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Hard-meson techniques are presented for calculating processes involving octets (nonets) of mesons
under the assumptions of chiral SU(3)XSU @) [U3)XU3)] current-algebra commutation relations,
partial conservation of axial-vector currents, conservation and partial conservation of vector currents,
and single-meson saturation of intermediate sums. Using these conditions and the usual smoothness hypoth-
esis, the general procedure for constructing the arbitrary N-point function is given. If, in addition, one
assumes that the “c commutators” (i.e., the commutators of the time components of the currents with
the scalar fields) are single-particle dominated, it is inconsistent to assume only octets of particles. A con-
sistent formalism involving nonets of particles can be constructed, however. The spin-zero mesons must then
belong to the (3,3*)+ (3%,3) representation. Hence the (3,3*)4 (3*,3) symmetry-breaking condition is
deduced from the current-algebra conditions when combined with pole dominance.

I. INTRODUCTION

ECENTLY, a considerable amount of work has
been done in the development of hard-pion tech-
niques using SU(2)XSU(2) current algebra.l2 This
work has been successfully applied to a number of
processes, including an excellent fit to the == /=0 and
I=2 S-wave phase shifts from threshold up to 1 GeV.?
The hard-pion method was also recently extended to
the algebra involving strangeness-changing currents
in order to analyze the K;; decay.*® In the present
paper we wish to extend the hard-meson method further,
so that one can compute an arbitrary N-point function
using the chiral SU(3)XSU(3) current algebra. In this
analysis no a priori assumptions are made about the
type of symmetry breakdown occurring, chiral or
ordinary; nor do we impose any specific symmetry on
the mass spectrum or interaction structure aside from
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the conditions demanded by current algebra (and the
symmetries strictly preserved by the strong interaction,
such as conservation of isotopic spin, G parity, and
ordinary parity).

The physics involved in the study of the SU(2)
XSU(2) algebra rested on a few basic assumptions.
These were (1) that there exist currents which satisfy
the equal-time commutation relations of Gell-Mann, i.e.,
the chiral algebra of SU(2)X.SU(2), (2) that these cur-
rents also satisfy both PCAC (partial conservation of
the axial-vector currents) and CVC (conservation of the
vector currents), (3) that the vacuum expectation values
of the T-products of an arbitrary number of currents
would be saturated by a few low-lying single-particle
states, and (4) that the resulting particle vertex func-
tions are smooth and thus may be approximated by a
low-order polynomial in the momenta of the single
particles involved.

The extensions we will consider here are such that
the present program may be developed for an arbitrary
underlying Lie algebra. However, we shall focus our
attention on SUB)XSU(3) [or UB)X U3)]. In addi-
tion, we shall impose the partial conservation of the
strangeness-changing vector current PCVC [to account
for SU(3) breakdown], as well as PCAC and CVC for
the conserved vector currents. We shall refer to these
collectively as PCC. In generalizing assumption (3)
above, we will introduce four nonets of particles. These
are (a) the vector mesons (o, K*, w, and ¢), (b) the
axial-vector mesons (41, K4, D, and E), (c) the scalar
mesons (8, k, o, and 7y), and (d) the pseudoscalar
mesons (m, K, 1, and 7’).% Along with them we will con-
sider a ninth vector as well as an axial-vector current.
The conservation of the ninth vector current is taken to
represent the conservation of baryon number.

In Sec. IT we formalize the above assumptions and
display the effective Lagrangian to be used in calculat-
ing three-point functions. We then impose the current-
algebra conditions to obtain equations relating to the

6 The existence and JP values of all of these mesons have not
been established. However, modification of the above choices
does not effect the general formalism presented in this paper.
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3 N-POINT FUNCTIONS IN
coupling constants. In Sec. I1T we solve these equations.
In Secs. IV-VI we develop this program further, which
then allows one to calculate an arbitrary N-point func-
tion. Here, we find that if one requires single-meson
dominance of the “o commutators” then it is necessary
to consider nonets of particles rather than octets. It is
for this reason that we have allowed for nonets of cur-
rents in Secs. IT and III.

II. THREE-POINT FUNCTIONS

We start by considering the vacuum expectation
value of a T bracket of three currents:

Fefr oy (x,y,2) = 0| T(Va(x) V() V7e(2)) [0),  (2.1)

where V#,, etc., are vector or axial-vector currents. The
indices @, b, and ¢ run from 1 to ! if our algebra involves
! generators. Since we are dealing with chiral algebras, it
is convenient to use barred indices to denote axial-
vector currents. Thus, if we consider U(3) X U(3), a will
run from 1 to 9 for the vector currents and 1 to 9 for
the axial-vector currents. The above T-product may be
expanded in its six time orderings of which one corre-
sponds to 29> y°> 20 For this case, upon using closure,
we obtain

Febane(,y,5) =2 (0| Veu(w) | n)n| VEu(y) [m)
X{m|V7:(2)]0).

