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Refs. 5 and 6 are in disagreement with those of Ref. 3 creases more rapidly with the niagnetic field strength
(as well as with one another). If one of these recent than Demeur's, and at. fields of the order of 10" G or
calculations is correct, then the mass correction in- larger it can no longer be assumed to be small.
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A solution of the isospin-factored curren. t algebra at infinite momentum was given by Chang, Dashen, and
0 Raifeartaigh, who assumed that one could project from the isospin-factored current algebra those solutions
which contain a spacelike part which is de6nitely coupled to a timelike part by the current. This assumption
was used to conclude that the operator 3f3 vanishes. However, since the resulting solutions still contain a
spacelike part which is coupled to the timelike part, it was suspected that this assumption may have excluded
an important class of solutions. This, however, is shown not to be the case.

I. INTRODUCTION

ECEXTLY a solution of the SU(2) SU(2)
isospin-factored current algebra at infinite mo-

mentum was presented by Chang, Dashen, and O'Rai-
feartaigh' in which it was discovered by using an angular
condition that the resulting solutions were either
physically trivial or that they contained a spacelike
part, i.e., M'(0, for the mass operator. The physically
trivial solutions are those which correspond to the
charge-density current-density algebra and to the free
quark model which has the special property that the
spacelike and timelike solutions are unconnected by
the current. The existence of a spacelike part in other
cases of solutions is undesirable, for it makes it very
dificult to see how one could carry out a program of
saturating the current-algebra equations at infinite
momentum.

The solutions to the isospin-factored current algebra
were obtained subject to the assumption that the
current involved does not connect the spacelike and
timelike states, expressed technically as the vanishing
of the operator M3 which is defined later. Since, in fact,
it is found that the solutions do indeed contain a space-
like part, there existed the possibility that an important
class of solutions had been excluded as a result of this
assumption. It is shown, however, that the assumption
regarding the connecting of spacelike and timelike states
is actually unnecessary so that no solutions have been
excluded.

In order to 6nd solutions to the current algebra at
infinite momentum, it is necessary to introduce an
angular condition' 3 so that one can generate the
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Lorentz group, for as a result of transforming to an
infinite-momentum frame, the Lorentz group degener-
ates to an L'(2) D group, ' i.e., the semidirect product
of the group of Euclidean motions in a plane and a
boost in a fixed direction. For the isospin-factored
algebra, this angular condition can be reduced to a
simple set of equations from which one can find various
expressions for the mass operator. Central to the
problem of finding solutions to this set of equations is
the demonstration of the existence of an E(2)QD
subgroup of the Sl.(2C) groups which are generated
by the basic operators. It is also shown in this work that
the existence of the Lie algebra corresponding to this
F(2)D group is sufhcient to make unnecessary the
assumption that the current does not connect spacelike
and timelike states.

II. ANGULAR CONDITION

F'(k) =I F(k), (2.2)

then the reduced matrix element must satisfy the
equation

(2.3)F(k)F(k') =F(k+k') .

This equation forms a unitary representation of the
4 S. J. Chang and L. O'Raifeartaigh, J. Math. Phys. 10, 21

(1969).' M. Gell-Mann, in Proceedings of tlze Erice SNznzzzer ScIzoo/, 1966
(Academic, New York, 1966).

The isospin algebra at infinite momentum has the
form'

(F (k),F'(k')]=is. i, F'(k+k')

where k is the transverse momentum and where ~ g.
is the Levi-Civita symbol. If one makes the assumption
that the current is factored into the product of an
isotopic spin generator of the Lie algebra of SU(2)
and a reduced matrix element such that
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Abelian group, and by a theorem clue to Stone' has the
general solution

P(lr) eik x (2 4)

where x = (xi,x2) are two self-adjoint commuting
operators. Not all x are allowed as solutions to the
isospin-factored current algebra since Lorentz co-
variance requires only those which satisfy an angular
condition. That is, one must find the necessary and
sufhcient condition for an operator J(0), defined by

where E3 is the generator for a boost in the s direction,
so that the operator J„(0) transforms as a current under
the I.orentz group I.. This problem has been solved,
and it is found that J(0) must transform as a scalar.
under the subgroup E(2) of SL(2C). This subgroup is
gen.crated by Ei ——Xi+L2, Z'2=Ik i L2, and 'L—„where
L and K are, respectively, the usual generators of
SI.(2C) corresponding to rotations and accelerations.
If one now introduces an additional rotation about any
axis other than the s axis, it is possible with the E(2)
subgroup to generate the full I.orentz group I.. This is
the so-called angular condition, and it has been shown
to be equivalent to the relations

[Js,P (k)]= i.e„,k,—F(k),
bk;

J(0)—lim e—i siiih skisJ (0)ei sinh 1kxs
Is ~co

=Jo(0)+Js(0), (2 3)

where
LX.,A.]= (A.).=o,

Xp ——X|~ kg

(3.2)

