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It is shown that the form of the one-particle expectation value of the Schwinger term in the equal-time
commutator of the electromagnetic current and change densities is determined by relativistic covariance.
This allows us to derive a sum rule for the one-proton expectation value of the Schwinger term involving the
structure function Wy measured in inelastic electron-proton scattering. From this sum rule for the Schwinger

term one can obtain the sum rule
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where ¢?is the square of the four-momentum transfer, and » is the energy loss of the electron in the laboratory
frame. We compare this equation with the recent experimental data using “scale invariance.” We find from
this comparison that this sum rule is reasonably well satisfied.

I. INTRODUCTION

HE spin-averaged inelastic electron-proton scat-

tering cross section is characterized by two
structure functions Wi(g%,») and Ws(g%v). These can be
defined in terms of the electromagnetic current 7,(x)
of the hadrons as follows!:
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Here, |p) is a single-proton state of momentum p,,
2 s denotes the spin average, and ¢, is the four-
momentum transfer given by the difference of the
initial and final electron four-momenta. Further,

¢?*=q’—g0* and v=—p-g/my, (1.2)
where m, is the proton mass. We shall use the labora-
tory system (p=0), so that =g is just the energy loss
of the electron. Hereafter, |p) will denote the proton
state at rest.

By combining the local current algebra with the
commutation relations between the current densities
and the Lorentz boost operators, we had derived? a set
of sum rules for the neutrino-nucleon and electron-
nucleon inelastic scattering. In particular, we had ob-
tained the following sum rule® for electron-proton
scattering:
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! See, e.g., I. J. Gilman, Phys. Rev. 167, 1365 (1968).
2V. Gupta and G. Rajasekaran, Phys. Rev. 185, 1940 (1969).
3 This is Eq. (21) in Ref. (2) since W, is same as 8.

(1.3)

Our purpose in this paper is twofold: (1) to confront
this sum rule with the recent experimental data,*$ and
(2) to give an alternate derivation of Eq. (1.3) through
a route which yields a sum rule for the Schwinger term.”

The Schwinger term S;(x,y) is defined by the equal-
time commutator

Ljo(x),7:(y) ]=1Si(x,y) at xe=2y,. 1.4)

The expectation value of Si(x,y) with respect to the
spin-averaged single-proton state at rest is of the form

g
% @1Sxy)[p) =f,,;5(x—y) , (L.5)

y
where f, is the Schwinger constant for the proton. We
show that the higher-derivative terms do not contrib-
ute to Eq. (1.5) due to relativistic covariance and the
commutation relation

[jo(®),70(»)]=0 at xo=1y,. (1.6)
We then use Egs. (1.4) and (1.5) to derive the sum rule

for fp,
’ = W Wa(gt)
/ a2
0 92

The old sum rule in Eq. (1.3) follows by differentiation
of Eq. (1.7) with respect to g2

In Sec. II, the derivation of the constraint on Si(x,y)
due to relativistic covariance as well as the sum rule for
f»is given. In Sec. III, we compare the sum rule (1.3)
with the present experimental data using scale invari-
ance® and find that it is reasonably well satisfied.

2/ (1.7

* Rapporteur talk of W. K. H. Panofsky, in Proceedings of the
Fourieenth International Conference on High-Energy Physics,
Vienna, 1968 edited by S. Prentki and J. Steinberger (CERN,
Geneva, 1968), p. 23.

® M. Breidenbach ef al., Phys. Rev. Letters 23, 935 (1968).

¢ L. W. Mo, in Proceedings of the Third International Conference
on High-Energy Collisions, Stony Brook, 1969 (Gordon & Breach,
New York, 1969).

?T. Goto and T. Imamura, Progr. Theoret. Phys. (Kyoto)
14, 396 (1955); T. Pradhan, Nucl. Phys. 9, 124 (1958); J. Schwin-
ger, Phys. Rev. Letters 3, 296 (1959).

8 J. D. Bjorken, Phys. Rev. 179, 1547 (1969).
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II. COVARIANCE CONSTRAINT AND SUM RULE
FOR SCHWINGER TERM

For generality we start with the local vector current
algebra of Gell-Mann,®

[jo*(®), 4P () 1=if**"jo"(x)o(x—y) at xo=yo,

where «, 3, and v are the SU(3) indices. The Schwinger
term is defined by

Lio*(x), 7 () 1=if*7ji (%) 6 (x —y) +iS:*P(xy)
at xo= Yo.