We now assume that the sum over intermediate states
is saturated by single particles, which may be scalar,
pseudoscalar, vector, or pseudovector. This assumption
is a generalization of the vector-dominance hypothesis
for the isotopic vector current.

Let a state describing a spin-zero meson be denoted by

(2.2)

[n)=1|sqa),

where s denotes spin zero, ¢ its momentum, and ¢ its
internal symmetry classification. Thus for nonets of
scalar and pseudoscalar mesons a=1i=1---9 denotes
the scalar particles while a=7=1---9 the pseudoscalar
meson (e.g., =3 refers to a 7° meson). Similarly, we will
denote a spin-one meson by

|m=|vga)},

where v refers to spin one, ¢ and @ as above, while A
denotes its helicity. The various one-particle to vacuum
matrix elements of the currents encountered in Eq. (2.2)
serve to define the coupling strengths of these currents
to the particles. Thus F,; and g, are defined by the
equations

(0] V#4(0) [ sgb) = ig"F .sN 56(q) , (2.3a)
(0] V#,(0) | vgb\) = gase*(N) N us(q) (2.3b)

where N3, etc., are the Bose normalization factors,” and

"We normalize states so that Ny (q)=[2ww(g) (27)¥]22,
where wg (¢) = (@ +u)2; Nop () =204 () (27)3 T2, where wys ()
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€“(\) are the polarization vectors of helicity A\. We note

that gg=g5=F;=F3=0 from parity considerations.
Furthermore, we have
Fij=F,»6i,-, '1:, j= 1, ey 9

where conservation of all the vector currents except the
strangeness changing implies

F;=0, 1=1,2,38,9
while

F;=F,, 1=4,5,6,7. (2.4a)
In addition, one has

Fg=Fiyz, 1,7=1,...,7

with )

F=F,, 1=1,2,3

F.L:FK, 1724-,5,6,7
and o

Fs;=F53=F3=F3»=0, =1, ...,7. (2.4b)

With our choice of particle labeling for the 5 and #’
mesons, we may write

Fss=Fs,, Fs=Fsy, Fw=Fs,, Fg=F5, (2.4c)
since |s,¢,8) and |s,q,9) are the 5 and »’ states, respec-
tively.

The ga» are taken to satisfy

gii=gdij, 1, 7=1,...,7
with
gi=8, 1=1,2,3
§:= gk*, 1:4; 5} 6} 7
and
gyi=goi=gis=g=0, j=1,...,7. (2.5a)

Again, with our choice of particle labeling for the w and
¢ mesons® we set

£38= €30, £39=8sp, Los=fow, £99=Egop. (2.5b)

Similar equations may be written for the gz with the
substitutions

§i=84, 7= 17 2: 3
gi=gky, 7=4,5,6,7 (2.5¢)
888=g8p, K83=48E, Z8=4£ip, L39=4IE-

It was shown in Ref. 1 that the assumption of single-
particle saturation allows one to calculate three-point
functions by the device of employing an effective
Lagrangian. This Lagrangian is to be cubic in inter-
acting fields and is to be used only to first order in the
coupling constants. Furthermore, the currents are to
be constructed using the Heisenberg field operators via
the field-current identity. The most general effective
Lagrangian involving spin-zero and spin-one fields
= (¢*-+m?)12; pp and myp are the masses of spin-zero and spin-one
particles, respectively. The polarization vectors obey e**(\)e,(\)
=8 and gue#(N) =0.

8 This choice was also made in R. Arnowitt, M. H. Friedman.
and P. Nath, Phys. Letters 27B, 657 (1968).
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satisfying the smoothness condition® may be written as

L=Loy+Le, (2.6)
where
L @)= —Suaaﬂsa_i"%(suasua_ﬂa%‘az) - %G’wa(a#vm - avvﬂa)
+1G# Gura—im vt 0,  (2.72)
and

L= glabeVuas*sScF 22abeSuasbGH ot gPabeVubSalPe
+ 820505 G* 8 G uvet 80 b VubSvaG? et PabVuantG*
+ 8" abeSaS8S e gBaboSas bS uet €pvapl Alab vt a?’s
Fh2aveS*aS" b HPab 0% aS"y

