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reduces to

p = —eA+ (e2A'/2m) (Ir/co) (radiation gauge),

8=po =m+ (e'A'/2m),

which agrees with Refs. 1 and 2.
We would like to point out that from Eq. (6) we

obtain p'= —m' (without any averaging), as we must
since the original equation of motion (I) gives p„dp„/dr
=0, a condition built into a&l classical equations of
motion. 4 Eberly and Sleeper' consider the quantity

(I' ")'= (p +eA )'= —m'+2eA p' —2e'A A
and define an "interacting" mass by an average

mw2 ((P cBn)24

but since (E„"'")'is not a gauge-invariant quantity, it
cannot have physical significance. To obtain the usual
quantum-field-theory mass shift, ' it would be better to
consider the average of p„, since the usual momentum
experiment (especially in the light of quantum n-. e-
chanics) would automatically perform an average over
many cycles of any optical frequency present. This pro-
cedure gives

(p„)=p„'—e'(A A)k„/2k p'
and

(p) (p)= —m' —e'(A A),

the mass shift, found in Ref. S.

4 The last sentence in Sec. II A of Ref. 2 is a misprint (private
communication). It should read (L&') = (P'}=~n2+-'q'nz'

'L. S. Brown and T. K. B. Kibble, Phys. Rev. 133, A705
(1964).
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We derive a simple dimensional relation on the canonical energy-momentum tensor. This relation is
used to express the de6ciency of the scale invariance. It is shown that the scale transformation is not com-
patible with the Lorentz covariance in some cases which lie within the framework of the renormalizable
6eld theory.

I. INTRODUCTION

'HE relevance of the notion of scale transformation
to high-energy physics was noted sometime ago, ' '

and its interest has revived in recent years. ' However,
as was noticed by many authors, the invariance of the
theory under the scale transformation is badly broken
due to the presence of the mass, and in some cases the
coupling constant. One of the purposes of this paper is

to examine how the presence of mass destroys the scale
invariance. First, we derive a simple dimensional rela-
tion on the canonical energy-momentum tensor in Sec.
II. The relation is then exploited in Sec. III to express
the dehciency of the invariance in terms of the masses
and the coupling constants. Sections IV and V are
devoted to showing that even in renormalizable field

*Work supported in part by the National Research Council of
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theory the notion of scale transformation is not com-
patible with the Lorentz covariance. This is because in
some field theories such as the Dufhn-Kemmer and the
Proca theory, the mass-zero limit does not exist and
because of the presence of the mass the scale transfor-
mation becomes incompatible with Lorentz covariance.
This incompatibility occurs unfortunately in unre-
normalizable as well as in some renormalizable held
th cones.

II. EULER EQUATION

We shall begin our discussion with the dimensional
analysis of the canonical energy-momentum tensor.
Consider a Lagrangian containing field variables, and
their first-order derivatives:

I =1.(P'"'(x) rj @'"'(x) m'"' f ) (2.I)
where we have written the mass m("& and the coupling
constants f; explicitly. 4

The canonical energy-momentum tensor is

(2 2)

4 The 6eld variable &(")(x) is in general of multicomponent form.
However, we omit indices for the sake of simplicity.
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where we have assigned
units)

tile dlnlellsloil as (111 natul al

[y(.&]

[m&']=I. '

Lf'] =I"'
(2.5)

The Euler-Lagrange equation enables us to rewrite
(2.4) as

BI. ,t.
&)

y (K)

OL BL—Q m&"'- +Q q; f; , (2—.6)
Bm&"' * Bf

8L
B„T„„x„ l("'

gg y(K)

BL 8L
=- —P m&"& —+Q &)~f, . (2.6')

Bm&"& ' Bf;

We further note that the 4-divergence term on the
right-hand side can be eliminated by redefining the
Lagrangian

By the aid of the Euler equation

BJ
4j—g i(~) y(~)+Q(i(~)+1) B y(~)

gy (K) K aa„y(')

BI BL
+P m&"'- —Q q;f„,-—(2.3)

cIm(') ~ 8 t

we immediately obtain

0I gL
T'„(x)= P i(~)=y(~)+ B y(~)

g@(K) gg y(K)

BI. BL—+2 n'f* , ('- 4)
Bm&"' ' Bf;

Note that the right-hand side involves only the old
Lagrangian. This relation was used previously in con-
nection with the discussion of the se1f-stress. 5 5'

III. GENERATOR OF SCALE TRANSFORMATION

Under the infinitesimal scale transformation

x„—& x„'=(1+e)x„, (3 1)

Tak.ing the divergence, we obtain

BL
8 5 (x) = „T„„„(x)+x t"8„ —+"(x)), (3.4)

By„&'&(x)

on account of the conservation of the canonical energy-
momentum tensor

B„T„„(x)=0. (3.5)