(3.3)

AP &2i——MJ++k[M'1X+3+. (3.4)

Use is now made of the information found for the
case when k'=0 to study the situation for other values
of k . It is convenient to introduce the vector lt= (k,0)
when expanding (2.7) in powers of k. But first it is
useful to write the condition that the helicity operator
J commutes with the mass operator M' and the condi-
tion that J+, J, and Js generate the algebra SU(2), in
the form

[Ag, i1P]=-', [1V',iVg]+,

[A, ,A )=4[M', B]4. 4k[M+, iV ]—
(3.5)

(3.6)

~=2J,+ ', [(A )+ -(A )+],— (3.7)
where

(A,),=S(X~)A, .

For an arbitra, ry operator 0~, (2.8) can be written as

2e 4"'s{I,eik'sO~} = p (—i)sG„(Q)k»
n=o

(3.8)

condition is equivalent to the k-independent equation

Mg~~=|13(X~)M' 0,

with
{I,{I,{I,F( )}}}={I,{J,F( )}}, (2 7)

G (0') =M.b(J,)0~ inM. —X 0~ (J,) O~—M2

+1„0~M'I —in[(2M Ji)„10~—1„ i0~2iVJ i]
+n(n —1)[(J3)„30~+1 kO'Jk], (3.9)

2{I0~}=t'4(M2)B(J ) 0" +[k 2MJ, O~] —k'[Js C~)]+ (2 8)

4{IQH} =ii2(M2)0~+2k[M2 0~] yk4(~) (2 9)

where J and M are, respectively, generators for helicity
transformations and the mass operator acting on states
in the space K„which results from the infinite-momen-
turn limit. In the above expressions, use has been made
of the notation

- (—4)"
4e—ik:s1{J eiks1} g,g ks

n=o
(3.10)

where use is made of the notation 8"(Xi)0=—0"„for the
commutator of O~ taken m times with Xi, but we have
used the notation M to mean li" (Xi)M'. In a similar
manner (2.9) can be expanded in powers of k, and it
becomes

P(A) 0= 0~, 6'(A) 0= [A,O'],

P(A) 0'=[A [A,O]], etc.

III. REDUCTION OF ANGULAR CONDITION

L1.= (M').—2M M'+1 —n(n —1)2(M. 2+1 sM')

+n, (n —1) (n —2) (n —3)1„4. (3.11)

For the special case when 0~ =1, one finds for (3.8)

The procedure which is followed to reduce the angular
condition to a set of k-independent equations is to
multiply (2.7) by e "'"'* and expand in powers of k. A
simpli6ed set of equations can be obtained if one makes
the assumption that the function can be continued
analytically to the value lr= (k, &ik), so that k'=0.
This assumption is physically reasonable since the
function F(k) corresponds to an electromagnetic form
factor. It has been shown that in this case the angular

4k*1{I e'ksl} = P ( i) s ks— —(3.12)

C =4i5(X1)8(Xg)M'. (3.14)

with

a„=G„(1),
(3.13)

ao ——0, ai=i5(Xk)M', a =2na„ 1 for n) 2,

with 8 given by (3.7) and with C given by
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with

Q0

DJi", (3.15)
n=o ~~1

00

D-= 2 G2(~.-i) ——,
l=o

(3.16)

and the difference expression

*"'(&I&I &I O'""&}}—&I &~ ""}&)
00 00 p 1=2 Z G.(D.—,)(—4)' —&', (3»)

21=0 Q=O g P!

which gives for each order p of the momentum k the
desired k-independent set of equations for the angular
condition (2.7), namely, the set of equations

Q G, (D,-,)( )=0. (3.18)

This set of equations would not be of much use if it
did not terminate for some finite value of p. The termi-
nation of the series (3.17) depends upon the vanishing
of the basic operators M', J, B, and C as a, result of
applying the commutative operation 8™(x+)i)"(X ) to
them, where es and n are integers. It is now straight-
forward to show that

8+ ——0, (3.19)

It should also be observed that 8 and C are self-adjoint
operators on the space BC„and that C2—=b2(xi)C=O,
and A =B for n&2 as a result of (3.1).

In continuing the reduction process for the angular
condi. tion, we now introduce the diAerence expression

4O
—4»1(&1 {IO4»1}} &g O4)1~1&)

LB+++ M—+3+4[B++M-+3 =0
[B,B++7=0. (3.25)

The first of these expressions is obtained by applying
84(X+)i)4(X ) to (3.5), and the second is found by
applying 82(X )l)2(X+) to (3.6).