+ ]7/4abcsu,G"wb:[Gaﬁc 5 (27b)

where we choose €%2%=-+1 (our metric has signature
+2). Here the (5u4,54) and (Guva,vua) are to be varied
independently to yield first-order coupled differential
equations. One has that (so4,5.) and (Gose,via) are the
canonically conjugate pairs of variables for the spin-
zero and spin-one fields, respectively. The coupling
constants gup. and ke, are arbitrary at this point of
the analysis. A priori we require only that these cou-
pling constants take on values that maintain the in-
variance under isotopic spin, G parity, and parity.
The currents are given in terms of the Heisenberg
fields by
Ve (%) = gapv* o+ F ap0¥sy (2.8)

where gq.5 and Fp are the coupling strengths defined in
Egs. (2.3). In order to carry out the algebraic restric-
tions to be imposed on these currents, it will be con-
venient to make use of the equations of motion obtained
from the Lagrangian equations (2.7). For the spin-zero
fields, we have

— st walse= 8L 3)/ 854, (2.9a)
sto= 0ks,— 0L (3)/0Spa, (2.9b)

while for the spin-one fields
,G* A mo2vk = 8L (3)/0Vua (2.10a)
G o= (94 g — P0) — 258 (3G . (2.10D)

The currents given by Egs. (2.8) are to be subjected to
the requirements of the current algebra. These are (1)
the equal-time canonical commutation relations

3" =)V (), V(3)]
=4Cpc0%(x—9y) V¥,(y)+¢-No. ST, (2.11)

where ¢-No. ST means “‘c-number Schwinger terms,”

and Cqp. are the structure constants of the algebra being
consider [SU3)XSU(3) or U3)X U(3)]. We also have
(2) the divergence conditions

8,V (%)= F qppssp(x) ,

where the index b is to be summed.

(2.12)

9 We here use first-order formalism, and the smoothness condi-
tion is the same as that of Refs. 1 and 2.
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As has been shown in Refs. 1 and 2, Egs. (2.11) and
(2.12) need only be satisfied to first order in the cou-
pling constants if we are only interested in three-point
functions. In order to implement Eq. (2.11), it is more
convenient to express the currents in terms of the
Heisenberg canonical variables by using the field equa-
tions. One is then to evaluate the commutators to first
order in the coupling constants by means of the canoni-
cal commutation relations. The spatial components of
the currents are immediately expressable in terms of
canonical variables and are given by

Via(x) = gauv®s(x)+ Fop0%s3(x) . (2.13)

We note that they only contain terms linear in the fields
and are of zeroth order in the coupling constants. For
the time components, we find, upon using the equations
of motion (2.9) and (2.10),

Vo) = V(@) + VO (x),

where V% )(x) is linear in canonical variables while
VO (x) is quadratic. The former is of zeroth order in
the coupling constants, while the latter is of first order.
They are explicitly given by

Vo (@) = (gar/mp?) .G —F 16505, (2.152)

V0 (®)= —Z1ab6S06S e+ Z2ab:2:5G 0 e+ Z 10500:55G ™,
T+ Z305c50:G A 26451 (V1apc07 00705,

(2.14)

+ Voube0%507%,), (2.15b)
where
Z1abe = (gad/Ma*) g ave+2F aagbeas (2.16a)
ZLsabe= _'2(gad/mdz)gsdbc‘*‘f"adg%bo , (2.16b)
8ad . 1
Zsave=\ 2—g%ac+F aaglear |—, (2.16¢)
ma’ R
7 tave= —(gaa/Ma*) g bac—2F aagarvc, (2.16d)
Ylaba = —~2(gad/mdz)h‘dz,c+l",,dh3z,dc s (2166)
Yoave = —(gaa/Ma)Pave—2F qah®ase.  (2.16f)

In Eq. (2.16¢) the index ¢ on the right-hand side is not
to be summed.
We first consider the commutator
3=y [V %(%), Vin(y) ]
=1C o Ve(9)84(x—y)+c¢-No. ST.

Inserting Egs. (2.13)-(2.15) into Eq. (2.17), we obtain

(2.17)

Z3adcgbc+Z1achbc: 0 ) (2.183,)
Z2adagbc+cabcgcd= 0 ) (2.18b)
Z4ad0gbc —Zluchbc—Z3udcgbc+ Cachcd =0. (2 18C)

Equation (2.18a) arises from the requirement that ¢-No.
ST vanish in the commutator.
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We next consider the commutator
80—y [V (x), V()]
=1Capc V% (»)84(x—y)+c-No. ST. (2.19)

Since the left-hand side is to be evaluated only to first
order in the coupling constants, while the right-hand
side is to be evaluated to zeroth order, Eq. (2.19) may
be replaced by

