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Polarization Phenomena in Vacuum Nonlinear Electrodynamics
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We study the inhuence of the nonlinearities of vacuum quantum electrodynamics on the propagation of a
low-frequency wave traversing an intense electromagnetic 6eld. Cotton-Mouton and Kerr effects on the
polarization, as well as the associated birefringence, appear in analogy with the corresponding phenomena
in material media. The magnitude of these effects is very small. It is not, however, excluded that they might
provide a direct test of photon-photon scattering.

I. INTRODUCTION

HE existence of sources of intense electromagnetic
fields makes it desirable to reconsider a number

of predictions of quantum electrodynamics in the low-

energy range. In a previous article' we have studied
the possibility with available techniques of testing the
nonlinearities of quantum electrodynamics in the optical
range through the mechanism of pair creation. It was
found that the effect is exceedingly small. The sugges-
tion was then to investigate dispersive, rather than
absorptive, effects. Instead of addressing ourselves to
the standard question of photon-photon scattering
cross sections, we examine here the related question
of the behavior of an optical wave in a constant electro-
magnetic field. In several cases this kind of propagation
has already been studied, ' ' but we concentrate here
our attention on polarization phenomena. The reason
for undertaking this study is to try to find a phe-
nomenon which does not require the measurement of a
differential effect like a scattering cross section, and
hence is a priori more favorable.

There is a great wealth of effects in terms of optical
phenomena, similar to those familiar in the study of
light propagation through isotropic materials, in the
presence of external fields. To be more precise, one 6nds
in a magnetic or electric field the analogs of the Cotton-
Mouton and Kerr effects on polarization as well as the
associated birefringence. 4 Unfortunately, all these
effects are very small.

In order to estimate their magnitude let us give a
crucial figure for magnetic 6elds, for instance. The
typical dimensionless parameter in the problem is

a = equi X/I'c',

where I is the electron mass and 3C the magnetic field.
For 3C equal to 1 G, the parameter u is equal to 2.3
&10 ".Now, any effect of K on the incident wave is
mediated by the vacuum-current Quctuations which
are even under charge conjugation. As a result the
polarization tensor is also even in X. Furthermore, for
frequencies cv small as compared to me'/f'i, it is sufficient

' E. Brezin and C. Itzykson, Phys. Rev. D 2, 1191 (1970).
J. Toll, thesis, Princeton University, 1952 (unpublished).

3 J. J. Klein and B.P, Nigam, Phys. Rev. 135, B1279 (1964}.
~ L. D. Landau and E. M. Lifchitz, Electrodynamics of Con-

tinuous Media (Pergamon, Oxford, 1960).
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to limit oneself to the lowest order (quadratic) both in

frequency and magnetic field. The polarization tensor
is then proportional to neo'u' (n is the fine-structure
constant) times numerical factors depending on the
direction of propagation with respect to the applied
field. Consequently, the difference in refraction index
corresponding to a propagation perpendicular to the
field (where the eRect is maximum) is expected to be
of order o.a'. The phase difference between the two
components of a linearly polarized wave, traversing a
distance I. across the field, is then estimated to be of
order p (I/X)na', where X is the wavelength. For a
laboratory experiment with 3C = 10' G, i.e., u =2.4
&10 ', X=0.1 p, , and I.=10 cm, the expected phase
difference is of order y 10 ".Similarly, birefringence
is characterized by the difference in indices of refraction
na'. A 1% effect would require fields as high as 10"—10"
G, which could only appear under very special condi-
tions in astrophysics.

The quest for observable effects in laboratory experi-
ments exhibiting these nonlinearities in the optical
range remains therefore open.

As a matter of notation, we now use standard units
with 0 =c=1.

