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dropped. ' Likewise, the conformal-invariant matter-
held Lagrangians prescribed by Isham, Salam, and
Strathdee can be expressed as manifest scalar densities
under general coordinate transformations by making
use of (2) and (4) and by employing covariant-deriva-
tive notation for tensor and spinor' fields. In fact, one
obtains conformal-invariant matter-field Lagrangians
simply by adapting the algorithm for securing physical
.l.agrangians in general relativity:

(a) Write the Lagrangian in a form valid for curvi-
linear coordinates in Minkowski space-time with an
unspecified metric tensor.

(b) Assume that the Lagrangian so stated remains
appropriate for curved Riemannian space-time geom-
etry.

' Note that by setting the disposable constant (x'l equal to the
universal constant 3/4''(», the dilaton Lagrangian (7) becomes
Einstein s Lagrangian for general relativity (with a Gnite cosmo-
logical constant if ~ &0).One may speculate on whether the dilaton
theory relates to the quantum theory of general relativity.' W. L. Bade and H. Jehle, Rev. Mod. Phys. 25, 714 (1953),
and references therein, especially V. Bargmann, Sitzber. Preuss.
Akad. Wiss. Physik Math. Kl. 346 (1932).

(c) Set the metric tensor and afftne connection equal
to the conformally Minkowskian forms (2) and (4).

Thus, the Isham-Salam-Strathdee prescription for
conformal-invariant matter-field Lagrangians is simply
a concomitant of general coordinate covariance if
space-time has conformally Minkowskian geometry on
the level of hadron physics. Observable experimental
features of this space-time geometry are not indicated
by the theory of measurement in classical general
relativity because X must be a quantum field according
to the dilaton theory. '7

' An attempt to ascertain the observable physical conse-
quences of a conformally Minkowskian space-time on the level of
hadron physics was made for the special case of de Sitter space-
time by P. Roman et al. , Ãuovo Cimento 42, 193 (1966);45, 268
(1966). For a discussion of the problem of conciliating the non-
invariance of causality conditions under conformal transforma-
tions with a Geld-theoretic treatment of hadron physics, see D.
Boulware, L. S. Brown, and R. D. Peccei, Phys. Rev. D 2, 293
(1970). Finally, for a discussion of the epistemological aspect in-
volved in establishing whether space-time is non-Minkowskian
on the subatomic level, see G. Rosen, Nuovo Cimento 16, 966
(1960).
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It is noted that the two versions of the Brans-Dicke (BD) theory yield different results for the de Sitter
precession QD8 of an orbiting gyroscope, while the Lense-Thirring precession Qz, T is unchanged, thus making
the results unit dependent. This apparent inconsistency is resolved by showing that there exists a third term
Q& which arises from an anomalous scalar force term in the equations of motion. This latter term naturally
combines with QDs to make their sum independent of units, and agrees with previously published results.

ECENTLY O' Connell' has written down an
expression for the precession of the spin axis of a

gyroscope in the Brans-Dicke (BD) theory. Other
calculations, ' ' using independent methods, have veri-
fied this expression. In arriving at his results, O' Connell
has taken advantage of the two versions' of the BD
theory by calculating the de Sitter term QDs in the
unbarred units and the Lense-Thirring term QLT in

the barred units. By reexpressing either term in the
units of the other and combining, one would expect to
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obtain the same final result. 4' However, as shown
below, QDs changes under a units transformation,
while QI,Y does not. Since O' Connell chooses to express
his results in unbarred units (n=1, below), they are
unaffected by the above observation. However, the
question does arise as to how the correct result is to be
obtained for the barred units.

In order to resolve this situation the spin procession
is analyzed in terms of a general formulation of the
BD theory whose units are specified by a parameter n.
It is found that QDs depends on n, while QLT does not.
In addition an anomalous scalar force in the equations

'Actually, this is strictly true only for the dimensionless
product Qht; 0, which has inverse-time units, will be scaled by
X o ~&'s LEq. (2l]. However, X differs from unity by first-order
quantities, and therefore its e6ect on scaling 0 will be of second
order. In any case, the change considered in the text is obviously
not an over-all scale change.
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of motion gives rise to a term Qp (also dependent upon

n) whose sum with Qns is independent of n and agrees
with the results of O' Connell for all choices of units.