(2.1)

(2.2)
Commuting both sides of (2.1) with the Lorentz boost
operator K; (i=1, 2, 3) and using
LK, jo(x) ]= ji*(x) —@:90jo*(x) at x0=0,
we obtain
Lo, (G20~ 3i00iob3)]
+L(G (@) —:8050%(x)), 5 (y) ]

=1 f07( (o) —2:0jo*(x) )5 (X ~Y)
at xe=y,=0.

(2.3)

(2.4)

We shall only be concerned with conserved vector cur-
rents, that is,

60jo“(x)—{—67~j¢“(x)=0, oz=1, 2, 3 and 8. (25)

Now, using (2.2) and (2.5) in (2.4), we find the co-
variance condition!® for the Schwinger term,
a i)
—[;S:#(y,x) 1= a—[ijiaﬁ(x,y)]. (2.6)

X Vi

Or, defining the symmetric and antisymmetric com-
binations

S#EEy) =3[S*f(xy)£SFxy) ], (2.7)
we have
J . a
—[&SEyx) )=+ —[y:SEEy) 1. (2.8)
X5 ayi
The most general local form for S:(x,y) is
SHxy)=f*y)o(x—y)
3 92 ,
+ fit (y)—0(x—y)+ fint(y) 3(x—y)
9y; 9y;0Y
+ - - -up to the nth derivative. (2.9)

Taking the expectation value with respect to a single
particle (which will be taken as the proton) at rest and

9 M. Gell-Mann, Physics 1, 63 (1964).

10 Equation (2.6) is the symmetric form of the condition III
derived earlier; see V. Gupta and G. Rajasekaran, Nucl. Phys.
B10, 11 (1969).
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averaging over spin, we get

0
2 (pISEEY) | p)y =t —o(x—y)
S Gy,-
d d
+ [ —V%(x—y)+ fF—Vix—y)+---, (2.10)
dyi dyi
where fi¥, fs*, ... are constants. We take the expecta-
tion value of Eq. (2.8) and use Eq. (2.10). The left-
hand side of Eq. (2.8) is

(i)
(f1i+f3iV2—}—f5iV4+ . ')———.a(x_Y)

ox;

+xj(f1:t+f3ivz+f5dzv4+ e )Vza(x_y) ,

whereas the right-hand side becomes, after some
manipulation,

]
(13 [ VAS VA - )—b(x—y)

Xj
£, (frEt fsE V2 V- - ) V(R —Y).
Hence, we conclude that fi—=f;*=f;*=...=0, and

% (b1 Seb(x,y)| )

a
=f1°‘58—5(x —‘y> with flozﬁ:flﬂa- (211)
Vi

Thus, starting from Eq. (2.11) and using Lorentz co-
variance, we have shown that the spin-averaged single-
particle expectation value of S;(x,y) involves only the
first derivative of the & function.!! Specializing to the
case of the electromagnetic current 7,(x), we rewrite
Egs. (2.2) and (2.11) as

Ljo(x),7:(»)1=1S:xy) at me=y  (2.12)

and

d
> (p1Sixy) |P>=fp;‘5(x—3’)~ (2.13)
S Vi

Using the above result, we now derive the sum rule
for fp. The method!? followed is essentially the same as

1Tt can be shown that S;*#(x,y) itself has only the first deriv-
ative of the & function. However, one has to assume, in addition,
a particular form for the commutation relation of j, with the
energy density. This has been shown by D. J. Gross and R.
Jackiw, Phys. Rev. 163, 1688 (1967).

