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(gA) tss —cos cp sin p
~g 855= +—--,

FIrF„Q(2C~) 2+Ca

&(gA)tss sing cosrp
QgV-„ +-

FrrF. -Q(2C~) 2+Ca

Equat]on (C29) was first obtatned by Pande "One may
also easily verify that Eqs. (C26a) and Eq. (C21) are
identical to the results of Ref. (23) [Eqs. (19) and (20)]
with the notational changes Src/5 =v'(Zrr/Z ) and
5„/8 = —Q(Z„/Z ). Again, unlike Ref. (23), no a
Priori assumption of (3,3e)+(3*,3)-symmetry breaking
has been assumed here.
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We examine the matrix elements of the divergences of the vector and axial-vector current between nucleon
states. These matrix elements are related to the nucleon mass difference and the corrections to the Gold-
berger-Treiman relation, respectively. I'or the nucleon mass difference we indicate that for the sign of this
quantity to be understood in terms of the electromagnetic interaction requires (i) comparable longi-
tudinal and transverse virtual photon-nucleon cross sections, or (ii) 0~ (q~, v) —o-p(q', p) &0 over a large region
ot the ( ~ g ~, g ) plane, where g is the spaceliire virtual-photon mass and v is the photon energy (this require-
ment is contraindicated by experimental data at q' =0), or (iii) fixed J-plane poles at J=0,I= 1 in the virtual
Compton amplitude. We also estimate the electromagnetic correction to the Goldberger-Treiman relation,
and it is shown to be very small.

I. INTRODUCTION

' 'N this paper we discuss the transition matrix ele-
~ ~ ments (PI V„'+&(0)In) and (PIA„&+'(0)In) of the
vector and axial-vector currents between nucleon states
in the presence of the electromagnetic interaction. Our
interest in these matrix elements stems from the obser-
vation that the matrix elements of the divergence of
these currents are related to the nucleon mass diRerencc
and the corrections to the Goldberger-Treiman formula.
Neither of these quantities is well understood on R

theoretical basis.
For thc nucleon mRss difference wc obtain thc usuRl

Cottingham formula, ' assuming that the mass diRerence
is electromagnetic and the interaction is treated to
lowest order in n= 1/137. Assuming that the total cross
sections for longitudinally polarized photons or nucleons
is suppressed relative to that for transverse polariza-
tion, we discuss the extreme difhculty of obtaining the
correct sign for 6M= iV„—M . Here it is pointed out
that if the recently reported' qualitative character of the
total photon-nucleon cross section [o.(yp) —o.(yn) &0
for physical photons of energy 4—18 GeV) can be ex-

trapolated for virtual photons, then the deep-inelastic
region, which is an important region for the nucleon
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mass shift, will contribute with the wrong sign to 8M.
Ke conclude that to have the possibility of understand-
ing the sign of SM in terms of electromagnetism, we
must have (i) comparable longitudinal and transverse
cross sections, or (ii) o.,~(q', p) —o. "(q',v) &0 for a large
region of the (I q'I, v) plane, or (iii) Axed poles at J=0
I=-1 in the virtual Compton amplitude. The first two
of these possibilities can be examined in the forthcoming
cxpcrlmcnts at SI AC.

Ke have also examined the radiative corrections to
the Goldberger-Treiman formula for m+ decay. They
are estimated to be very small, n/47r relative to the
observed correction 0.1. In accord with our expecta-
tion, the origin of this correction is to be sought in
hadron dynamics and not in electromagnetism.

II. VECTOR CURRENT

First we consider the matrix elements of the vector
current between proton and neutron states, which has
the general form

&P(P') I
I'.'"'(0)

I ~(P))= N(P') "[v.Ft(t)
+i~"(P'—P).F (t)+(P' —P).F (t) j~(P) (21)

The divergence is spccihcd by

(P(P') I

—i~.L'."'(0)
I ~(P))

=- u(P') r+[8MF t(t)+ tFs(t)]u(P),

where t= (P' —P)s and 5M= M„—M„. If the current is
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(2.2)()„V„(+)(0)=2LH(0), Q'+'],

with H(x) the Hamiltonian density and

'Q(+) = d'x VQ'+'.