Schiff' has found the contributions to the angu1ar

velocity of precession in the Einstein theory to be

whel e

f(n) —= [2(v+3(1—n')]/2n-',

QT=-,'(fxv),
~»= {3m/2. )(rXv),
QI T = (Gor/c'r') [3r(~ r) —r'~],

Equation (3} also gives thc equatlolls of 111otlon 111 the
case of a free particIe as

Du /D7. = —'(Inm), g(u'u4+g"), (6)

wllel e d t = —d8 = g;zdx'—dx~, Rlld It;z.=diag (—+++).
It is not dificult to show that in the linear approxi-

mation Eq. (4) yields, for the rotating earth, the
following results:

floo= (2m/r) [(2~+3+n)/(2~y4)],
hpp ——(2m/r} [(2a)+3—n)/(2a)+4) ],
&op = —(2Gof/") [(2~+3)/(2~+4)](&Xr), ,

7)

t—= iX =1+(2m/r) [n/(2n+ 4)],

where M, I, and co are, respectively, the mass, moment of

inertia, and angular velocltp of the earth; f is any
constraint caused by nonmetric forces; QY is the
Thomas term. In Einstein's theory, nonmetric is

synonymous with nongravitational, but in the BD
theory the scalar Geld introduces, in general, e eoe-
metric grani Iatioeal constraining force which mill

contribute to this term [see Eq. (6)].
In order to make our calculation completely general,

we shall Grst write down the II'D 6eld equations in

terms of a parameter n, which specifies the particular
units, and then go on to show that our results are
independent of n. The general units transformation is
speciGed by the relations'

in standard notation.
Schiff' has shown that for a line element of the form

g' ~tv=~' g'

and the SD action principles becomes

0=8 d4x( —g)"'$0X (8—-', [2nl+3(1 —n')]X—9. "X I.

+(16Ir/c4) yo
—9—I„-},

ds'= c'dP[1 2—(mn/r)+—2P (m/r}'+
+ (dr'+r'dQ') [1+2' (m/r)+

{2) the de Sitter term is modified by a factor p(n+2p).
Thus, if we use Eq. {7) to determine n and y, we have

ans ——[(64d+9—n)/(6Ic+12)](3m/2r') {rXV) . (8)

Since the equations of motion for a free particle are not,
in general, geodesic in the BD formalisms [see Eq. (6)],
there will be an additional contribution Q~ associated
with the "external force" (Thomas) term QT of Eqs.
(1), viz. ,

where all barred operations and functionals are taken
relative to the barred metric. Equation (3) leads to the
following Geld equations':

~;;=(& ~o-'/")r';7'', +f ( )r'(~, .~,; !g„~'~-.),
+P'(5, ' -—g' k), (4)

5 ';.-= (g~A '/") [n=&/(2~+3)],

' I,. I. Schi6, Proc. Natl. Acad. Sci. U. S. 46, 871 {1960).
7 R. E. Morganstern, Phys. Rev. D 1, 2969 {1970).Note that

0.=1 corresponds to the original unbarred units of the BD theory,
while +=0 corresponds to the barred units of Ref. 2.

8 C. Brans and R. H. Dicke, Phys. Rev. 124, 925 {1961).
9These equations hold for 0.=0 provided that the limit is

properly taken, viz. ,
limp=lime" 'n" =1, limn '(,;=lim{in)), ,ea ' ~ = {lnA};.
4x~ a~0 cr~ a~

In this limit, Eqs. {4) reduce to the barred equations of Ref. 4.

Q~=-,'f4, Xv= ——,'V(lnm) Xv, (9)
where f@ is the three-force given by the right-hand side
of Eq. (6)~ Rnd tile second equality ls obtaIncd by
evaluating this expression in the rest frame of the
particle. Using the expression for m given by Eq. (2)
and the last of Eqs. (7) in Eq. (9), we find

~.=l[( -1)/(2 +4)]( /")(.Xv) . (»)
Equation (10) is a gravitational-type
vanishes as m —+ 0. It should therefore be added to QDs
and not to QT, so that we have the total contribution

"Qns"=@Os+04
= (3-/2") [(3-+4)/(3-+6)](.X.), (»)

in agreement with O'Connell's results for QD8. '
Finally, we would like to point out that according to

Eqs. (7), hop, and therefore QLT, is independent of the
parameter o., that is, of the particular BD formalism. ,