8=y {[ V%1 (%), V% 1) ()]
FLV% 0 ®), V%@ (3) 1+ LV %@ (%), V% (¥) 1}

=iCubCVOC(n(y)54(x—y)+C-NO‘ ST. (220)
Again, upon using Egs. (2.15), we find
gacmc-ZZ2bcd+ gbnmc_2Z2acd
+FoZsycatFooZsaca=0, (2.21a)
gac”’lc_.2 Ylbcd+gbcmc—2 Ylacd
+Foe¥ svcatFrY2aca=0, (2.21b)
FyoZraae—F acZ1vactCapcFea=0, (2.21¢)
gbcmc—.ZZQud_i— FacZSbcd "'Fch3acd+Fch4acd
'_C‘abcgcd’ndm2= 0. (2.21d>

In Eq. (2.21d) the repeated index d in the last term is
not to be summed. Equations (2.21a) and (2.21b)
follow from the requirement that ¢-No. ST vanish in
the current-current commutators. From the above dis-
cussion, we note that the conditions imposed by the
canonical commutation relations [Egs. (2.18) and
(2.21)7 place no restrictions on the euaps couplings in
£3).

We next turn our attention to the requirements of
PCC. From Egs. (2.8) and (2.12) we have

gabaﬂv”b(x)_Fab(_D'I"I-le)Sb(x):O, (2.22)

where Eq. (2.22) is to be satisfied only to first order in
the ceupling constants as stated earlier. Upon using the
Lagrangian equations of motion (2.9) and (2.10), we
obtain the conditions

Ziaacka®+Ziacaphe= OF 418" vea
Z1aactZ1aca=2F avg%ca
ﬁd2(Zsaad ~Z1sa0a) = Favglacs
Zsacat Zoaac= —4F avgtbea,
Zaacama*+ Zagacm?= —2Favg®pea,  (2.23e)
Viseat Yisae=4F gohapca. (2.23f)

Some of the g and %° are automatically symmetric or
antisymmetric in certain indices, as can be seen by
examining the £s) of Eq. (2.7b). These symmetries are

(2.232)
(2.23b)

(2.23d)

g3’4’8abc= +g3'4’8acb )

h4abc: +h4acb y

while g7.s. is symmetric on interchange of any two
indices.

gz'sabc= —g2’66ac )

hl’zabcz _h1’2bac 3

(2.24)

(2.23¢)
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III. SOLUTIONS FOR COUPLING CONSTANTS

OF THREE-POINT FUNCTIONS

In this section we discuss the solutions of the current-
algebra conditions (2.18), (2.21), and (2.23) for the
three-point functions. We first remark that these equa-
tions are not all independent. Thus Egs. (2.21a) and
(2.21b) are identically satisfied by virtue of the defini-
tions of Z3, Z4, Y1, and ¥, [Egs. (2.16)] and the anti-
symmetry of g2 g% %', and 4% [Eqgs. (2.24)]. Equation
(2.21¢) is automatically satisfied as a consequence of
the commutation condition (2.18¢c) and the PCC con-
ditions [Egs. (2.23b) and (2.23c)]. Similarly, Eq.
(2.21d) follows from Egs. (2.18b) and (2.23c) and
(2.23¢). Thus all the conditions arising from the commu-
tators [V, V%] are redundant.

In order to solve the remaining equations (2.18) and
(2.23), it is convenient to introduce matrices g and F
whose components are g.5 and Fqs, respectively. Equa-
tions (2.18) then allow one to determine Z, and Z,
uniquely and relate Z; to Zy:

ZZadc: —'Cabeged(g~l)cb, (3.13)
Z4adc: _Ca.beFed(g—l>cb ) (3'1b)
Z3ade= '—'Zlaedee(g‘l)cb- (3.1C)

Here g1 is the matrix inverse of g. One may now use
Egs. (2.23d) and (2.23¢) to determine parts of g* and
g% One finds

Far@®vca=3Cavel gea(g™) come®+ gec(gVavma], (3.2)
Fag%ca=$Cabe gea(g™D) ot goc(g ™V av] .- (3.3)

Since F.», does not have an inverse, Egs. (3.2) and
(3.3) do not completely determine g and g% For the
values of the index @ for which F,; is diagonal (i.e.,
Foy="F ,8.3), the left-hand side of Eq. (3.2) reduces to
Fog%aca. One can then determine g3,.¢ and g*,.q uniquely
for those values of ¢ for which F, is nonzero. When
F,=0, g3,.4 and g%.q are undetermined. [The right-
hand sides of Egs. (3.2) and (3.3) automatically vanish
for these values of @ even when Cap.70 as a consequence
of isospin, hypercharge, and strangeness conservation. ]
Thus the couplings of the ¢ and 7y to K*—K* and K 4
—K 4 are undetermined.