120ne can obtain the sum rule by the infinite-momentum
method by a modification of the procedure used by K. Gottfried,
Phys. Rev. Letters 18, 1174 (1967).
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in Ref. 2. We start with the identity
/0 e ][00 (20, BOT )
— —(ICA©),BO))
i / " drf 1A G, BO)Tliyeim, (214)

which holds for all g in the upper half of the complex
plane. For |7) and |f) we shall take a single-proton
state at rest denoted by |p), and we shall further
average over the proton spin. Choose

A (xo) =/d3x e % 0(X,%0) ,

B(w0) =9070(0,%0) ,

where j, is the electromagnetic current, and take the
limit as go— 0. The second term on the right-hand side
of Eq. (2.14) vanishes in this limit for all |s|2>0. We
therefore get, using the continuity equation,

}1},2‘0 sisk/d“x exp(—1§-x) 0(x0) ‘z; (p1L7:(x),7:(0)]] p)
=is; 3, [ d*x e~ X(p|[40(x,0),7:(0)][p), (2.15)
S

where §=(igo,s). Defining the functions vi(¢?,g0) and
22(¢*,q0) by

/ % o) 3 (Pl L, 1)

=11(q%q0) dix+v2(q%q0)qqr,  (2.16)

and using Egs. (2.12) and (2.13), we get the low-energy

theorem:

limu (91+q%2) = —1f p, (2.17)
0>

where we have replaced |s|2 by ¢

We now assume the unsubtracted dispersion rela-
tion??:
21(¢%q0) +v2(g%g0)g

/

1 ” dqﬂ ! ’ ’ U
=- / —{vr'(¢%90) %' (¢%00)}
T J—Go —qo

(2.18)

13 Tf the sum rule to be derived turns out to be divergent, then
this assumption would be suspect. On the other hand, by assuming
the unsubtracted dispersion relation for the amplitude v1(g2,g0)
+v2(¢%0)q* and following the same procedure, one can get the

sum rule N .
ﬁ v 2—2[(1*\“ %)Wz—W1]= 3/p-

Or, in terms of the absorption cross section for longitudinal
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where 91" and vy’ are the absorptive parts defined by

1
— / e 1 (| LsC), ju(0)]1 p)
2% N

=vy0a+vs'qiqr.  (2.19)
By comparing with Eq. (1.1), we find
vy %y = —im(go?/ )W 5. (2.20)

Putting ¢o=0 in Eq. (2.18) and using Egs. (2.17) and
(2.20) and the fact that vy and v/ as defined by Eq.
(2.19) are odd functions of g, we obtain the sum rule
for the Schwinger constant,

VW?(q27V>

/d
0 q*

——" =}

7y (2.21)

Note that all our matrix elements should be under-
stood to contain only the connected part. Consequently,
f» is really the expectation value of the operator part
of the Schwinger term. The left-hand side of (2.21) is
positive and nonzero. This implies that if the unsub-
tracted dispersion relation in Eq. (2.18) is valid, then
the Schwinger term cannot be a ¢ number.

Formally, by differentiating (2.21) with respect to
¢%, since f, is a constant, one obtains

d e yWagv)

— dv =

dq2 0 q2
However, it should be emphasized that Eq. (2.22) can
be derived directly from the boosted commutation
relation [Eq. (2.4)], as has been shown earlier.?

Separating the “elastic” term in Eqgs. (2.21) and
(2.22), we have't

* VW2(92;V)

R(g)+ dv =3/»
n(a% q*

0. (2.22)

(2.23)

photons (Ref. 1), we have

1 [ . »
v E(q2+1’2)1/2|0'10ng(qz,1’) =1p

2% Jo

However, the convergence of this sum rule seems to be more
doubtful.
141f one takes the limit ¢>— 0, then Eq. (2.23) reduces to

1 1 re
Imy; T mﬁ ow)dv=1%/y,

since the total photoabsorption cross section for photons of energy
v is given by
2
o () =4 lim VALY
920 q
where a=1/137. Recent experimental data (Ref. 6) indicate a
decreasing trend for o(v) with increasing ». However, this decrease
might turn out to be insufficient to make the above integral con-
vergent. Thus the convergence of (2.23), in the neighborhood of
¢*=0, seems unlikely. However, for large ¢ the sum rule (2.23)
may well turn out to be convergent.
It is interesting, however, to contrast the above result with the
sum rule obtained by assuming an unsubtracted dispersion relation
for the full Compton amplitude, namely,

1 1 *
27”—1.1—{—4’_%/)- a(v)dv=0,

which is self-contradictory.
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and!®

dR(g*)

dq?