The Hamiltonian can be written as H(x) =HQ(x)
+H'(x), where HQ(x) commutes with vQ(+). We will
assume that the symmetry-breaking piece H' is due to
electromagnetism so H'= eJ„A„with J„ the electro-
magnetic current and QA„= eJ„.To lowest order in e'
the effective Hamiltonian is

conserved, ()„V„(+)(x)=0, then D"(t)=8MFi(t)+tFQ(t)
=O. If we set t=0, we must have either Wf = 0, the
usual realization of isospin symmetry, or F2(t) has a pole
at t =0 with residue 8M—F7(0) corresponding to a zero-
mass Goldstone boson with J~=O+. In the absence of
any such state, we will assume that the symmetry is
realized in the usual way with W/I=0.

To study the breaking of isospin symmetry, we have
in general'

Here
qvqv)7'""'(7',")= 7 "'(7', )(—4"+

g2

T2(7)(q2, v)I( p q ( p q+ —
I p. —q. I p ——

q (2.7)
M' 4 q' k q'

Ti,2() (q,v) are the usual amplitudes for forward virtual
Compton scattering, and I=-O, 1, 2 labels the 3-channel
isospin so bM(" corresponds to the self-mass and 83f'"
to the mass difference. The advantage of going to the
forward direction p'= p is that the absorptive parts of
the forward Compton amplitudes ImT), 2("(q',v)
= 7rIV), 2(r)(q2, v) are just the inelastic structure functions
for electron-nucleon scattering which can be measured
experimentally.

It is worth remarking at this point that besides the
Cottingham approach, one can also analyze the contri-
butions to Wf by postulating an unsubtracted dispersion
relation for Dv(() which is given by (2.5). Then we have
for the mass shift

e2

H'(0) =—
2 (27r)4

d q ~» (q)Tv~(q) ~ (2.3) 8M = — —ImD" (() .
7l

(2 g)

where I4)„„(q)= —g„„/q2 is the photon propagator and

T„„(q)= d'x e
—*'2 'T(J„(x)J„(0)). (2.4)

we obtain for Dv(t) = RVFi(t)+IFQ(t)

e' de—g"'I &p(p') I T"(q) I p(p))
2 (27r)' q'

(p~~)j —(25)

At P'= P and 3=0, we have Dv(0)= QM, since Fi(0)
= 1+0(e'). From (2.5), if we perform a Wick rotation,
qo

—+ ~go, and the angular integration, there results the
Cottingham formula, which we write in general as

—oa de +1

2
dy(i y)'('q'T„v (') (q', 2v), —

v=p q y=v/V'(-(I') (-'6)

~H. Pagels, University of N. Carolina report, 1966 I'unpub-

lished); D. J. Gross and R. Jackiw, Phys. Rev. 163, 1688 (1967).

It follows from (2.2) and the assumption that we will

treat isospin breaking to lowest order in e' that

(p I

—za.v. (+)(0)
I ~& =

&p I I H(0), 'Q(+)jl ~)
= (p IH(o) I p&

—&~ IH(o)
I
~&.

Utilizing the projection operator

2M'
~(p')l(p),

SpinS 4~&—]

This approach would be particularly interesting if there
were a large 0+ continuum or discrete state which en-
hances the absorptive part ImFQ(t) and hence ()M.
This corresponds to just the usual tadpole model' of
electromagnetic mass differences. While this method
emphasizes the t-channel states, it has the disadvantage
of not directly analyzing bM in terms of experimentally
accessible quantities.