II. WAVE PROI'AGATION IN NEARLY
CONSTANT FIELD

The interaction between the incident wave and the
applied field is mediated by the quantized electron-
positron field. The integration over the variables of
the charged particles is responsible for an extra term
6S in the action for the electromagnetic wave, which

reads

&0l~ -pl: —V'd' j() A( )1l0)
eio8 (-')

(0 l
T expL ild4x j—o(x) 'A (x)) l 0)

where A „(x) stands for the vector potential of the wave,
and j„(x) stands for the current operator of the quan-
tized Dirac field of the electron in the presence of the
external field; jo„(x) is the same operator in the ab-
sence of field. The effect of the denominator in (2) is to
cancel the remaining (divergent) contribution when the

applied field vanishes. It thus provides a de6nite renor-

malization procedure, and is such that 65 can be ex-

panded in a power series in A (x), the lowest order being
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quadratic since (0l j(x) l0) vanishes from Lorentz-
invariance arguments. The quadratic term is responsible
for the modification of the propagation properties. It
can be written

Let us set
p = (n/452r) (e/rpi2)'

The modified Maxwell equations then read

d'xd'y A „(x)2r0"(x—y) A.,(y), (3)

(1—pF)8 F""+2pF"&«I F S+ 'pr"-v&a F r'=0
g F+e~ —0

where the polarization tensor is defined through

~p" (x—y)
=2&Ol TLj (x)j"(y)] IO) —2&OI 2'Lj;(x)j,"(y)]10)
=ie2 trl G(xy)y "G(yx)y"]—(value at zero field) . (4)

Here 6 is the Green function of an electron in the
presence of the field. It is easy to verify that m&" is
invariant under gauge transformations (of the vector
potential of the applied field) and space-time trans-
lations if this field is homogeneous. The problem is
then in principle reduced to the calculation of the
Green function in a constant (or nearly constant)
external field. This is a case where an explicit solution
for the Green function is known and the calculation
could proceed using Eq. (4). Though this might
appear to be an a,ttra, ctive mathema, tical exercise, it is
not absolutely necessary for our present purposes.

Indeed, only the first nonvanishing term of 2r""(k),
the FOurier tranSfOrm Of 2r&" (X—y), in an ezpanSiOn in
powers of both k and the external field, is really needed.
This is because of the smallness of the parameter a,
and of the frequency, as compared to the electron mass.
Under these conditions we can make use of a classical
result due to Heisenberg and Euler which gives the
hrst correction to the free Lagrangian of the Maxwell
field in the presence of vacuum charge fluctuations to
lowest order in frequency. '

Let f denote the total electromagnetic field Iv'+F,
where F corresponds to the optical field and F is the
(nearly) constant applied Geld. The additional La-
grangian of Euler and Heisenberg reads (with f"0"

2 «pv p pf and «0122 +1)

~&=(2 '/45~')t4(f')'+ 0(f f")'] (5)

where f'= f„„fp" and f f*=f„,f"&" I. t is suKcie.nt to
keep in bZ only those terms tha, t are quadratic both
in F and 5 (since we are not interested in the direct
eBect of the incident wave on itself, nor of the external
field on itself). This procedure gives for the interaction

go=(2~2/45222')PF2P+(F S)2

+-.'(F &*)(~ ~*)
+( / 7)(4F ~*)'] (6)

It is clear that the modified action computed from (6)
will indeed be of the form (3) with 2r&"(k) of second
order, both in frequency and applied 6eld. It must then
coincide to this order with the result from the general
theory.

~ ~. Heisenberg and H. Euler, Z. Physik 38, 714 (2936).

III. PROPER MODES

To get the proper modes, we must then set the
determinant of the system (12) equal to zero. In
general, this procedure leads for the dispersion surface
(frequency in terms of wave number) to a fourth-order
cone in k space. In cases of practical interest (pure
electric or pure magnetic field, for instance) F P*
=- —48 K vanishes, and the dispersion surface de-
generates into two second-order cones corresponding
to two privileged modes. We shall henceforth assume
S 5~=0. Then the two proper modes correspond to the
vanishing of $2 and pi, respectively. One has

(i) mode 1:

(1—PP)k'+4' S S k=o, «,P(k) =(0kP+Pk S"P.

(ii) mode 2:
(13)

(1+2'PF')k2+7Pk F F k=o, «20(k) =P«kp+gk„P*"&.

