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Inelastic Electron-Proton Scattering and a Sum Rule for the Schwinger Term
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It is shown that the form of the one-particle expectation value of the Schwinger term in the equal-time
commutator of the electromagnetic current and change densities is determined by relativistic covariance.
This allows us to derive a sum rule for the one-proton expectation value of the Schwinger term involving the
structure function S'2 measured in inelastic electron-proton scattering. From this sum rule for the Schwinger
term one can obtain the sum rule

d " vW2{q', v)
dv

d$2 0 g2

where q' is the square of the four-momentum transfer, and v is the energy loss of the electron in the laboratory
frame. We compare this equation with the recent experimental data using "scale invariance. "We find from
this comparison that this sum rule is reasonably well satisfied.

I. INTRODUCTION

'HE spin-averaged inelastic electron-proton scat-
tering cross section is characterized by two

structure functions Wt(q', v) and Wo(q', v). These can. be
defined in terms of the electromagnetic current i„(x)
of the hadrons as follows'.

d'x e " Z (PILi.(x),i.(0)3IP)
2' S

Our purpose in this paper is twofold: (1) to confront
this sum rule with the recent experimental data, ' and
(2) to give an alternate derivation of Eq. (1.3) through
a route which yields a sum rule for the Schwinger term. '

The Schwinger term S;(x,y) is defined by the equal-
time commutator

Pio(x), j,(y)]= iS;(x,y) at xo ——yo. (1.4)

The expectation value of S;(x,y) with respect to the
spin-averaged single-proton state at rest is of the form

g'

t9

2 (PIS;(x,y) IP) =f„5(x—y),
S ~yi

where f„is the Schwinger constant for the proton. We

+W ( o „)
" + &

"
+ & (1 1) show that the higher-derivative terms do not contrib-

q' ute to Eq. (1.5) due to relativistic covariance and the
commutation relation

t'
=w (q' )I 6„„ (1 5)

Here, Ip) is a single-proton. state of momentum p„ Lip(x), ipb)j=0 at *o= o.Ps denotes the spin avera, ge, and q, is the four- mo x,yo y =0 at xo ——yo.

momentum transfer given by the difference of the We then use Eqs. (1.4) and (1.5) to derive the sum rule
initial and final electron four-momenta. Further, for f„,

g =q —
gp and v = P ' g/Brv, (1.2)

d " vtVo(q', v)
dv— -—=0.

q2 q2
(1.3)

' See, e.g. , F. J. Gilman, Phys, Rev. 167, 1365 (1968).' V. Gupta and G. Rajasekaran, Phys. Rev. 185, 1940 (1969).
This is Eq. (21) in Ref. (2) since W2 is same as p.

3

where m„ is the proton mass. Ke shall use the labora-
tory system (p=0), so that v = go is just the energy loss
of the electron. Hereafter, Ip) will denote the proton
state at rest.

By combining the local current algebra with the
commutation relations between the current densities
and the I.orentz boost operators, we had derived' a set
of sum rule, s for the neutrino-nucleon and electron-
nucleon inelastic scattering. In particular, we had ob-
tained the following sum rule' for electron-proton
scattering:

vWo(q', v)
=ofv ~

o q'

The old sum rule in Eq. (1.3) follows by differentiation
of Eq. (1.7) with respect to q'.

In Sec. II, the derivation of the constraint on S;(x,y)
due to relativistic covariance as well as the sum rule for
f„is given. In Sec. III, we compare the sum rule (1.3)
with the present experimental data using scale invari-
ance' and And that it is reasonably well satisfied.

4 Rapporteur talk of W. K. H. Panofsky, in Proceedings of the
Fourteenth International Conference on Hi gh-Energy Physics,
Vienmu, 1968 edited by S. Prentiri and J. Steinberger (CERN,
Geneva, 1968), p. 23.

~ M. Breidenbach et al. , Phys. Rev. Letters 23, 935 (1968).
6 L. W. Mo, in Proceedings of the Third International Conference

on High-Energy Collisions, Stony Brook, 1969 (Gordon R Breach,
New York, 1969).'T. Goto and T. Imamura, Progr. Theoret. Phys. (Kyoto)
14, 396 (1955);T. Pradhan, Nucl. Phys, 9, 124 {1958);J. Schwin-
ger, Phys. Rev. Letters 3, 296 {1959).