Now we will discuss the implications of the recent
experiments at SLAC' for the mass shift. From the
Cottingham formula (2.6) one can compute the Born-
term (nucleon-pole) contribution with the result
bMs„("=+0.8 Mev. The contribution from specific
nucleon resonances can also be estimated and is found
to be very small. Hence, if we are to understand BM(",
the large —q' region must become important. From the
Cottingham formula (2.6) we see that the Regge region
I y I

—+QQ for the Compton amplitude is not particularly
important since IyI &1 in (2.6). However, Regge be-
havior of the amplitudes is important, as emphasized
by Harari, Q for analyzing the amplitudes T),2(r)(q2, v)
in terms of their connection with the absorptive parts
Wi 2(7)(q2, v), for Regge analysis indicates the need for
subtractions in the dispersion relations. From such an
analysis one concludes that Ti(r)(q2, v) —+ Pi(r)(q')
)(va (0) T ( )(q2 v) ~P (r)(q2)va(7) (Q) 2 as v ~QQ q2
fixed. Since ( '((02)r)0 for I=0, 1, Ti' '(q', v) requires

4 S. Coleman and S. L. Glashow, Phys, Rev. 134, 3671 (1964).5R. E. Taylor, in Proceedings of the Fourth International
Symposium on Electron and Photon Interactions at High Energy,
Daresbury Nuclear Physics Laboratory, 1969 (unpublished).

6 H. Harari, Phys. Rev. Letters 12', 1303 {1966).
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a subtraction while T2& &(q', v) does not, and this intro-
duces an unknown subtraction term.

The region which is of potential importance in the
determination of bM'~' corresponds to deep-inelastic
electron-nucleon scattering, —q' v~, &o= —q'/v 6xed.
In configuration space this corresponds to region near
the light cone. Of importance in this connection is the
experimental observation that the structure functions
have a simple behavior in this limit, at least for the pro-
ton, Wt&»(qs, o&) = Ft&»(o&), q2W2&»(qs, o&) = o&P—2&»(o&)

as —q' —+~. It has also been reported' that the ob-
served longitudinal combination o&FI&»(o&)= F2»&( o)&

o&—FI&»(o&) is consistent with Pi, &v&(o&) =0.
The absence of a longitudinal amplitude suggests that

we consider the ratio of the longitudinal to transverse
cross sections

R&'&(q', v) =
oi&'&(q', v)

o &I& (q2 v)
(2 9)

7 It has been conjectured that the residues of axed poles are
polynomials in q PT. P. Cheng and Wu-Ki Tung, Phys. Rev.
Letters 24, 851 (1970)g. This would imply that P(q') is a poly-
nomial. ', in q' and, since P(0) =0, we must have E(q') =Aq'+Bq4 ~ ~ ~ .
Hence~either P(q') =0 or the contribution of the fixed pole to bM

is at least quartically divergent.

The relation between the cross sections and Ti 2' &(q', v)

is xWg, 2&~) = ImTg g&~~, with
p2

tt/'z' ——H«) kt/g( ) =tV2' ' 1—— —tV ' '
~2q2

4&r'&ter"' ——(v —
2 I

q'I)o, &",

i&I& (v 2Iqsl)o&&i& ~

In the scaling region which is observed to set in at rather
low —q'~(1 GeV)', experiments indicate that R "'(q', v)
~0

We will assume that, for Iq'I &Iq22I —(1 GeV)',
R& '(q', v) =0 or WI, ' &(q'&v) =0. As already remarked,
this is consistent with the data on the proton and can be
tested for the neutron as well. This assumption implies
that f&&r Iq'I & Iq&&'I, w2'I'(1 —v'/M'q') —wi& '=0 and

hence

T &I'(q' v)(1 v2/Msqs) —Ti"'(q' v)—= P "&(q',v), (2 10)

where P(q', v) is a polynomial in v'. If there are 6xed
J-plane poles in Ti 2&i&(q', v) at 7=0 with residues

Ri, &I&(q'), then, taking the v ~~ limit of (1.10),we can

identify the polynomial. in terms of these residues:

P &'&(q' v) = P'I'(q')
= —

I R,&I&(q')+R2&i&(q2)/Msqs]. (2.11)