I.et us note the following simple identity:

k vy v3: k = (k0)2g2+ (lr2)~2 —2k0(ir g ~)
—(k a)2 —(k X)2. (14)

Let us consider a plane-wave mode with four-dimen-
sional wave vector k. Using the vanishing of B„F*I'",
we set

Fp" (x) = («pk" «"kp)e'"—*

where «"(k) describes the polarization of the wave.
Equation (8) takes the form

(1—pP)(k'" —k'k )+4pk„v" («e k)
+7likP'*"&(«F* k) =0. (10)

In this formula ~F k stands for e F 'k„and similarly
for «P* k. From this equation we easily see that «(k)
has to be of the form

"(k)= (0k0+t,kvr"0+(2k, z*"0

in the case of a general field F. The parameters ( are to
be determined from (10).It is clear that $0 corresponds
to an irrelevant gauge transformation. Inserting (11)
into (10), we find with the help of some simple algebra
that pi and j2 are solutions of the homogeneous system

fiL(l —P5")k'+4Pk P f"k]—$2Pk2(8 0'") =ov
—l (7/4)~k'(~ ~') (12)

+(2L'(1+-,'PP)k2+7Pk V. S' k] =O

where obviously k 6- 5 k means k&F 5" k~.
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For definiteness let us consider the case of a pure
magnetic 6eM $C and let 0 be the angle between K
and k (Fig. 1). Let us further introduce the index of
refraction e through the de6nition k=(a&,&un), with
e= ~n~. Then we can solve Eqs. (13) for m' —1 and
e(k), to 6rst order in p. We choose Po in such a, way that
~0 =0 and de6ne e up to a scale factor. We 6nd

(i) mode 1 or transverse mode:

m ~' —4 =4pR' sin'0, a~ ——n &K;

(ii) mode 2 or parallel mode:

I" 1=—IpX2 sin'0, e'=K —(K n)n.

The terms transverse and parallel refer to the situation
of the polarization with respect to the plane (K,k).
Note that e' —1 is proportional to sin'8, i.e., is invariant
in the replacement 8 —+ m &0, reAecting the symmetry
of the effect under the change of $C into —$C. The effect
vanishes at 8=0, when the wave propagates along the
field, and is maximal at 8 =-', x, perpendicular to the field.
We further observe that a2 fails to be orthogonal to n
by an amount proportional to (eP —1) (K n).

In the case of a pure electric 6eM it is readily veri6ed
that, to the same order in p, the roles of the two modes
are interchanged: The transverse mode ~ =n XE has
index &z' —1 = 7ph' sin'8, and the parallel mode
= 8—(8 n)n has index rP 1=4pP sin—'0 as one would
expect.

A linearly polarized wave with frequency ~ and
wavelength X=2m./co propagating along a distance L
perpendicular to a constant magnetic 6eld $C would be
transformed into an elliptically polarized wave accord-
ing to s (t) =n's' cos(ad —m'L)+nme2 cos(u&t —e2L) if its
initial polarization were s(t)=(n&e'+nge') co~t The.
elliptical locus of the 6nal polarization vector is

cosc —sin'4
n2 nyet

with the phase shift 4 given by

I. n etc ' I.
C = 2~(n' —e,)—=——

m2

This is in agreement with the estimate given in the
Introduction. We would have a similar effect in an
electric 6eM with X replaced by 8.

IV. ENERGY PROPAGATION

The most natural way to examine the propagation
of energy in the wave is to compute the energy-mo-
mentum tensor density T„,. The Aux of energy is then

given by T I, where l runs from 1 to 3. This tensor can
be derived from the action S=S'...+8S and turns out
to be equal to

T„„=g„„-'L(1—~')F' —2 (F )'
—-'(F ~*)'—(7/4)F F*P '"]+(1 pS')F—„F'.
,P ~„—&.„+2m(F„.~.,+r„.F .)j

—(7/4) pLF F"f„.5',+~ ~"F,.*F',
+2F P*(F„.*S',+~„.*F',)]. (18)

Inserting the expressions for It obtained in Sec. III, we

could derive from (18) the Aux of energy in the two
modes. It is, however, possible to obtain the same
result by computing the group velocity. We present
this second method of calculation, which is much

simpler. The group velocity is given by

For the case of a pure magnetic field, say, we derive
from (13) (to lowest order in p)

(i) transverse mode:

vi ——(1—4pX')n+4p(n K)K;

(ii) parallel mode:

vg ——(1—7pX')n+7p(n K)K.