8 J. D. Bjorken, Phys. Rev. 179, 1547 (1969).
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II. COVARIANCE CONSTRAINT AND SUM RULE averaging over spin, we get.
FOR SCHWINGER TERM

For generality we start with the local vector current
algebra of Gell-Mann, '

Ljo (x),jo'b)]=if"jo'(x)~(x —y) at xo=S. , (2 1)

where n, P, and y are the SU(3) indices. The Schwinger
term is de6ned by

$jo (x)j s(y)]=if o~j;&(x)o(x y)+i—S, o(xy)
at xo=yo. (2.2)

Commuting both sides of (2.1) with the Lorentz boost
operator E, (i=1, 2, 3) and using

oLE, ,jo"(x)]=j, {x)—x;mojo (x) at xo=0, (2.3)

we obtain

Ljo (x),(j's(x) —y'mojo'(x))]
+I (j' (x) -x*~oj:(x))i"(y)]

=if s&(j,7{x)—x;Bojo'(x))8(x—y)
at xo=yo -—0. (2.4)

We shall only be concerned with conserved vector cur-

rents, that is,

Bojol(x)+Bj, (x) =0, n=1, 2, 3 and 8. (2.5)

Now using (2.2) alld (2.5) 1n (2.4), we find tile co-
variance condition" for the Schwinger term,

8
2 (p IS'"(x,y) I p) =fi' &(x—y)
8

B
+fo~ 7'b(x —y)+fo+V'8(x —y)+ (2.10)

By; Byi

where fi+, fo+, . . . are constants. We take the expecta-
tion value of Kq. (2.8) and use Kq. (2.10). The left-
hand side of Eq. (2.8) is

B
(fi++fo"&'+foe%'+ ) b(x —y)

BSg'

+»{fi'+f-"~'+fo'~'+ " )~'~(&—y)

whereas the right-hand. side becomes, after some
manipulation,

B
+(f '+3fo'~'+5f '~'+" ) &(x—y)

Bxj

~x,(fi++fo+&'+fo~P+ )V'h(x —y) .

Hence, we conclude that fi fo+=f,+—=—— =0, and

2 &pl s '(*,y) I p)

B B
Lx S"{y,x)]= Ly S"(x,y)].

B&i Byi
(2.6)

B
=fi s—8(x—y) wit, h fi s fis~ (2—.—11).

B
Lx S ~{yx)]=a

Bgi
Ly S"(x,y)].

Ljo(x) j'(y)]=oS'(x y) at xo=yo (212)
The most general local form for S,+(x,y) is

Or, defining the symmetric and antisymmetric corn- Thus start,'ng from Eq (2 11) and usmg Lorentz co
binations variance, we have shown that the spin-averaged single-

p( ) p ( )] (2 7)
particle expectation value of S;(x,y) involves only the
6rst derivative of the 6 function. " Specializing to the

we have case of the electromagnetic current j„(x), we rewrite
Eqs. (2.2) and (2.11) as

S'+(&,y) =f'+(y) ~(x —y)

B2

+f,; (y) ~( y)+f; (y—) —~( -y)
By~ByI,

+ up to tbe gth derivative. (2.9)

B
2 &plS*(x,y? Ip&=f, &(x—y).
s Byi

Using the above result, we now derive the sum rule
for f„The method" f. ollowed is essentially the same as

Taking the expectation value with respect to a single
particle (which will be taken as the proton) at rest and

9 M. Gell-Mann, Physics I, 63 (1964).
'0 Equation (2.6) is the symmetric form of the condition III

derived earlier; see V. Gupta and G. Rajasekaran, Nucl. Phys.
310, 11 (1969).

"It can be shown that S; t'(x, y) itself has only the 6rst deriv-
ative of the 8 function. However, one has to assume, in addition,
a particular form for the commutation relation of j0 with the
energy density. This has been shown by D. J. Gross and R.
Jackiw, Phys. Rev. 163, 1688 (1967).