Since the combination (2.10) is a longitudinal amplitude,
we have a kinematical constraint R&I&(0)=0.2 From

(2.7), (2.10), and (2.11), we obtain

V2

T v&i&(q' v) 3P&I&(q2) 2T2& &(q' „) 1
I

(2 12)
Msqs/

Writing the unsubtracted dispersion relation for
T2' &(q', v) in terms of o&= —q'/v, we have

4do&"B "'(q'o&')

co'2 M'2 —c02
(2.13)

Substituting (2.13), and (2.12) into (2.6), we can ex-
plicitly perform the y integration, and substituting
x= —q2/o&2 and normal&zing with M'= 1, we find'

g~(I)
8 7C (fq2P &I& (q2)

2

+x' 4(&t) GD dX XG(X)1~V2&i& (—Xo&2 o&)
1

(2.14)

where G(x) = (1+x)(1+1/x)' '—', —x&0, x&0. The
6rst term represents the contribution of the residues of
fixed poles which we ignore for the moment.

Ke now consider the second term. The contribution
to 5M&~) can be written as

with
dg'

T &I& (q2)
g2

—00

T&I& (q2)
2 2

T&I& (q2) —2 Jy(1 y2)1/2q2T v&I& (q2 Iv)

where —
q&&' (1 GeV)' corresponds to the onset of scal-

ing behavior. The low-
I
q'I region contributing to HAMI,

&i&

is well approximated by the nucleon pole and a few in-
elastic states, and one 6nds roughly S'IL,&" S'IL,&" 1
MeV. If we assume that'jW2&I&(o&, qs) scales for Iq'I
& I qo'I then xW2& &(—xo&, ) = Ps&I'&(o&)/o& as x —voo. If
the scaling function F2& &(o&) is nontrivial and Wi, &'&

=0, then it is known that bM&~) is divergent. ' Using

Strictly speaking, the lower limit of the x integration should
be x2= —q22/~2 since we assume the absence of the longitudinal
amplitude only for (q2( & [q22(.

9 H. Pagels, Phys. Rev. 185, 1990 (1969); R. Jackiw, R. Van
Royen, and G. B. West, Phys. Rev. D 2, 2473 (1970). The
general condition that there be no logarithmic divergence is given
by 2q~TI&~)(q, ~)+Jpmdut F2&~)(co)+coFI&~)(co})=0, q ~—cc. If
Tz, & )(q', ~) obeys an unsubtracted dispersion relation, then we
can obtain the subtraction term from the dispersion relation
Tr&i&(q', ~) =J'(dv2/v2)[W2&i& {q',v) —WI &I&(q', v)j. Assuming for
the moment that as —q~~, S'L,&»(q', ~)~FL,&') (~}+a&&') (a}/q'
cy axed, we have q'TI (q' ~) =2Jp~ (d~/~) P

—q'FJ. '"(~)—coF&&~)(co)+BL,&~)(ar)j. For no quadratic divergence we must
have FL,&~&(co)=F2&~)/co —F~&~)=0, so the condition for no log-
arithmic divergence reads J02 dcoLF2&~) (co)+2B'g&~& (co)/cog =0.
Since in our analysis we make the stronger assumption that
WI&I&(q, v) =0 for ~q2~ &(1 GeV)2 so that Hz&i&(cu) =0, we must
have F2& )(co) =0 for no divergence. These assumptions on the
longitudinal amplitude can be tested experimentally. If the ratio
R&i&{qs,v) given by (2.8) is vanishingly small near [q2I (q22[
~(1 GeV)', then we expect F~& ) =0 HJ. &~) =0.
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G(x)=3/8x+0(1/x) as x —+~, we identify this di- and the divergence by
vergent piece from (2.14) as

(p(p')I ~ ~ "'(0)l (p)&= (p') v 'D"(t) (p)

DA(t) = (M„+M )gA(t)+thA(t). (3.2)

