1M2M1! JM) , (31b)

to yield relationships between our amplitudes.
5 E. P. Wigner, Group Theory (Academic, New York, 1959), p.

292,
¢ M. Jacob and G.-C. Wick, Ann Phys. (N. Y.) 7, 404 (1959).
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From the behavior of helicity amplitudes under
parity, we can deduce

Sraaae® 1o

= ()T s (324)
and
frroanatoneD

= (= 1) at2 T d=I=M=M L tenen) - (3.2b)

Symmetry of elastic scattering (the direct channel)
under time reversal gives

Froope® 4 = (—1)2Tat2l 7~ (3.32)
frrn? S =(=1)7"M"Mf 100 ap ap* 7, (3.3b)
Frr® T = (=127 I (= 1)M f y prpp et ), (3.3¢)

fJJ’MM’S(—'—H = (_,1)-—11[(_1)2.}'1;—J’fJJ,__MM,s(—-,+)- (33d)

’
JfJJ’MM’s(+’+),

The corresponding symmetry in the ¢ channel is
charge conjugation. This gives

Jroor (3-43)
Soroan! ) =(— 1)“M_M’fJJ'—M—M' H=), (3.4b)
Fransa 2 = (=T (= 1) gy 50, (3.40)

0 = (= 1) (= )Ty oy 0. (34d)

t(+.+)=(__1)2Ja+2Jb—J’ t(+,+)’

'Jf JJ' MM

frraont

We shall be concerned primarily with strong inter-
actions, where all three symmetries are present. For
this case, the above answers can be checked by use of
the CPT theorem: Lorentz invariance (the crossing
relations) plus two of the three symmetries, P, C, and T,
guarantee the third symmetry.

By combining the results of C and P symmetry, we
see that only those fryamrt™ ™ are populated which
have 2J,—J+2J,—J' an even integer. This can easily
be derived by physical arguments. If @ and ¢ are in or-
bital state Loyt in the # channel, and in total spin state J,
then the parity of the dc state is P=(—1)2/e*Leut, and
the charge conjugation is C=(—1)7*Lout, Similar
formulas (with Ls, replacing Lous) apply to the db state.
Hence conservation of parity gives

(—1)2/e+Lout = (—1)27t+Lin

and invariance under C gives

(—1)7+ELout = (—1)7"+Lin,
Combining these equations (—1)a7
=(—1)2/v"7"  as expected.

Charge-conjugation invariance alone gives the condi-
tion (—=1)eJt2-V'=41 for fryam'™T and
frraen® ). As we do not often use the o=+ coupling
in nonrelativistic arguments, the corresponding
“physical” arguments are less transparent and we will
omit them.

yields
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IV. CONSEQUENCES OF EXCHANGE OF
DEFINITE SETS OF QUANTUM
NUMBERS

For exchanges of a single Reggeon or particle of spin S,
we can write fouarpe'=Reoar;prePdpr—pr;e—a5(0:).
The functions R, 4+, p’» have symmetries which depend
on the quantum numbers exchanged (see Table I).
These can be summarized by introducing the notation
Rear,py=npRerar,—p'—ty Rorar,pror=ncRe a7, pr, Where
np==1if P=4(—1)% and 5,==+1 if C==4(—1)5
From these we see that for exchange with CP=n,
Rc’A’;D’b’=ch’A';—b'—D’-

Once we know that only exchanges with a particular
set of quantum numbers are present, these relationships
lead to additional simple properties of the amplitudes
Soraort @t and frroa0 @b, There are two types
of new relationships: those which hold exactly and
those which are true only to highest power in cosf,, and
thus are useful for large cosf,. We treat these separately.
In each case we list both the constraint on fjy/arat 102
and the constraint on fryar*¢ 07 that crossing
produces. Sometimes the s-channel results are par-
ticularly interesting when expressed in terms of helicity
amplitudes. These may be obtained by inverting
Eq. (2.8¢):

Z CEaJa(UI;S)CEde(0'2)5)fcd;abx
ad

= Y (JJ.—ac|IM)

JI'MM'

X (T oJ o—db|J' M"Y f sy aaae® @2 . (4.1)

Because of the properties of the tensor C,,”, Eq. (2.10),
this expression, despite its appearance, involves only
one helicity amplitude.
A. Exact Relations
(i) fJJ'MM"(+‘+)I