* d TvWa(g%v)
+/ du—[: Aw—j] =0, (2.24)
ne  0g* q*

where R(g?) is a function of the “elastic” form factors
of the proton Gg and Gy:

[Gu(g®) (g% 4mpH)[Gu(g?) ]?

R(g*) = (2.25)
2mp(14q2/4m,?)
and »,(¢?) is the inelastic threshold
vi(g?) =mat(g2+ms?) / 2m,. (2.26)

III. EXPERIMENTAL TEST OF SUM RULE

In principle, Wa(¢?») can be determined from the
inelastic electron-proton scattering experiment, and
hence the sum rule can be tested for all values of ¢2.
However, the published experimental data on this
scattering are not complete enough to warrant such
a systematic analysis. So, we have attempted a rather
rough comparison with experimental data.

For this purpose we exploit the “scale invariance”
which was originally suggested by Bjorken,?

yWo(g®y) =Fa(w), w=2mmw/q?, (3.1)

where Fa(w) is supposed to be a universal function that
is conjectured to be valid for large values of » and g2
Experimentally,*¢ this “scale invariance” is found to be
valid for ¢220.5 BeV? and w4. We shall check the
sum rule only for ¢? in this region.

First note that scale invariance is supposed to be
exact for g2 —c0. What does the sum rule in Eq. (2.24)
imply in this limit? Using Eq. (3.1), Eq. (2.24) becomes

[dR(q2) O

1m
q2->0

d
dwm{sz(w)}:'=0 3.2)
dg? 2mpg® 1  dow

or
dR(¢%) . [wF5(w) Joms

dg?

, (3.3)

q2->0 2 m:nq2

where we have put'® F3(1)=0. If [wFs(w) Jo—n0, Eq.
(3.3) implies that the “elastic” form factors of the proton
increase logarithmically with ¢? for ¢>—c. Since this
seems unlikely, we conclude that

(3.4)

wFo(w) — 0.

Presently available experimental data®® indicate that
Fa(w) is, in fact, a decreasing function of w for w2 35.
The validity of Eq. (3.4) can be checked perhaps in the
near future.

We next consider ¢? finite but larger than 0.5 BeV?,
for which values scale invariance is consistent with ex-
periment.>¢ We split the integral in Eq. (2.24) into

V. GUPTA AND G.
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a low-energy part and a high-energy part:

AR(¢g% vs d /vWy
SR
dg® wiey  9¢°\ ¢?

i 6 VW2
P[0, 69
v 0\ ¢

where v, is chosen sufficiently high so that in the high-
energy integral we can use scale invariance. Thus,

© d /vW, 1
/ (iv—( >= ——w: s (w,) ,
o 0P\ ¢ 2mpq?

ws=2mws/q?,

(3.6)

where

3.7

and we have assumed Eq. (3.4) to be true, which, as
we had shown above, is necessary for consistency with
the limit ¢2—c. Hence, for large enough ¢* we have
the “finite-energy sum rule”

dR(g®) [ 8 /W 1
—{—/ dv—( >= — ——wFa(ws) .
dq2 vi(g?) 392 (12 Zmpqz

We have evaluated the sum rule for ¢2=0.9 BeV?2 and
ws;=4 using the experimental data*—¢ and find

dR(¢?) vs 0 /v,
+ / dv—( >z —0.87 Bev—*  (3.9)
w@d  9°\ ¢*

(3.8)

dq?

1
— ——wsFo(w,)~ —0.76 BeV—3,
2mpq?

(3.10)

It should be emphasized that these numbers are rough
estimates based on the rather meager data available so
far. Nevertheless, we regard the agreement with the
sum rule encouraging.!® With more complete data
which may be available in the future, one could under-
take a direct test of the sum rule without using scale
invariance.