From the data on the proton, Jo'd~P2"(~)= (2R/Ir)
X (0.18), so that

3(x A'
gM ~„,„=—ln —(0.18),

4K lqo I

(2.16)

which for h.-100 GeV,
I q, l-1 GeV gives bM&a;.-1

MCV.
For the case of interest (I= 1 corresponding to the

proton-neutron mass difference), it is clear that in the
absence of 6xed poles or large longitudinal cross sections
the explanation of the mass shift, if it is due to electro-
magnetism, resides in second term of (2.14). Since
G(x) &0 Rnd x&0, lt Is evident 'tllR't, to obf Rln flic col 1'cc't

sign of the mass shift, W2"'(q', I ) must be negative for a
substantial region of the —q', v plane, Ke conclude that
o F(q', I )—o ~"(q', I )(0for some large region of —q' and I .
This proposition can be tested in forthcoming experi-
ments at SI AC.

For the case of physical photons, q'=. 0, it has been
reported' that 0 p(O, I )—0,"(O,p) &0 for photon energies
in the transresonance region 4 GCV& v& 18 GCV. If this
qualitative feature is maintained when extrapolated to
the regloll

I
q'I & I q02I, 1t would seem llnlikely that the

continuum is the explanation of the mass shift.
%C might also remark that the scattering experiments

with physical photons are consistent with Regge be-
havior' and that one iinds (reduced residue of AIO)/
{reduced residue of Pomeranchukon) 1/20. If this is
any indication of the relative strength of the I=O to
I= 1 amplitudes in the high-energy region relevant to
the mass shift, and if bM~; 2' 1 MCV is an indication of
«»«ib«ion f«m lq I& lq, 'I, we w«ld expect this
region to contribute in magnitude about 0.05 MCV to
the mass difference, which is far too small. Such an
argument should be taken with a grain of salt in view
of the extrapolation involved.

In conclusion, if bM= M~ —M is to be understood in
terms of the Cottingham formula, we must have (i)
comparable longitudinal and transverse cross sections
so that R&"(q'I)=01&'I(q', v)/0 &"(q'I) 1~(in which
case the considerations given here do not apply), (ii)
lrF(q', I) —0'p(q', I)&0 for some large region of the
—q', I plane, Iq'I & Iqo'I (already contraindicated for
physlcRl pllotolls), ol (111) fixed poles Rt J=0, I= 1.

g2

I H-(o) "Q"'3=—
2(21r)'

d'q
g" "T'"'+'(q), (3 4)

$2

"T"'+'(q) = d'x & " 'I:T("~.'+'(x)~. (o))

+T'(~.(x) 'J.'+'(0))j.
To exan1ine the matrix elements of the divergence of

the axial-vector current between nucleon states, we will
utilize the projection operator

Ap
spina

—2M~
~(p)iv~N(p')

and from (3.4) with (3.2) and (33) we obtain

DA(t) —DA „(t)+DA (t)
where

~2 Ag
DA (t)

2 (21r)'

d'q

, g""t:"I'""+'(q»)
g

{3.5)

If the current is conserved, D"(t) = 0; and upon setting
t=0, we must have either M„+M„=O or hA(t) has
a pole at t= 0 with residue= (M„+M„)gA(0). The pole
in hA(t) corresponds to the presence of a zero-mass,
J~= 0 Goldstone boson. %C will assume that the con-
sci vatlon of thc axial-vcctol current ls realized by a
Goldstone boson which is to be identi6ed with the pion.
In the absence of strict conservation of the axial-vector
current, the pion acquires its observed mass of 140
Me&.