As can be seen from the definitions of Z» and Z,
[Egs. (2.16b) and (2.16d) 7, Egs. (3.1a )and (3.1b) allow
one to express g° and g¢ in terms of g2 One finds

ave=mp*F ca(g7) 787 caCrac—2Mabo (3.4)
gGGbG = %maz(g—l)ad(g—l) cfgebcdfe
+%ma2(g—l)adpdegsebc y (35)
where
Aooe=ms* (g™ boF caglaac (3.6)

is undetermined. For values of ¢, b, and ¢ where F and
g are diagonal, Egs. (3.4) and (3.5) reduce to

gsabcz mb2Fa(gbgc)—1Cabc_2Aabc ) (3'7)
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geabc:: %maz(gagbgc)&‘l(pagmbz_‘gb2)cabc
_mazFa(ga)ﬂlAabc, (38)
where Ay, now takes the form
Aase=ms I o(g6) " g bac - (3.9)

If the index & in addition corresponds to a conserved
channel (ie., Fy=0) then Au vanishes and gi.p, is
uniquely determined. If either @ or b are conserved, then
g%, is completely determined. If Fy#0, then Aqp, is
closely related to the SU(3) generalization of Ay4
(=1+44), the 4; anomalous moment.

The remaining current commutator condition, Eq.
(3.1c), when combined with the other relations leads to
the first Weinberg sum rules. [Recall that Eq. (3.1¢)
implies the absence of ¢-No. ST.] This is most easily
seen by using Eqgs. (3.1) to eliminate Zs, Z3, and Z4 in
Eq. (2.21d). Simplifying by Eq. (2.21c) then yields

CovaW aetCocdW ap= 0, (310)
where
I/VabEgacgbcmc_z"{"Fachc- (3.11)

Equation (3.10) implies that W, is an invariant second-
rank tensor under the chiral group. For SU(3)XSU(3)
this implies

Wap=Noas, @, b=1,...,81...,8 (3.12)

where A= g,%/m,? is arbitrary. (Experimentally, \ has
a value close to 2F.2% though the KSRF (Kewara-
bayashi-Suzuki-Riazuddin-Fayyazuddin) relation g,?
=2m,2F;* is not deducible without additional assump-
tions in the hard-pion current-algebra formalism.) Note
that though ¢, b, d, and e in Eq. (3.10) run only over the

16 labels of the current algebra, 1, ---, 8,1, ..., §, the
index ¢ in Eq. (3.11) sums over all 18 Values 1 , 9,
1, ...,9. Thus the sum rules for the channels 1nv01v1ng
m1x1ng read
g 2 g8w2 gsq>2
i (3.13a)
my: My M’
gn* gsu®
= T R — P52 (3.13D)
mp> mg?

For the U(3)XU(3) chiral group, the labels in Eq.
(3.10) also run over the full set of 18 values. One obtains
in addition then the relations

Wo=0=Ws,, a=1,...,81,...,8 (3.14)

but Wy and Wys remain arbitrary. [ Since the group is
reducible, Eq. (3.12) need not hold for ¢ and b taking on
the additional values a=56=9, 9.] Equations (3.14)
then lead to

Z8wg9w 3089
— =0, (3.15)
My? ma?
£8pgSD Y8E80E
— 15,5+ + I, l'5,=0. (3.16)
7’!’L1)2 ME
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Aside from yielding the Weinberg sum rules, Eq.
(3.1¢) relates g3 to g' and g®. Thus inserting in the defini-
tions of Egs. (2.16a) and (2.16¢) yields

Bave= —3[m2(g7F) vag'caat m.2(g"F) cag'vda ]

—“mb2mc2(g 1F)bd(g 1I?)ceg ade- (317)

In the range of indices where g and F are diagonal this
reduces to

ggabc"‘ __‘[/”ZbZFbgb—l cba+mc cgc g bca]
—msm oI F (gge) 7 g abe -

Thus, if F,=F,=F,=0, then g%.,,=0, i.e., there is no
g*-type o-p-p coupling. For other possibilities, g° is gen-
erally not zero.