Soraet T =g(=1)Y fr st D

=n(=D frya—pt*P,  (4.22)
Jrooe® S =(= DM frppps &)
== frra—a®™7),  (4.2b)
fcd;ab'g:'fl(_ 1)c_afad; b’
=7](_1)d_bfcb;ads- (43)

For n=—1, as in pion exchange, Eq. (4.3) shows that
only direct-channel helicity-flip amplitudes may be
populated. This places fairly strong constraints on

“dual” models of CP= —1 exchanges.
(D) frroaoet):
Froot © D =n(—1)2a f; 1t

=n(=D frramt 7. (44)

Thus we see that for CP =+ exchanges, the only
nonzero fryamt< 7 and  frroane  occur for
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TasLe 1. Symmetries of #-channel partial-wave amplitudes
for exchange with spin S.

Quantum number

of exchange Symmetry

P=(-1)5 Rear,pryy=Rerar—proir
P=—(—-1)8 Rear;pryr=—Rea;—pr—v
C=(—-18 Rerarpror=Rerarvr
CZ—(—I)S Rc'A‘;D’b':‘_Rc’A’:b’D’

2J,—J and 2J,—J' even; whereas for CP=— ex-
changes, the other J,J' values are populated. This
result may also be derived by physical arguments: For
a particle-antiparticle pair of spin J, constituents, in
orbital angular momentum state L, and total spin J, we
have C=(—-1)¥J, P=(—1)%«+L, Hence CP
=(—1)%/«=J, The constraints on the helicity amplitudes
are, of course, the same as Eq. (4.3).

(i) frooaart™:
fJJ’MM’t(+'_) = 77(— 1)MfJJ'—MM'”(+'_>
=n(_l)sz—J'fJJ,MM,t(+.—>’ (4.5a)
Sroa? O =9(= DY frp s
=(—=1)277 fy yarar* P . (4.5b)

Only those states such that CP=(—1)27v7" are
populated, as predicted by the physical argument in (ii).
Note that this argument can be applied only to the
o= — vertex.

(V) frommtc:

Jrrmnt D =q(=1)2 e f 1 rappt D

=n(=D" frry-—st—P,  (4.6a)
Sroae* T =q(=1)2a7 f1 70035
=n(=DM frrp—ar*.  (4.6b)

B. Relations Good to Highest Order in cos®,

There are relatively few exact relations because, for
given values of ¢ and o3, the f77arart¢17» for different
M tend to involve different dy,* functions. However, at
very large values of cosf:, dr,*(6,)=~ (—1)"2d_»,*(6,).
This allows us to obtain more relations. Many of these
relations will be used in the accompanying paper about
suppression of energy dependence in s-channel
amplitudes.

() frranet™P: By applying C,
fJJ’MM’t(+'+) — [1+nc(_1)2Ja~J:]O(sa)

+(lower-order terms), (4.7a)
oot &) =[141,(—1)27a=7]0(s%)
+(lower-order terms), (4.7b)

and similar relationships with J,— J3, J— J'. Thus,
the only fysara* ) populated to order s* are those
with J, J' such that n.=(—1)2/v=7" p,=(—1)2/e,
The others are of order s*1.
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By applying P, or alternatively combining (4.7) with
exact relation (4.2a), we get to order s*

Sforant

~(=D)¥ e Iyp(= DM frpoppet ), (4.8a)
oo ©

~ (=) eI p (=DM fry a7, (4.8b)

and relations with J,— J3, J— J'.

() frraat!©): By applying P and C, we get,
respectively,

Fromaut O~ (=DM (=) qpfr st )
= (" 1)MﬂCfJJ'—MM"(“’_) ,

Frrmu* O~ (=DM (=) npfrran®
=(—DMyefrr—pa*H,

and relations with J,— J3, J— J'.