If we make use of the dimensional relation (2.6), we
arrive at

dl. BL
B„5„(x)= —P m &"& +P—));f, ,

Bm'"' ( Bf
(3.6)

which may be called the scale dePcie)i, cy.
The generator of the scale transformation

D(o)= da &, (x)S&,(.x)— (3 7)

the field is assumed to undergo the transformation

y(~) (x) ~ y(~)'(x') —(1 i(~) e)y(~) (x) (3 2)

where /&"& is defined by (2.5). The current associated
with this transformation is'

8L
5„(x)=T„,(x)x„+p i( &——y& &(x). (3.3)

By &"'(x)

(2.7) [D(o),P,]=iP„i do„(x)B&BS—&,(x), (3 g)

Since the new Lagrangian contains second-order de- [D(o) ~„,]=& do (x)x B 5„(x)
rivatives, the canonical energy-momentum tensor has
to be redefined as

i do„(x)x„B&—,5&,(x), (3.9)

T„„'(x)=Q — B„y&"&+ — B),B„y&"'

~ 88„@("' 88„8),y(K)

B y(~)
8()~8)y(

BL
2'„„'(x)= —P m&"'

BL
+2 n.f,

Bm&'& *' Bf;

The use of the explicit form (2.7) then yields

[D,P,7=iP„[D,cV„„7=0, (3.10)

5 J. Strathdee and Y. Takahashi, Nucl. Phys. 8, 113 (1958).'" 1Vote added in proof. A similar argument on the dimension of
a vector field is found in M. A. B. Beg et a/. , Phys. Rev. Letters
25, 1231 (1970).' Y. Takahashi, Proc. Roy. Irish Acad. (to be published).

where P„and M„„are generators of the Poincare group.
If the scale deficiency vanishes, i.e., if the theory is
scale invariant, we obtain
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which agrees with the result obtained previously. ' From
Eq. (3.6), it seems clear that if there is no mass and no
dimensional coupling constant, the scale deficiency
vanishes. However, as is well known, most of the
massive field equations we encounter in relativistic field
theory do not allow a continuous transition to the mass-
less case. We shall therefore examine how the generator
D(0) induces the transformation on such fields.

where (4.5) and (4.7) have been used. However, we have

(1 P—4')P;8, (x.8.+2)4 (x) = m—(x.8.+2) (1 P—4')4 (x),
(4.14)

which is a consequence of (4.2) and (4.3). Substituting
(4.14) into (4.13) and integrating over x', we obtain

[4 (x),D(i) 3 = i(x 8.+2)P4V(x)
+i (x,8„+', ) (1—-P4') P(x), (4.15)

Iy DUFFI1% KEMMER pgELD WlgH Spj:~ ZERO with

Since we defined the generator D(o) so tha. t the field
Q'"&(x) transforms according to (3.2), we would expect
the relation

(Pi8i+m)P(x) =0,
where the Pi are 5XS matrices satisfying'

P~pip. +P.p&Pu =Lip.+8.ip,

In particular, the relation (4.3) yields

4'=p4,

M*P4=o,

p.(1-P ') =p 'p',

(1 P~')O' =-O'P4',

(4 2)

(4.3)

(4.4)

(4.5)

(4.6)

(4.7)

with i=1, 2, 3. In this case, we put I=—,'. Namely, the
field undergoes the transformation

f(x) ~0'(x') = (1—
2 ~)0(x) .

The current is then given by

S„(x)= —iP(x)P„(x,8„+$)P(x).

We thus obtain

(4.8)

(4.9)

[P(x),S„(x')j= id (8)6 (x —x')P„(x„'8„'+—,')P(x'), -
(4.10)

with

[yi &(x),D{~)]=i(x„8„+l~&)y& &(x). (4.1)

However, this is not the case, as will be seen below.
Let us first take the Dunin-Kemmer equation of a

spin-0 field

D(t) =i d'x'S4(x') . (4.16)

The 6rst equation determines P4'ip (x), and the
(1—P4')&&t'(x) component is determined from it by (4.18).
As is seen in (4.18), if P4'f (x) transforms with / = -,', then
(1—P4')P(x) must transform with f=r5, since the scale
transformation does not change the mass. As can easily
be seen, the fourth component of the current S„(x)con-
tains only the P4'f(x) component. Therefore, it was not
really necessary to assign the transformation (4.8) to
start with. All we had to require was

P4+(x) —+P4+'(x') = (1——,
' e)P4'P(x), (4.19)

and the other component (1—P42)P(x) is automatically
determined by (4.18).