At this point it is assumed that the expansion (3.17)
does in fact terminate. This assumption is made reason-
able by the fact that the solutions for 8 that are found
are independent of the operators A+ and h. so that
they do vanish as a result of forming the commutator
of S a finite number of times with X+. A consequence
of this assumption is that

Ag ——82 ——0. (3.26)

This can be seen by observing that if (3.17) terminates
for some power p= (iV)2, t:hen

(riN) (BN—2) (3.27)

for all E&4. Since B~ 2 is either Hermitian or anti-
Hermitian, we obtain (3.26). Furthermore, from (3.19)
and 8(JO)B++ we obtain the result

Since M4 is Hermitian, one has the result that it
vanishes. Finally, we conclude that the termination
of (3.17) is dependent upon the existence of some
integer 22 such that 8"(Xi)B=0.

It has not been proved in general that the commu-
tator of 8 taken n times with XI does in fact vanish;
however, if 8 is expressed as a nonlinear combination
of the basic operators I+, M~, 3f+~, and M~~~ such
that o(Jo)B=0, then it is seen that B2 vanishes. On the
other hand, if 8 is represented in terms of A+ and h,
then one finds a commutation equation such that
8"(X+)B depends upon 8" '(X+)B. The Hermitian
operator 8 must also satisfy the following:

where Bg~ ——0. (3.28)

so that

n n
M„=—Q P "(X+)5 (X—)M' (3.21)

2" m=o fg

1 4
iV4 ——— (3.22)

Upon applying the commutation operator P(x+) to
both sides of (3.5), one finds the important result

(M++)2 =0. (3.23)

If one now applies 84(X ) to the equation using the
property that 355=0, it is found that

(M4) 2 =0. (3.24)

B+=S(X+)B=X+a2(A~)++ (3 20)

In continuing the study of the termination question,
we will now show that 3I4=0. To prove this, we observe
firstly that iV„can be written as

The next step in the reduction is to establish the
important result

(3.29)

This result was used in Ref. 1 as a consequence of the
assumption that one rejects solutions for which a
spacelike part exists and is definitely coupled to a time-
like part by the current t." '. To understand this, it is
observed that if one performs an expansion in powers
of k of the expectation value of the operator M' between
the states 4,'"x'

~ f), then it is seen that the operator M2
is associated with the leading term k', so that for large
values of momentum k the expectation value of 3II' on
the above states could be negative if M3 is not set equal
to zero. Since the 6nal solutions of the isospin-factored
current algebra do in fact contain spacelike parts it
remained possible that an important class of solutions
was lost by this assumption. However, this is now
shown not to be the case since it is shown that (3.29)
is a consequence of previously derived results. To
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Dp(p) =4[iI',M']+8M'
[(iL-)+++ M—]+3[(A-)++M—+]

2p[M -+,M ++]„. (3.30) 1—Dp(+i) = [iltP+]+&~
3I

Next use is made of (3.7) to show that
D4 &p)

=4![48 (R—+1)

establish this result, one begins by applying the operator ties occurring in (3.16) to be
f')P(X+)&')'i(X ) to (3.5) to find

(3.44a)

(3.44b)

(3.44c)

so tha, t one has
(h. )+++——0, (3.31)

where E, F~, and E. are given by

[B~,Mq ]=i',[M~,M„+ ]~. (3.32)

If one now multiplies this equation on both sides from
the left and also from the right with M+, one will

find the two equations

M+ A+M+ =—,', M+ M +~M~, (3.33)

@~M~ = ,',M+ —M„M+, (3.34)

(3.45)

(3.46)

(3.47)

As an example of the technique used in deriving the
above equations, one obtains after applying &)(X ) to
(3.5) the equation

which are satisfied only if

(M,)'=M +M++ M ~=0. (3.35)

[A+,M ]+[(A+),M']
=p([M+ )M']+2[M&(z), M&( i)]+, (3.48a)

(M+--)'= o, (3.36)

which is a consequence of applying &)'(X+) to the

adjoint of (3.23). Furthermore, since

I) (Jp)Mg g = aMg p, (3.37)

Since M3 is an anti-Hermitian operator, one finds the
result given in (3.29). In obtaining this result, use has
been made of the relation

which can be used. to give (3.44a).
The final step in obtaining the k-independent equa-

tions corresponding to the angular condition is to use

(3.44) in (3.17) and separate the equation according to
the eigenvalues of &)(Jp). The algebraic procedure is

similar to that which has already been used and will

not be presented in detail. The finite set of k-inde-

pendent equations corresponding to (3.17) can be
written as

one finds

HID~ =0. (3.38)
oider k 8G=O

order k', M2(p2)Gg ——0,

(3.48b)

(3.48c)

Also it is easily seen that (3.39) gives

G„(O)=0, n) 3. (3.40)

It. is now seen that the highest remaining power in the
expansion (3.17) is at order kP, where it is found that

(ap)'= (8))'=0. (3.41)