(4.92)

(4.9b)

(i) fryoamett): By applying C at the upper vertex,

Jranne! 0 =[14(=1)>nc J0(s*)
+(lower-order terms), (4.10)
and by applying C at the lower vertex,
fJJ'MM’t(+'_)N7IC("’ 1)+M'fJJ,M_M,t(+,——) . (4.11)

(V) frramet©P: By applying C at the upper vertex,

fJJ'MM"(_’H"’710(“1>+MfJJ'—-MM't(—’+)7 (4‘12)
and at the lower vertex,
fJJ'MM't(M'H:D +nc<_1)2Jb-—J’]O(Sa)
+(lower-order terms). (4.13)

At this point we can see a pattern developing: o=+
vertices are present to orders s only if ne=(—1)*"+7
for J; the constituents’ spin and J the resultant spin.
This is in contrast to the exact relation for o=—
vertices: n=(—1)27i7 or the contribution is zero.

Likewise, for gp=— vertices, to order 5%, the ampli-
tudes are related by

Froanet @I ~ne(=DM frop—p 7.

The corresponding exact relation for op= -+ amplitudes
is
Fronaet @D =n(=DM frrarpt .

V. FURTHER SIMPLIFICATIONS IF INCIDENT
PARTICLES ARE IDENTICAL

There are two essential simplifications if the two
s-channel incident particles happen to be identical, as
in the case of pp scattering. First, we can invoke the
Pauli principle in the s channel and time-reversal
invariance in the / channel. Second, the two crossing
angles X, and X, are now identical. Hence the two re-
maining dy,’ functions can be combined to form one,
and new amplitudes defined which cross according to
this rotation matrix.

JONES AND D. G. RAVENHALL 3

] (i) Translating the behavior of helicity amplitudes
into our language, we find that the Pauli principle in the
direct channel gives

S =(— 1) f yryarm (5.1a)
Froamt T = (=17 M f 15 a7, (5.1b)
forrat = (=17 (= 1)¥ e f pr gy &, (5.1¢)
Jrrat ©P = (=1 (= 1)« fprpapp 7). (5.1d)

When these properties are combined in various ways
with the other symmetry relations in Sec. ITI, we obtain
as the common result

fraaan sChH),

fJJ,MM,S(ax,oz) =fJ'JM'Ms(”"”) .

(5.2)

The corresponding ¢-channel symmetry is time-reversal
invariance. In a similar fashion, in combination with
the C relations of Sec. I1T, it yields

t(o2,01) |

(5.3)

(ii) The combination of the two d functions remain-
ing in the crossing matrix can be achieved in two ways,
as we expect from the methods of Sec. IT. We denote
the two possible combinations by yet another super-
script o3, 03==. The crossing relation becomes

fra* @ (J7 T =3 dgar” () frxt oo (T, T,
where, for both s- and {-channel amplitudes,

fJM(nagas)(J//)]///) = Z (JII]IIIMIIMIII l JM)

MMM

oot = frapn

X Caproag " (—as, 8) frogrrap @170
Here C7 is the tensor defined in (2.10).

The implications of various symmetries for the com-
bined amplitudes are summarized in Table II. Note
that when all symmetries are taken into account, the
amplitudes fry*@*(J'",J""") are mnonzero only for
J'4+J" even. If J'=J"", then J must be even in
addition. Use of the combined amplitudes with these
rules allows a quick counting of independent amplitudes
in processes like pp scattering.

VI. SUMMARY AND CONCLUSIONS

A simplification in the crossing matrix allowed for
elastic scattering (more accurately, for scattering where
the masses are equal in pairs) is exploited to construct
new amplitudes with simpler crossing properties. These
amplitudes prove very convenient for discussing s-
channel consequences of ¢-channel Reggeon exchanges,
and some simple selection rules appear. An application
of this formalism may be found in the following paper.?

Our construction uses properties and Clebsch-Gordan
coefficients of only the three-dimensional rotation
group. The possibility that our results for elastic
scattering are a simple special case of more complicated
Lorentz-group properties of the general case has not
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Tapie II. Symmetries of combined amplitudes when incident particles are identical. 1) _Parity (in both s and ¢ channels):
Fruloverea (J',J") = (—1)~T"M f;_ylovozoa(J”,J'"). (2) Other symmetries. Amplitudes on a given line of the table are equal. For
s-channel amplitudes, column B equals column A by the Pauli principle, and column C equals column A by time-reversal invariance. For
t-channel amplitudes, column B equals column A by time-reversal invariance, and column C equals column A by charge-conjugation

invariance.