»One can obtain the sum rule by the in6nite-momentum
method by a modification of the procedure used by K. Gottfried,
Phys. Rev. Letters 18, 1174 (1967).
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in Ref. 2. V'e start vnth the identity vrhere m~' and e2' are the absorptive parts dehned by

dr pe'pp"& f I LBpA (xp),B(0)]li)

= —
&f I L~(0),&(0)]Ii&

iqp — dppp(f I I A(xp), 8(0)]I
i)e' '", (2.14)

which holds for all qo in the upper half of the complex
plane. P'or Ii& and lf) we s ail tale a single-proton
state at rest denoted by lp), and we shall further
average over the proton spin. Choose

A (x ) = d'x e "*j (x x )

B(p.p) = 8pj p(0, ppp),

%here j„ ls the electromagnetic current, and take the
limit as qo

—+ 0. The second term on the right-hand side
of Eq. (2.14) vanishes in this limit for all

I
s

I
&0. We

therefore get, using the continuity equation,

d' p( —'q. ) &( o) 2 &PILj'( ),i (0)]IP&
qa~o 8

d'~ e-""&plLjp(x 0),j,(0)]IP&, (213)

where q=(iqp, s) Defining . the functions»(q', qp) and
»(q', qp) by

d'~ e-"*&(*p)2 (III:j'(~),jp(0)]I I&

=p, (q', qp) 6;p+pp(q', qp)q'qp, (2.1(i)

and using Fqs. (2.12) and (2.13), we get the low-energy
theorem:

lim (pl+q'pp) = if„—
qD~o

(2.1'I)

"If the sum rule to be derived turns out to be divergent then
this assumption would be suspect. On the other hand, by assuming
the unsubtracted dispersion relation for the amplitude e1(q2, q0)
+v2(q~, q0)q~ and following the same procedure, one can get the
sum rule

dv — 1+ —IVg —TV' =—,f„.v v

qR
fthm

Or, in terms of the absorption cross section for longitudinal

where we have replaced
I
s

I
' by q'.

%e novr assume the unsubtracted dispersion rela-
tion":

pi(q')qp)+vp(q', qp)q'

1 " dqo'
(»'(q', qp')+q'p. '(q', qo')), (2»)

~ go —go

""2 &PILj'( ),i (0)]IP&
2j S

=PI Rp+Pp q'qp (2 19)

By colllpal'lllg wltll Eq. (1.1), we 6nd

pl +qpp2 ipr(q P/qp)W (2.20)

Putting qp
——0 in Eq. (2.18) and using Eqs. (2.17) and

(2.20) and the fact that pl' and vp' as defined by Eq.
(2.19) are odd functions of qp, we obtain the sum rule
for the Schvringer constant,

vW, (q', v)
v =pf (2.21)

g

Note that all our matrix elements should be under-
stood to contain only the connected part. Consequently,
fv is really the expectation value of the operator part
of the Schwinger term. The left-hand side of (2.21) is
positive and nonzero. This implies that if the unsub-
tracted dispersion relation in Eq. (2.18) is valid, then
the Schwinger term cannot be a c number.

Formally, by differentiating (2.21) with respect to
q', since f„is a constant, one obtains

d " vWp(q', v)
dv — =(}. (2.22)

g2 o g2

However, it should be emphasized that Eq. (2.22) ca„
be derived directly from the boosted commutation
relation LEq. (2.4)], as has been shown earlier. '

Separating the "elastic" term in Eqs. (2.21) and
(2.22), we have"

vWp(q', v)
=kfv

II
2

(2.23)

photons (Ref. j.), we have

1
,(q'+")"'Ivi-—p(q',v) I =f'

However, the convergence of this sum rule seems to be more
doubtful.

'4 If one takes the limit q'~ 0, then Eq. (2.23) reduces to

+,- - o f,v)dv =-',f„,Ply Ã A 0

since the total photoabsorption cross section for photons of energy
v is given by

( )=4 ' lim
vWg( 'v)

q2 ~0

where a=i/137. Recent experimental data (Ref. 6) indicate a
decreasing trend for 0 (v) with increasing v. However, this decrease
might turn out to be insu6icient to make the above integral con-
vergent. Thus the convergence of (2.23), in the neighborhood ofq'=0, seems unlikely. However, for large q' the sum rule (2.23)
may well turn out to be convergent.