The remaining equations, Egs. (2.232)-(2.23¢c), give
information relating g?, g8, and g7 [upon eliminating Z3
and Z, by Egs. (3.1b) and (3.1c)]. If we consider the
range of indices @, b, and ¢ where g and F are diagonal,
then for the case where F,, F, and F, are all nonzero,
one finds

grave=Fama®(ga) " —3(ua) 728" abet5(F ol oF )71 2F 32

(3.18)

'—F 2+},L —2([102F Z_szsz)]Cabc} ) (319)
gave= 3L (o) 7+ (1) 2 1g"are
+3(FFoF )~ IE(ﬂb)—z_(#c>—2:]
X (Fb2:ub2+Fc2,ucz a I-‘a )Cabc, (320)

where g7.p. is undetermined. [Note that g7, also
cancels out when Egs. (3.19), (3.20) are inserted into
Eq. (3.18).] A subcase of Egs. (3.19) and (3.20), when
two of the subscripts correspond to strange mesons, was
derived in the analysis of the K5 decay.*

If two of the F,, Fy, and F, vanish and one is non-
zero, then parity and strangeness conservation imply
that géep.= 0 for all 7. If F,=0 but F#0 and F .0, one
finds
(3.21)

glabc: ma2(ga>—lcabc

and g7 and g8 are arbitrary. (Note that for this case, b
and ¢ must be in the same isotopic multiplet.) Other
cases may be considered, as well as channels involving
mixing, but we shall not pursue the matter further here.

Finally, we should like to note that no assumptions
about the nature of the ¢ commutators, and hence no
assumption about the nature of chiral breakdown has
been made in any of the above analysis. In Sec. IV we
shall see the implications of pole dominance of the o
commutators.

IV. STRUCTURE OF CURRENTS FOR
N-POINT FUNCTIONS

In this section we consider the extension of the pre-
ceding analysis to N-point processes. As was shown in
Papers I and II, an N-point function can be evaluated
under the assumption of single-meson saturation by
calculating tree and seagull diagrams obtained from an
appropriately constructed effective Lagrangian. The



3 N-POINT FUNCTIONS IN
effective Lagrangian which represents the N-point
function will contain (in addition to £ described in
the previous sections) interaction terms which are prod-
ucts of up to NV field operators. The Lagrangians con-
sidered will be restricted as were the three-point Lagran-
gians; only those interaction Lagrangians which can be
written in the first-order formalism without explicit
derivatives will be considered.® No chiral or SU(3)
symmetry is imposed on the Lagrangian; the coupling
constants are determined by imposing the CCR and
PCC, as was done for the three-point Lagrangian.

In discussing the N-point functions, we will use a
different phase convention for the x meson than was
used in the three-point discussion. This change is made
so that the scalar-meson octet can be treated more
uniformly in analyzing the couplings. For any combina-
tion of three of the nonstrange mesons, for which G
parity is defined, only one type of coupling, either an
“f-type” (antisymmetric) or “d-type” (symmetric) is
allowed and this type is the same for the eighth com-
ponent as it is for the first three.!? In fact, for any three
mesons, the coupling is f-type if the number of scalar
mesons is even and is d-type otherwise.!! In deciding
what types of couplings in are allowed it is useful to
define the phase of the strange mesons so that the above
rule also holds for them. This choice of phase then re-
sults in a k which is —% times the « used in the three-
point discussion of Sec. II.

The above convention leads to a change in the form
of the divergence of the strange-vector current. Thus

8, Vr= —iF k. (4.1)
In Hermitian component form, Eq. (4.1) becomes
0, V#y=F 5y
Sl 4.2)

6,,[/'"5= —FKMK2K1,

and similarly for the 6 and 7 components.
We can now assign a charge-conjugation signature
(CS) to an entire octet. It is equal to A where

CQC—1=)\QT.

Q is the octet written in 3X3 matrix form and C is the
charge-conjugation operator. It is also equal to the G
parity of the isotopic singlet. The scalar octet, pseudo-
scalar octet and axial-vector octet all have positive CS.
The vector octet has a negative CS.!2 Charge-conjuga-

10 We stress that no over-all f or d symmetry is assumed. By
an f-type coupling we mean merely one which is restricted to
coupling only those components for which fa. is nonzero, while
a coupling has f symmetry if the specific SU (3) fasc are used. In
other words, an f-type coupling is any antisymmetric, isotopically
invariant coupling and a d-type coupling is any symmetric,
isotopically invariant coupling.

1 For example, the mpw system has a d-type coupling. Changing
the w to p gives the mpp system. The d-type coupling for three
isovectors is zero. Changing the = to 5 gives the npp system which
also has a d-type coupling.

12 If a nonet is formed, the ninth meson will be assumed to have
the same G parity as the eighth. The same CS parity will be
considered a property of the nonet.
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tion invariance is maintained if three fields with total
CS* positive are coupled with d-type couplings and
those with total CS negative are coupled with f-type
couplings.