A B

C

FruHED T
foa DT
fJM(_’—’+)(J”a]”,>
Ffou =TT
Foa =D T
fJM(+’—'—)(J,,’J,,/)
fJM(—'+’+)(],’,J’,,)
J.JMS(_,.,_,_)(J-//’J///)

(=1 foa DI, T

(= 1)~ f y_ag S (T, T
(=)™ =TT
(=) fru ™I
(_1)2Ja—JfJM(",+.“)(_]”,J/I/)
(=))W aM fr_py &HDI7T)
(=DM fy_p Em(T"J")
(= 1)V {pag D (7T

(__ 1)_J”—JmeM(+’+’+) (]”,]”')
(_ 1)_Jlr_JlI'fJM(+,+'_) (]"’]’”)

(__ 1)J”+J’”~"—MfJ—M(_’_'+) (J”,]/“)

(_ 1)"”+J”,—‘J—-Mf‘],M(_’_'—) (J/I’JIII)

(_ 1)2Jﬂ+Ju+Jm_.J_MfJ~M(+,..,_.) (]n’]u/)
(— D)W T R I =M G (1)
(__ 1)2J"+J',+J'”fJM(—’+'—) (J/r,]/r/)

(_ 1)2J“+J”+'p“fJM(—'+’+) (]'l,]!l!)

escaped us.” The exploration of more complicated
reactions, either by finding this property or by more
elementary expansions about the elastic scattering case,
is a task we hope to pursue.

APPENDIX

In the combination of rotation functions performed
in the main part of this paper, the requirement that
Jo=J., Jp=Ja is not necessary, although it simplifies
the formalism and the phase factors. We give here
expressions obtained for general spins.

Combined amplitudes are

Sarraeprt 0o
= Y (JJe—ac|IM)(JoJ s—db|J' M)
abedad
X Caa?*(01,5)Caa’4(02,5) fea;ar®, (2.8¢")
frrggtto
= 3 (Jo o= A" | TK)(T o »—D'b | J'K")
A’ c¢’'D'A’' D’
XCZ'A'J“(Ul,t)cl_)’l)’Jd(o’z,t)fcf,y;Drbrt 5 (28(1/)
and they also cross according to (2.9b).
Symmetry under parity is given by
Soaao @100
:ng(_1)ZiJi"J—J'+]|l+M’fJJ,_1‘I_A{, (o102) (3'2/)

7The results involving direct-channel helicity-flip amplitudes
are closely related to work by a number of authors [K. Bitar and
G. L. Tindle, Phys. Rev. 175, 1835 (1968); S. A. Klein, Phys.
Rev. D 1, 609 (1970); L. Durand III, P. M. Fishbane, S. A. Klein,
and L. M. Simmons, Jr., Phys. Rev. Letters 23, 201 (1969)]. The
direct-channel helicity sum amplitudes do not appear to have
been previously discussed.

for both s- and /-channel amplitudes. Here >_; J; is the
sum of the four particle spins, and 7, is the intrinsic
parity factor:

Ng=(nena/nans)(—1)7H =T Tb

for the s channel, with a corresponding one for the
¢ channel. Time reversal in the s channel and charge
conjugation in the ¢ channel are no longer symmetries
for the general spin case.

In considering the consequences of the ¢-channel
exchange of a particle with parity factor p, and charge-
conjugation n¢ (npne¢=n), the case where the particles
at one vertex are a particle-antiparticle pair still retains
half of the symmetries of the elastic scattering case. If
we choose ¢,4 as this pair, those relationships in Sec. IV
which arise by applying CP, or C or P at the upper
vertex still apply [i.e., the first equalities in (4.2)-(4.6),
and the approximate equalities cited in (4.7)-(4.10)
and (4.12)]. The conclusions drawn at the end of
Sec. IV, applied to the upper vertex (i.e., referring
to a1) are still valid.

In the case where all four s-channel particles are
distinguishable, only the parity-exchange symmetry
remains. Specifically, to highest order in cosf,, the only
{-channel symmetries are

St @D~ (= 1) Iy p(— )M f 751 apypit o) |
with its s-channel consequence
s(—01,—02)
~ (= D)THT T o (=) fr 1 _ppapt Cormon)

and the obvious corresponding results for the lower
vertex. The lack of other symmetries results in all
Srroaaart 1o being populated to order s<.

fJJ'MM’