It is interesting, however, to contrast the above result with the
sum rule obtained by assuming an unsubtracted dispersion relation
for the full Compton amplitude, namely,

1
pc

—+,— 0(v)dv=0,
2tflp 4Ã 0,'

p

which is self-contradictory.
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and" a low-energy part and a high-energy part:
c7 v Wg(q'„v)

du— — =0,
~(~'&

dR{q')——+ (2.24) dR(q')—+
dq

vl&Vg

dv-
«(c') ~q

8 v82
+ dv =0, (3 5)

v,[Gs(q')]'+(q'/4~v') [G~4')]'
2.„(1+,/4. „) where v, is chosen suf6ciently high so that in the high-

energy in egra w1 we can use scale invariance. Thus,

where R(q') is a function of the "elastic" form factors
of the proton G@ and G~.

and vc(q') is the inelastic threshold

v, (q') =m.+(q'+m. ')/2w, v (2.26)
vS'g

COZ2(Ms) )
Bq~ q 2@i&q

(3.6)

where
cog = 28K vvg/q

and we have assumed Eq. (3.4) to be true, which, as
we had shown above, is necessary for consistency with
the limit q' —&~. Hence, for large enough q' we ave
the "6nite-energy sum ru e

III. EXPERIMENTAL TEST OF SUM RULE

rincip e, ,&g,v
' l, W ( ' ) can be determined from the

inelastic electron-proton scattering experiment, an

However, the published experimental data on this
t lete enough to warrant suchscattering are not comp e

1 S we have attempted a rathera systematic ana ysis. o, w

h comparison with experimental data.loug
scRlc invarianccFor this purpose we exploit the scale

'

which was originally suggested by Bjorken, '

(3.7)

dv = — c0,F—2{cd—,) . (3.8)
Bq' q' 2m„q'

v1iV, (q' v) =Fg((v) cd =2mvv/q',
Ke have evaluated the sum rule for q = .'=0.9 BCV' and

(3.1) &u, =4 using the experimental data
0 ta' ' and find

where F2(co) is supposed to be a universarsal function that
d t be valid for large values of v and q'.

Experimentally, ~' this "scale invariancc' is found to be
»0.5 9 V' and ~&4. Wc shaH check the

sum rule only for q' in this region.
d tobeFirst note a d to cth t scale invariance is supposed to e

t for ' —+~. %hat does the sum rule in Eq. ( . )
3.1) E . (2.24) becomesimply in this limits Using Eq. ( . ), q.

du)—(o~Fg(or) } =0 (3.2)llT1

dq2 2m q2 I du

OI'

dR(q') [(uF2(co)]~=~
(3.3))

dq2 ~ 2ns~q

put" Fg(1)=0. If [&vF2(o)]„=„WO, Eq.wheie we 'ave pii ».e rotonlies that the "elastic" form factors oc t-e pro
rease logarithmically with q or q ~~.

seems ullllkcly, wc conclude R

dR(q')
+

8 v&t/2

dv = —0.87 BcV—3

q
2

(3 9)

——c~,F2(o~„.) = —0.76 BeV—'. (3.10)
2myq'

do~ F,(co) =mv j„. (3 11)

It should be emphasized that these numbers are rough
estimates ase on eb d th rather meager data available so
far. Nevertheless, we regard the agreement with the

whic may e avaih b ailable in the future, one couldunder-
take a irect esG. t t f the sum rule without using scale
1IlvR1 lance.

1 for theF' ally, we remark that the sum ru e or
Schwinger term (2.21), in the limit of q'~~, using
scale invariance, becomes simp yi 1

o)Fp(oi): 0.
"In obtaining Eq. (2,24) from Fq. (2.22), we have'

hin of W2 at the inelastic threshold.ng

(Ref. 4) zt was Inferred that (8/8q') fvW2(q', ~)/q'1 was negatIve,
d ' is also negative, it seemed then that oneI'urther, sInce

could not satisfy Eq. (2.24), Imp yIng a e
unsubtracted dispersion relations was incorrect. However, t e

d (R fs. 5 and 6) indicate that, for large co, P2((v)
elar e

of p,8, gq'}Leg g(q', s)/q2) changes sign, thus giving a
kes It DossIble to satIsfy Eq (2 24)positive contribu tion w Ic ma es i Do

rimental data' ' indicate thatpresently available experimen a
F m 1s, infRc, R eF, f t, d clcRsing function of u foI' cg

e . {34) can be checked perhaps in theThe validity of Eq. ~ . &
can e

near future.
2Ke next conslucr q nd 2 6 ite but larger than 0.5 Be

invariance is consistent with ex-for which values scale invar'

periment. ~ c split the integral in Eq. . in o

Tlie vahdity of Eq. (3.4) is not enough to guarantee the
(3.4)

made us
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convergence of the above integral, '~ though the reverse
ls true. ID Rny case~ the qucstlon of thc coDvcrgcncc of
this integral. Rs well Rs its DUIDcrlcR1 evaluation CRDDot

be considered at the present stage of our knowledge
of F2(&v) for large co. It would be really interesting if one