But again it is observed that 8~ is anti-Hermitian and

satisfies the eigenvalue equation

An important consequence of the vanishing of M3
is the vanishing of I3~. To see this, one first observes
that (3.19) and (3.38) require

(3.39)

Go = 8D2(0),

G+ = —~D8(+~) )

D4(0) ~

42$ l

(3.49a)

(3.49b)

(3.49c)

IV. IMPLICATIONS OF E( ) 2&8)DSUBGROUP

[Fy,G]—2M i (pi) G+ [Fy,Gy]
—[X~,G+]M'=0 (3.48d)

order k', Mp(a) Gp —4M i(~i)Gg+ [&g,Gg]
—[X~,G~]M' =0, (3.48e)

where

8(Jp)Bg ——&73~, (3.42) A very important result which is used in finding

mass operators which satisfy (3.48) is

so tha, t one concludes that

.I3g ——I3.~=13 =0. (3.43)
[i',X]=X. (4.1)

The further reduction of the angular condition can

now be accomplished by separating the quantities
that occur in (3.18) according to the eigenvalues of

the equation I)(Jp)O~& ) nO&„) Af——ter con. siderable

algebra, one 6nds the remaining nonvanishing qua, nti-

This equation together with the equations

[Xp,X ]=0,
[Jp,E]=0,

[Jp,Xg]=X~

(4.2R)

(4.2b)

(4.2c)
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generates an algebra isomorphic to the algebra of
E(2)8D, where E(2) is the group of Euclidean motions
in a plane, and D is a one-parameter boost in the s
dlrectlon.

It is also possible to show that if one requires initially
that this algebra is satisied, then a necessary condition
is that M, vanishes, provided one uses (3.1) and (3.2)
which result from the case when k' is zero. First, we
observe that (4.1) used with (3.2) and E written in
the form

lQlplles

&=K(~)++(w)-3

X+=3 (~)++ ~

(4.3)

(4 4)

pM3(i& M3( ii]=0. (4.6)

Upon multiplying this equation by 3f3(~) and using the
property that M3(&)' vanishes, one concludes that

(M3)'=0. (4.7)

But since M3 is an anti-Hermitian operator, one obtains
the desired result.

In addition, if the condition (3.48a) is strengthened
to the three separate conditions

(4.8a)

(4.8b)

and if one accepts the results of the case when k'
vanishes, then it is easily seen that the conditions (4.8)
require M3 to vanish and therefore the preservation of
the E(2)3D structure. The case 8=0 is trivial since
in this case 8+ is obviously zero, and we have already
seen that this is sufhcient to show that 3SI3 vanishes.
For the case (4.8b), one finds

&+=~~3(~1) (4 9)

This result together with the equation found by
applying 8(X+) to (3.4) gives

(4 5)

Next we show that this result requires M3 to vanish.
To do this, we apply the commutation operation
P(X+)8'(X ) to (3.6) and use (4.4) and its Hermitian
adjoint to show that

so that (3.1) gives

82=0. (4.10)

However, we have already seen in Sec. III that this is
sufhcient to prove that M3 vanishes.
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V. REVIEW OF SOLUTIONS

The mass spectra representing the solutions of the
isospin-factored current algebra have been presented
elsewhere, ' and the details for the construction of the
solutions can be found there; however, for complete-
ness, a review of the results is presented here. In order
to obtain solutions which are consistent with the &-

independent equation (3.48), one finds solutions of
the Hilbert spaces Xo and K+ which form a basis for
the mass operator corresponding to the cases in (4.8).
It can be shown that a general solution can be obtained.
by a suitable coupling of the solution for the three
separate Hilbert spaces.

For each of the values of 8, it is possible with a
suitable redeinition of the basic operators X~, E, J,

'

and F~ to generate an algebra isomorphic to the algebra
of SJ (2C). These algebras can be used to construct
mass operators which are consistent with the angular
condition (3.48). Further, it is found that each of the
resulting mass operators is equivalent to one which can
be derived from an infinite component wave equation.
Moreover, it is shown that these mass operators admit
spacelike solutions, so that one is confronted with these
unphysical solutions in attempting to carry out the
program of saturating the current algebra at infinite
momentum. However, if these spacelike solutions are
uncoupled by the current operator, then one could still
saturate the current algebra, but this possibility is
closed since it has been shown that the current does
in fact connect the spacelike and timelike solutions in
all nontrivial cases.
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jErratum

DQQRDDcs of R DGUMC-PCRke6 ResoQRllce, R. RUssELL CAMPBELL, PHILLIP W. CoULYER, AND GoRDoN
L. SHAW LPhys. Rev. D 2, 1184 (1970)j.The ordinate label g of the top curve of Fig. 1 was accidentally
deleted in the printing. In the caption of Fig. 1(a), f should read p. In the caption of Fig. 1(b), the equa-
tion should read b=bsw(1+0. 1/P{s—12)'+0.5$}.