The fact that the two components P4+(x) and
(1—p4')p(x) transform differently causes a serious
trouble in connection with the Lorentz covariance, since
the separation is not a Lorentz-invariant concept. To
see this explicitly, we note that the field f(x) can be
written as'

—i84y(x)

8iy(x)

In other words, the components P4'f(x) and (1—p4')p(x)
transform with l —,

' and l =—„respectively. This clearly
contradicts our original assignment (4.8). The reason
is the following. Because of the properties (4.4)—(4.7),
we can split Eq. (4.3) into two:

[P484 m'—(P;8„)'+ jmP P4( )x=0, (4.17)

(1—P,')P(x) = —m 'P,8;P4+(x) . (4.18)

d(8) = —[m '( —m')+P), 8),—m—
'(P&, 8&,)']. (4.11)

At equal time, we have,

d (8)h(x —x') = i (P4 m—'P,P48;—m'P P,8,—)48 (x x'), —
(4.12)

which gives

8.y(x)

83'(x)

. —~(x).
' —i84y(x).

(4.20)

[y(x),S,(x') 7,=, = —(P,' —m-'P, P.'8,)
&&b(x —x') (x„'8„'+',)P(x')-

= —[P4' —(1—P42) m—'P,8~]8(x—x') (x„'8„'+,')P (x'), -
(4.13)

7 G. Mack, Nucl. Phys. SS, 499 (1968).
The explicit form of pq is given, for instance, in Refs. 9 and 11.

(4.21)

. —m4(x).
~ Y. Takahashi, An Introduction to Field Quantization (Perga-

mon, New York, 1969).
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0

8gy(x)

(4.22)

AVe then arrive at"

[Ug(x),D(1)j= i(x,8.+1)-', (8),„+gg„)U„(x)
+i(x„B„+3)-', (bg„—gg„) U„(x), (5.5)

which means

[V;(x),D(t) j=i(x„a„+1)U, (x),
[U4( x),D(t)]=i(x„B„+3)U4(x).

(5 6)

where f(x) is a scalar field satisfying

(0 —m')y(x) =0. (4.23)

It is obvious that the two components are mixed by a
I.orentz transformation. Thus, it is not possible to
assign the transformation (4.19) in all Lorentz frames.

One can argue that the difficulty mentioned above is
due to the Du%.n-Kemmer formalism which can be
replaced by the ordinary scalar field. Indeed, the diK-
culty does not arise in scalar and spin--,' spinor theory
(if the interaction is simple enough). However, as is
seen below, a similar difficulty arises for a neutral vector
held.

V. MASSIVE NEUTRAL VECTOR FIELD

As another example of the difhculty of scale trans-
formation, we take a massive neutral vector field which
can interact with a spinor field within the framework of
renormalizable theory. ' "The Geld equation is

[CI8„,—B„B,—m'8„,]U, (x) =0. (5.1)

As before, we assign the transformation property with
/=1,

U„(x) ~ U„'(x') = (1—e) U„(x), (5.2)

and construct the current

5„(x)= ——,
' [8„U.(x) —8.U„(x))(x.8,+1)U. (x)

+ -,' U. (x) (x„a„+2)[B„U.(x) —B.U„(x)j. (5.3)

The equal-time commutator of U(x) and $4(x') can
easily be calculated by the aid of the formula

[Ug(x), U, (x')j=i(bg, —m 'BgB,)h(x —x'). (5.4)
0 It would be appropriate to point out here that the dimension

of the coupling constant assigned in Sec. II does not give us any
information on the renormalizability of the interaction. For the
proper dimensional analysis in conjunction with the renormaliz-
ability, we refer to Ref. 11.

'~ H. Umezawa, Qmentern Field Theory (North-Holland, Amster-
dam, 1956); S. Sakata, H. Umezawa, and S. Kamefuchi, Progr.
Theoret. Phys. (Kyoto) '7, 377 (1952).

We again encounter the difhculty in which the space
and the time components of U„(x) transform differently,
with /= 1 and l. =3, respectively. The reason is the same
as in the previous case, namely, the constraint equation

m'U4(x) = iB;~;(x) (5.7)

determines U4(x) in terms of 7r;(x), the canonical mo-
mentum of U;(x).

VI. DISCUSSION

The above-mentioned difhculty arises in almost all
theories of higher-spin 6elds. This is due to the following
situation: In order to introduce spin, which is essentially
a property of three-dimensional space, we have to
supplement with extra components on the grounds of
covariance in four-dimensional Minkowski space, and
these extra components are connected with the original
independent components through constraint equations.
The constraint equations in general contain the Gnite
mass and the space derivatives, as was seen in (4.18)
and (5.6). The scale transformation only changes the
latter but not the former. Thus the extra components
transform differently from the original independent
components, because of the space derivative. The above
argument shows that as soon as the scale invariance is
destroyed, it is always possible that the covariance will
also be destroyed. In analyzing high-energy processes,
is it then meaningful to talk about Lorentz covariance
and broken scale invariance simultaneouslyP

"g„„=1(p= v=1, 2, 3); g» ———1 (p=y=4); g»=0 otherwise.
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