The divergence of the axial-vector current can be
expressed by

8„A„&+I(x) = iLH'(x), "Q&+I], (3.3)

where H'(x) is the term in the Hamiltonian density that
breaks AQUI symmetry. For this piece we assume
H'(x) =- H"~a(x)+H™(x) where H"'a(x) breaks chiral
SU(2) but preserves isospin symmetry and H' (x) is
the electromagnetic interaction which is electively
given by (2.3). Assuming that the electromagnetic
current is J„(x)=J„'(x)+J~'(x)/%3, where the space
integral of A (x) is a generator of SU(3), and assum-
ing the SU(3)XSU(3) current algebra, we have
I J„(x),AQ'+I]= AJ„'+1(x) at equal times. Hence

III. AXIAL-VECTOR CURRENT and
+AI'.„&+I(—q, —h)g (3.6)

Thc 111RfI'1x clcIIlcllt of flic axIRl-vcctol current bc- Ap (+I ( h) px e iq:r(p(p&) I—
tween nucleon states is specified by

XT(A~„~+1(x)~,(O)) l~(p)&.(p(p') I&."'(0)l.(p))
= It(p')Iy5r+[y. gA{t) q,hA(t)]N(p) (3.1—) Here h= p+q —p'. The term D"h,d(t) represents the



contribution of l-IP'"'(x), ~Qt+&] to the divergence and,
in the absence of a detailed knowledge of the dynamics
of chiral symmetry breaking, this term is difficult to
estimate.

As a consequence of the assumption that the sym-

metry limit is attained by a Goldstone pion, we must
extract the pion-pole term from the right-hand side of
(3.5) to study the effects of symmetry breaking. This
point has been emphasized by Dashen and %einstein. "
Defining (0lA„'+'(0) l~+(p))= f,p„, then this pole terru

is extracted as

V2g„n, +f p'
DA(t)

p2 —t

where

D'
had (0)lnonoo&e

~had
23kff g

which satisfies the% ard identities (3.10).The first term
is the nucleon pole and the second the pion pole at t= 0,
which, as already remarked, must be extracted from the
final expression since its contribution can be lumped
into the observed residue, p"f Su. bstituting (3.11) into
(3.6) and removing the ~-pole term, we find from (3.9)
5=6",'+6,-, with 6, ,= —D". (0)

l
.».&o(2Mg~,

=ID'»"(~)+D'. (~)3-».&' (3 g)

Here p is the mass of m.+ and g„„+is the physical cou-

pling of the m.+ to nucleons. Using D"(0)= (M~+M )g~,
we have for the quantity 6=—1—(M„+M„)gz/
(%2g„„ f ), to lowest order in the symmetry breaking,

ie-

t- (1 2(2~)4

d4 —+ ——
q' -&—~' &—M'

1
LD"'.(0)+D'.-(0)3--"' (3 9)

2Mgg

The observed value of the corrections to the Gold-

berger-Treiman formula is 6= +0.08&0.02.
First we will examine the contribution of D", (0)

given by (3.6) in the approximation of retaining just the

nucleon and pion poles. For simplicity, we may assume

that the axial-vector current in the expression "I'„„(+)

)&(q,k) is conserved since this approximation will in-

troduce errors of order 6 +0.1 relative to other pieces.
The Ward identities for "r„„t+&(q,k) are

g p, v
' "r .'"'(q k) = i(p(p') I

"~."&(0)l~(p)),
(3.10)

'kr„, & +(&,q)k= (p(p )I ~„t+&(0)l~(p)).

As a first step, we include the nucleon and pion pole

terms in "1'„„'+'(q,k) without form factors and anoma-

lous magnetic moment couplings. Then we have

Here s=(p+q)' u=-(p' —q)' t=(q —k)', and p'+k
=p+q. This integral is logarithmically divergent, with

the result

n A.'
= ——ln +(finite terms).

4x 3P
(3.12)

Had we introduced form factors with poles at the 1 and
1+ vector-meson masses, this calculation would be
rendered finite. Even for A 100 GeV, 6, is but a fac-
tion of a percent. This crude calculation suggests tha, t
a more refined treatment would not radically alter the
conclusion that 6„„is very small, and hence the explana-

tion for the observed 6 must lie in the domain of hadron

dynamics. "

(p+1+M) 2Mq„
"r,„t+&(q,k) =ig.u(p') y„ iy5 y„+

(p+q)' —M' q'
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