As was the case for the SU(2)XSU(2) treatment in
II, we choose the currents to be quadratic in canonical
fields, that is, we require now Egs. (2.14) and (2.15) to
hold exactly (and not just to second order). Physically,
this requires that the commutators of currents with
scalar fields be dominated by terms linear in the scalar-
particle fields:

[Vﬂa(x);sb(y)js(xo—y°> = i(Bach¢+Fab)54(x—y) . (43)

Thus the generalized “oc commutator” is also required
to satisfy single-particle saturation. More complicated
possibilities, e.g., involving a higher polynomial of
fields on the right-hand side of Eq. (4.3), can be con-
sidered but we will not do so here. Using Eq. (2.15) with
Eq. (4.3) shows that

Babc:ZIabc- (4:4—)

Once the quadratic form of V¢, Eq. (2.15), is assumed
exact, one can then investigate any additional CCR
requirements on the Z’s and the Y’s defined in Eq.
(2.16), since the current algebra can now be computed
to all orders. Again we write

Ve=Veay+ Ve,
Vigy=0,

where V) and V() symbolize the linear and quadratic
parts, respectively, of the expansion on V¥ in canonical
variables. We thus see that the form of the canonical
commutation relations gives the following for the com-
plete content of the equal-time CCR. We write (sup-
pressing spatial variables)

4.5)

[Vow,V*a]=c¢-No., (4.6a)
LV% @, Vo 184+ V%@, Vi) ]

=1Capc VFe(1y0?, (46b)
[V0%2), V%@ ]=1Capc VO (2)6%. (4.6¢)

Only the last equation is yet to be satisfied. The result-
ing algebraic conditions on the Z’s and the ¥’s are given
and solved in Appendix A. One finds there that Eq.
(4.6¢) implies that ¥, and ¥» must both vanish and also
that

Z1abe= (S saA aaeSec (4.7)
where!'4
Aape= fave 1if @ is a natural-parity component
=due 1if @ and b are unnatural-
parity components
= —d4p. if @ and ¢ are unnatural-
parity components (4.8)

¥ The total CS of a product of fields is the product of the
individual CS’s.

14 Natural parity refers to the JP=0% 1=, 2+, ... sequence;
unnatural parity refers to the JP=07, 1*, 27, ... sequence.
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and S is diagonal, except for possible mixing between
eighth and ninth components of nonets. The elements
of S are arbitrary except that they must be the same
within a given isotopic multiplet [ for SU(2) invariance].
Comparing this form for Z; with Eqs. (4.3) and (4.4)
shows that the scalar mesons form a “scaled” (3*,3)
4 (3,3*) representation of the chiral algebra. The scaling
matrix S arises from the fact that the fields of the
cffective Lagrangian are renormalized fields. Thus the
renormalized fields §,=S.sss transform according to
the usual (3,3*)4(3,3%) representation and S,; are
proportional to the square root of the wave-function
renormalization matrix.’s Thus the (3,3%)4(3%,3) form
of chiral breakdown arises from the combined current-
algebra and pole-dominance conditions.

The vanishing of ¥ and ¥, allows one to relate Ao,
and A3.p, in terms of A%, by Eqgs. (2.16¢) and (2.16f).
Equation (2.23f) implies that /.5, vanishes for values
of @ such that F,70. Note that the choice S=1 would
be consistent with SU(3) symmetric couplings and so
the value of S describes, in part, the breakdown of SU(3)
invariance.

A second important result deduced in Appendix A is
following: If one assumes pole dominance of the general
o commutator, Eq. (4.3), with the assignment of positive
G parity to the scalar isotopic singlets and negative G parity
of the scalar isotopic triplet, then the SU3)XSU3) cur-
rent algebra cannot be satisfied by introducing octets of
particles. If pole dominance of the o commutator were
relaxed, the algebra could be satisfied with octets. If
only the G parity of the scalar mesons assignments were
changed, however, the formalism would require un-
physical conservation relations, such as exact conserva-
tion of the axial-vector isotopic singlet and triplet cur-
rents. The pole dominance of the o commutators is, how-
ever, consistent with the introduction of nonets of mesons.
[t is not necessary to use a U(3)XU(3) algebra with
nonets of mesons to achieve a consistent solution, but
it is sufficient as well as natural.