(20)

V. comcLUSrON

Again, if BC is replaced by 8, then e& and ~2 are inter-

changed. We see, of course, that the energy propagates
in a direction diferent from its wave vector as occurs
in a nonisotropic crystal (except for 0=p-', m-, with p an

integer).
If a wave enters a region where a field is present, it

will split in to the two modes giving rise to the phe-

nomenon of biref ringence.

PIG. 1. Propagation of the two modes in g, static ma0;netjc Qe&d.

We have presented a particular aspect of the scatter-

ing of light by light predicted by quantum electro-

dynamics.
The small magnitude of these nonlinear effects is

such that the observation of the modes of propagation
of a light wave in static 6elds, predicted by the theory,
makes their direct observation in a laboratory experi-

ment rather unlikely at present. However, high-

intensity oscilla tory fields with frequencies small

compared. with the wave frequency might serve as a
quasistatic "external 6eld" for the purpose of studying

the effects discussed here. Thus, one could, for instance,
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use a laser beam to provide the "quasistatic" field and
x rays as the incoming wave. With (eH/mz) as high as
10 ' and X of the order of 10 cm, a 10 ' effect wouM
require an L of the order of 0.1 mm. These figures,
while they might look a little futuristic, suggest that
polarization phenomena might perhaps be a promising
means of probing directly photon-photon scattering.

After the completion of this work, we were informed
that a discussion of nonlinear electrodynamic phe-

nomena has also been reported by a group in Princeton,
with an eye towards astrophysical applications. '
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The classical. motion of an electron interacting with a plane-wave electromagnetic pulse is calculated in
a fully covariant manner starting from the relativistic equation of motion neglecting radiation reaction.

HE motion of an electron in an intense plane-wave
electromagnetic field has been given recently by

Eberly and Sleeper' and by Sarachik and Schappert. '
We wish to give in this note a direct calculation of the
motion of the electron from the equation of motion in-
stead of using the Hamilton-Jacobi equation. This
method has the advantage that it gives the orbit directly
in a covariant and gauge-invariant form. We introduce
the four-vector potential for the plane-wave electro-
magnetic field in the Lorentz gauge, '

A „(n) =a„A (n), a„=(a,iap) .

Relating this to the notation of Ref. 2, we have

where r is the proper time and p„=md'„/dr is the elec-
tron's momentum. This gives

d(k p)/dr=0,
since k a=k'=0. Thus k p is a constant of the motion
and can be evaluated from the initial conditions. Letting
p„' be the four-momentum of the electron for r ~ —pp,
wehavek p=k p .Nowk p=mk dpp/dr= mdn/—dr, or

dn/dr= —k p'/m.

In terms of n, Eq. (5) becomes

dp„/dn= (e/k p') (k„a p a„k p')—A'(n) (4)

aA (n, ) =A(x, t) =A(n)P(n) .
n is defined by

n—=cot —lr x= —k x, k„= (k,ipp), k'=0

giving

or
d(a p)/dn = —ema'A'

a p=a p' —ea'A.

where k is the propagation vector for the laser beam.
The Lorentz gauge requires the restriction k a=0. The
electromagnetic field tensor is then

F„„=B„A„—B„A„=—(k„a„—a„k„)A'(n),

where the prime denotes a derivative with respect to
the argument. The relativistic equation of motion
neglecting radiation reaction is

dp„/dr = (e/m)F„.p.
= —(e/m)(k a p —a k p)A'(n),

* Work supported by the U. S. Atomic Energy Commission.' J. H. Eberly and A. Sleeper, Phys. Rev. I'76, 1570 (1968).
'K. S. Sarachik and G. T. Schappert, Phys. Rev. D 1, 2738

{1970).' We take c = 1, and our metric is chosen such that a b =a b
+a4b4(=a b —apbp).

Substitution into (4) gives

A. „p„'k„e'A„A„k„
p„=p,"—e A„—

k p' 2k p'
(6)

Equation (6) gives the four-momentum of the electron
in a covariant form valid for any reference frame, any
initial momentum p„, and is invariant under gauge
transformations that remain in the Lorentz gauge
(A„—+ A„+Xk„).In the frame where'yP =0 (lab frame),
and specializing to the radiation gauge (Ap=0), (6)

k„a p' dA e'a' dA'
= —e a„—— — — k„. (5)

k p' dn 2k p' dn

This can be immediately integrated to give the
momentum


