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Dilaton Field Theory and Co&ormally Minkowskian Space-Time*

GERALD RosEN

Drexe/ Uni2)ersity, PhivadelPhia, Pennsylvania 19104
(Received 8 September 1970)

It is observed that conformal invariance of Lagrangians describing matter fields is a concomitant of gen-
eral coordinate covariance, if space-time is a conformally Minkowskian Riemannian geometry on the level
of hadron physics. The dilation field of Isham, Salarn, and Strathdee is the mathematical object which fixes
the local length-time scale in the prescribed system of coordinates.

KCENTLY, Isham, Salam, and Strathdee' have
shown that the introduction of a real scalar~ ~

"dllaton" fie]d enables one to construct conformal-
invariant Lagrangians for massive matter fields, To
convert an ordinary Lagrangian into its conformal-
invariant counterpart, one multiplies all matter fields
that appear in the Lagrangian by appropriate powers of

I, adds suita, ble terms proportional to X 'X,„ to the
gradients of the matter 6elds, and finally af6xes the
dilaton Lagrangian'

I„=',-gr X rx.+ttx'

to the modified matter-field Lagrangian. Such a
prescription for constructing conformal-invariant La-
gI'anglans ls patently Gd Aoc wlthlI1 the conventional
Minkowski space-time framework for Geld theory.
Our purpose here is to point out that Isham-Salam-
Strathdee Lagrangians with conformal invariance

appear naturally, as a consequence of general coordinate
covariance, if space-time is not Minkowskian but
rather conformally Minkowskian in the sense of
Riemannian geometry. 3 4

* Work supported by a National Science Foundation grant.
' C. J. Isham, A. Salam, and J. Strathdee, Phys. Rev. D 2, 685

(1970), and references therein.
Greek indices run 0, 1, 2„3 with the summation convention

employed, gt"—=diag P—1, 1, 1, 1g, and x, ,—=Bg/Bs&
g For example, L. P. Eisenhart, Riemannian Geometry (Princeton

U, P., Princeton, N. J., 1949), pp. 89—92.
4 The space-time geometry is conformally Minkowskian if and

only if the Weyl-Schouten condition g»„———,'(g, g„„—g,„E„
+g»R„—g„,E„}+6(g„g„,—g„g„„)Eis satisfied, and in turn the
Acyl-Schouten condition guarantees existence of coordinate
systems for which the metric tensor takes the form (2). Moreover,
it follows from the Acyl-Schouten condition that space-time is
simply Minkowskian if and only if the Ricci tensor (5) equals zero
identically; only then can one find a conformal coordinate trans-
formation for which (3) produces y'=—1 at all space-time points.
It is interesting to note that all of the homogeneous and isotropic
cosmological models of the universe can be cast in conformally

If space-time is conformally Minkowskian, coordinate
systems exist for which the metric tensor takes the
form

go, —(x ) x g„„, (2)

E„„=2x 'x „„—4x—'I „x„
+X 'gr'(X, r,+X—'X rX,.)g„„, (5)

and the curva. ture scalar

2=6(X')X sgr'X„, . (6)

In view of (2) and (6), the dilaton Lagrangian (1) is a
scalar density under general coordinate transformations,

L,=—:,(X)~~(-g)+(")"~(-g),
where an additive pure-divergence term has been

Minkowskian form Lsee G. E. Tauber, J. Math. Phys. 8, 118
(1967); F. Gursey, Ann. Phys. (N. Y.) 24, 211 (1963); S. Deser,
ihtd. 59, 248 (19"/0}g.
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with (X') denoting a disposable positive constant,
X=X(&) denoting a positive fiinction of the cooidinates,
and g» —=-diagL —1, 1, 1, 1j denoting the Minkowski
metric tensor. The form (2) is preserved under the
15-parameter group of conformal coordinate trans-
formations with X (identified as the dilaton 6eld),
transforming as

x'=
j det(ax"/ax") ~-»'x

for x"'=x"'(x) a conformal coordinate transformation.
From the conformally Minkowskian metric tensor (2),
one obtains the aQine connection

F» =x—'(8„'x „+b„x,„—g»g'rx, ),
the Ricci tensor
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dropped. ' Likewise, the conformal-invariant matter-
held Lagrangians prescribed by Isham, Salam, and
Strathdee can be expressed as manifest scalar densities
under general coordinate transformations by making
use of (2) and (4) and by employing covariant-deriva-
tive notation for tensor and spinor' fields. In fact, one
obtains conformal-invariant matter-field Lagrangians
simply by adapting the algorithm for securing physical
.l.agrangians in general relativity:

(a) Write the Lagrangian in a form valid for curvi-
linear coordinates in Minkowski space-time with an
unspecified metric tensor.