'7 For example, the behavior ~F2(co) (ln~) ' will lead to
a mild divergence oi the integral in Eq. (3.11).

could determine f„directly from the experimental data
using the sum rule presented here.
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Duality and the Regge-Pole Eikonal Scheme~
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The Regge-pole eikonal scheme is used to generate the partial and total cross sections and Argand diagrams
in w+w and ~p scattering at intermediate and low energies. The correspondence between the calculated
partial-wave results and the observed s-channel resonances is closer than with the direct use of Regge
poles, but the total cross sections at lower energies completely lack the experimentally observed structure.

I. INTRODUCTION

''T has been suggested by Drago' that if one takes.~ l-channel Regge exchanges (p, f, and. I') in 7r+Ir-

scattering and uses the Reggc-pole eikonal Rnsatz, then
structure is found in the total cross section that appears
to reRect s-channel resonances. This was given as
posslblc further cvldcncc for thc hypothesis of Schmid
that "the equivalence between 3-channel Regge poles
Rnd s-channel I'csoDRDccs docs Dot, hold oIl the RvcI'Rgc,
but even locally at each intermediate energy. "Schmid
examined Argand diagrams (imaginary versus real
parts of partial-wave amplitudes) resulting from direct
use of Regge exchanges and found circles characteristic
of lcsonRnccs. Hls conclusloD hRs bccn criticized foI' a
Dumber of reasons, Including the lack of any resonance-
like structure in cross sections from Regge amplitudes,
and the lack of poles on the second (unphysical) sheet,
which are usually associated with resonances. Otherss '
have examined more Argand diagrams (with the direct
use of Regge poles) and. have found rather poor corre-
spondencc between calculated and experimental results.
However, Cohen-Tannoudji ef u/. ' have proposed an

~ Vilork supported by the U. S. Atomic Energy Commission.' F. Drago, Phys. Rev. Letters 24, 622 (1970).
2 C. Schmid, Phys. Rev. Letters 20, 689 (1968).
3P. D, IIl. ColHns, R. C. Johnson, and E. J. Squires, Phys.

Letters NB, 23 (j.968).
4 P. D. B. Collins, R. C. Johnson, and G. G. Ross, Phys. Rev.

1N, 1952 (1968),
~ R. K. Kreps and R. K. Logan, Phys. Rev. 1/0', 2328 (j.969).

G. Cohen-Tannoudji, A. Morel, and Ph. Salin, CERN Report
No. TH. 1003, I969 (unpublished).

explicit form for partial-wave amplitudes which does
have second-sheet poles (this form is similar, on the
rcRl Rxls to tha t of thc clkonRl RppI'oRch %'h.1ch
probably has branch points on the second sheet).
0rago also used the Cohen-Tannoudji form and found
results similar to those found with the eikonal approach.

One of the problems in the debate is that the concept
of "local duality" has not been mell defined, The
problcQl of definition hRS sometimes bccn Rvolded by
simply invoking the qualitative nature of results using
leading trajectories at intermediate and low energies
(111 Rddltlon to ccltRII1 other slnlpllfylIlg RssllnlptloIls).
However, at higher energies the cross sections have
little or no structure. Further, the signature factor
(1—e ' ) of Regge amplitudes can easily result in
counterclockwise Inotlon on RD Argand dlRgrRIH, Under
these circumstances, the use of qualitative results to
check a loosely de6ned concept makes study of the issue
dificult.

We decided erst to investigate the source of the
structure found by Drago and then to extend the
Rcgge-pole clko11al Rpploacll 'to Irp scattcI'lIlg wllcl'c 011C
has nucleon resonances instead of meson resonances.
Thc added degrccs of fI'ccdom of lsospln Rnd pRI'1 tv
aGer hope that even qualitative results may clarify the
sl tuR tlon.

For 7r+z scattering we examined both the partial
cross sections and the Argand diagrams. ~ We found
that the more impressive structure found by Drago in

' Similar results are reported in a recent paper by J. P. HoMen
and R. L. Thews, Phys. Rev. D 2, I332 (1970).