Finally, we remark that the sum rule for the
Schwinger term (2.21), in the limit of ¢2—o, using
scale invariance, becomes simply

/ dw Fa(w) =mpfp. (3.11)

The validity of Eq. (3.4) is not enough to guarantee the

15 In obtaining Eq. (2.24) from Eq. (2.22), we have made use
of the vanishing of W5 at the inelastic threshold.

16 Earlier, in Ref. 2, on the basis of the then available data
(Ref. 4), it was inferred that (3/9¢%)[»Wa(¢%v)/q*] was negative,
Further, since dR(¢?)/dg? is also negative, it scemed then that one
could not satisfy Eq. (2.24), implying that the assumption of
unsubtracted dispersion relations was incorrect. However, the
more recent data (Refs. 5 and 6) indicate that, for large , Fa(w)
decreases with increasing w, implying that at or after some large
value of », (3/9¢%)[»W2(g%»)/q*] changes sign, thus giving a
positive contribution which makes it possible to satisfy Eq. (2.24),
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convergence of the above integral,'” though the reverse
is true. In any case, the question of the convergence of
this integral as well as its numerical evaluation cannot
be considered at the present stage of our knowledge
of Fy(w) for large w. It would be really interesting if one

Y For example, the behavior wFa(w) 555 (Inw)™! will lead to
a mild divergence of the integral in Eq. (3.11).
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could determine f, directly from the experimental data
using the sum rule presented here.
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The Regge-pole eikonal scheme is used to generate the partial and total cross sections and Argand diagrams
in =7~ and wp scattering at intermediate and low energies. The correspondence between the calculated
partial-wave results and the observed s-channel resonances is closer than with the direct use of Regge
poles, but the total cross sections at lower energies completely lack the experimentally observed structure.

I. INTRODUCTION

T has been suggested by Drago! that if one takes
i-channel Regge exchanges (p, f, and P) in wta—
scattering and uses the Regge-pole eikonal ansatz, then
structure is found in the total cross section that appears
to reflect s-channel resonances. This was given as
possible further evidence for the hypothesis of Schmid?
that “the equivalence between i-channel Regge poles
and s-channel resonances does not hold on the average,
but even locally at each intermediate energy.” Schmid
examined Argand diagrams (imaginary versus real
parts of partial-wave amplitudes) resulting from direct
use of Regge exchanges and found circles characteristic
of resonances. His conclusion has been criticized for a
number of reasons, including the lack of any resonance-
like structure in cross sections from Regge amplitudes,
and the lack of poles on the second (unphysical) sheet,
which are usually associated with resonances. Others?—5
have examined more Argand diagrams (with the direct
use of Regge poles) and have found rather poor corre-
spondence between calculated and experimental results.
However, Cohen-Tannoudji et al.% have proposed an

* Work supported by the U. S. Atomic Energy Commission.

1F. Drago, Phys. Rev. Letters 24, 622 (1970).

2 C. Schmid, Phys. Rev. Letters 20, 689 (1968).

¢P. D. B. Collins, R. C. Johnson, and E. J. Squires, Phys.
Letters 27B, 23 (1968).

4P. D. B. Collins, R. C. Johnson, and G. G. Ross, Phys. Rev.
176, 1952 (1968).

5R. E. Kreps and R. K. Logan, Phys. Rev. 177, 2328 (1969).

% G. Cohen-Tannoudji, A. Morel, and Ph. Salin, CERN Report
No. TH. 1003, 1969 (unpublished).

explicit form for partial-wave amplitudes which does
have second-sheet poles (this form is similar, on the
real axis, to that of the eikonal approach, which
probably has branch points on the second sheet).
Drago also used the Cohen-Tannoudji form and found
results similar to those found with the eikonal approach.

One of the problems in the debate is that the concept
of “local duality” has not been well defined. The
problem of definition has sometimes been avoided by
simply invoking the qualitative nature of results using
leading trajectories at intermediate and low energies
(in addition to certain other simplifying assumptions).
However, at higher energies the cross sections have
little or no structure. Further, the signature factor
(1—e~) of Regge amplitudes can easily result in
counterclockwise motion on an Argand diagram. Under
these circumstances, the use of qualitative results to
check a loosely defined concept makes study of the issue
difficult.

We decided first to investigate the source of the
structure found by Drago and then to extend the
Regge-pole eikonal approach to 7p scattering where one
has nucleon resonances instead of meson resonances.
The added degrees of freedom of isospin and parity
offer hope that even qualitative results may clarify the
situation.

For =*r~ scattering we examined both the partial
cross sections and the Argand diagrams.” We found
that the more impressive structure found by Drago in

7 Similar results are reported in a recent paper by J. P. Holden
and R. L. Thews, Phys. Rev. D 2, 1332 (1970).