(b) Assume that the Lagrangian so stated remains
appropriate for curved Riemannian space-time geom-
etry.

' Note that by setting the disposable constant (x'l equal to the
universal constant 3/4''(», the dilaton Lagrangian (7) becomes
Einstein s Lagrangian for general relativity (with a Gnite cosmo-
logical constant if ~ &0).One may speculate on whether the dilaton
theory relates to the quantum theory of general relativity.' W. L. Bade and H. Jehle, Rev. Mod. Phys. 25, 714 (1953),
and references therein, especially V. Bargmann, Sitzber. Preuss.
Akad. Wiss. Physik Math. Kl. 346 (1932).

(c) Set the metric tensor and afftne connection equal
to the conformally Minkowskian forms (2) and (4).

Thus, the Isham-Salam-Strathdee prescription for
conformal-invariant matter-field Lagrangians is simply
a concomitant of general coordinate covariance if
space-time has conformally Minkowskian geometry on
the level of hadron physics. Observable experimental
features of this space-time geometry are not indicated
by the theory of measurement in classical general
relativity because X must be a quantum field according
to the dilaton theory. '7

' An attempt to ascertain the observable physical conse-
quences of a conformally Minkowskian space-time on the level of
hadron physics was made for the special case of de Sitter space-
time by P. Roman et al. , Ãuovo Cimento 42, 193 (1966);45, 268
(1966). For a discussion of the problem of conciliating the non-
invariance of causality conditions under conformal transforma-
tions with a Geld-theoretic treatment of hadron physics, see D.
Boulware, L. S. Brown, and R. D. Peccei, Phys. Rev. D 2, 293
(1970). Finally, for a discussion of the epistemological aspect in-
volved in establishing whether space-time is non-Minkowskian
on the subatomic level, see G. Rosen, Nuovo Cimento 16, 966
(1960).
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Comment on the Spin Precession of the Schiff Satellite in the
Brans-Dicke Theory*

R. E. MORGANsTERN
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(Received 24 July 1970}

It is noted that the two versions of the Brans-Dicke (BD) theory yield different results for the de Sitter
precession QD8 of an orbiting gyroscope, while the Lense-Thirring precession Qz, T is unchanged, thus making
the results unit dependent. This apparent inconsistency is resolved by showing that there exists a third term
Q& which arises from an anomalous scalar force term in the equations of motion. This latter term naturally
combines with QDs to make their sum independent of units, and agrees with previously published results.

ECENTLY O' Connell' has written down an
expression for the precession of the spin axis of a

gyroscope in the Brans-Dicke (BD) theory. Other
calculations, ' ' using independent methods, have veri-
fied this expression. In arriving at his results, O' Connell
has taken advantage of the two versions' of the BD
theory by calculating the de Sitter term QDs in the
unbarred units and the Lense-Thirring term QLT in

the barred units. By reexpressing either term in the
units of the other and combining, one would expect to

*Prepared at the Lunar Science Institute under the joint
support of the Vniversities Space Research Association and the
National Aeronautics and Space Administration Manned Space-
craft Center under Contract No. NSR 09-051-001. The Lunar
Science Institute Contribution number was No. 5.

' R. F. O' Connell, Phys. Rev. Letters 20, 69 (1968).
2 D. R. Brill, Z. Naturforsch. 228., 1336 (1967}.
3 D. C. Wilkins, Ann. Phys. (N.Y.) (to be published).
4 R. H. Dicke, Phys. Rev. 125, 2163 (1962).

obtain the same final result. 4' However, as shown
below, QDs changes under a units transformation,
while QI,Y does not. Since O' Connell chooses to express
his results in unbarred units (n=1, below), they are
unaffected by the above observation. However, the
question does arise as to how the correct result is to be
obtained for the barred units.

In order to resolve this situation the spin procession
is analyzed in terms of a general formulation of the
BD theory whose units are specified by a parameter n.
It is found that QDs depends on n, while QLT does not.
In addition an anomalous scalar force in the equations

'Actually, this is strictly true only for the dimensionless
product Qht; 0, which has inverse-time units, will be scaled by
X o ~&'s LEq. (2l]. However, X differs from unity by first-order
quantities, and therefore its e6ect on scaling 0 will be of second
order. In any case, the change considered in the text is obviously
not an over-all scale change.