The three-point PCC conditions of Sec. IT give addi-
tional restrictions. To determine and express these re-
strictions simply, it is convenient to write the isotopic
singlet currents in different linear combinations than is
customary. We define for the vector currents

Via=(3)Vis— (V3 VH,
Veg= (V5 VEst+ (/3 V4,

and similarly for the axial-vector currents. The conse-
quences of this transformation on the algebra and U(3)
coupling constants are detailed in Appendix B. The
resulting currents are no longer separated according to
SU(3) singlet and octet, but are constructed in such a
manner that the f and d U(3) invariant coupling con-
stants will not couple the two isotopic singlet states.

4.9)

15 S, I.. Glashow and S. Weinberg, Phys. Rev. Letters 20, 224
(1968); I. S. Gerstein, . J. Schnitzer, and S. Weinberg, Phys.
Rev. 175, 1873 (1968).
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Since no a priori SU(3) invariance is imposed on the
formalism, this is a representation which is equally as
valid as the usual one. However, as discussed above, the
current algebra and the G-parity assignments of the
scalar mesons require nonets, and the PCC conditions
become diagonal in the representation given by Eq.
(4.9). Therefore, this representation will be used
henceforth.

The pertinent PCC conditions are given and solved
in Appendix C. The results are as follows.

1. The elements of F,; for the eighth and ninth
pseudoscalar mesons are determined to within an arbi-
trary mixing angle, in terms of their masses and the F’s
and masses of the pion, kaon, and k meson. The matrix

“clements of F,p are listed in Eqs. (C23) and (C24)

2. The scaling matrix S for Z; is determined to
within a choice of solution to a quadratic equation for
the pseudoscalar and « channels. The elements of S and
the elements of S—! (for the isotopic singlets) are listed
in Egs. (C26), (C27), and (C21).

3. The product F,u, is forbidden to lie within a cer-
tain range. The requirement is'®

| F | > | Frux|+ | Friir|
or (4.10)
| Fuee] < || Frug| — | Fauel |-

4. The scalar-scalar-scalar coupling constant g7ap. is
determined to within a sign for those channels connect-
ing the k meson and the pseudoscalar mesons. The ex-
pressions are listed in Egs. (C29) and (C30).

V. EFFECTIVE LAGRANGIAN WHICH
PRODUCES QUADRATIC CURRENTS

Section IV described the current-algebra conditions
on the three-point coupling constants arising from the
requirement that V° can be made quadratic in the
canonical fields, i.e., that the ¢ commutators are pole
dominated. This condition on V? puts constraints on the
structure of the N-point Lagranglan since in general
a term involving a product of NV fields in £r could pro-
duce a contribution to V° of order N —1. In this section
we determine the form that £r must have so that in
fact VO is restricted to be quadratic.

The solution of this problem can be obtained more
simply if the effective Lagrangian is written in second-
order formalism, rather than in the first-order for-
malism. The second-order formalism Lagrangian £? is
obtained from the first-order formalism Lagrangian £!
by using the additional equations of motion obtained by
varying £! with respect to the auxiliary variables (field

16 This result has previously been obtained by S. L. Glashow
and S. Weinberg [Phys. Rev. Letters 20, 224 (1968)] by assuming
that the symmetry-breaking part of the Lagrangian is propor-
tional to local field operators that transform like the (3,3*)+(3*,3)
representation of SU(3)XSU (3). In the present approach the
assumptions of current algebra and single-particle dominance of
the ¢ commutators is sufficient to deduce Egs. (4.10). Similar

conclusions have been reached by L. K. Pande, ibid. 23, 353
(1969).
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strengths) to eliminate them from £ For instance, the
equation defining the scalar auxiliary s, is

Su=0us—08LrY/ds*, (5.1)

where £7! is the first-order formalism interaction
Lagrangian. £r! contains no explicit derivatives in the
present formalism by construction. Thus, every time
Eq. (5.1) is used to eliminate an auxiliary field, a term
with at most one derivative acting on any one field is
generated, plus possibly terms of higher order in field
products which still contain auxiliary fields. Auxiliary
fields can be eliminated from £* by this program to give
an £2 which contains at most one derivative acting on
any one field. Requiring this property is the second-
order formalism form of the “smoothness” restriction
that £ have no explicit derivatives; there is a one-to-
one correspondence between an £2 satisfying the second-
order form of smoothness and the £! satisfying the
first-order form. The coupling constants of the corre-
sponding three-point £’s turn out to be identical. The
correspondence becomes more complex for the higher-
order terms.

£! and £2? are numerically equal by construction.
Thus

Ls; 0u8; oo J=Ls; 9u8;5:(3s+); ... ], (5.2)

where the explicit dependence on d,s in £! comes only
from the free-field part of the Lagrangian. We have
then

AL Is,

95 9(d,8)

L2 Lt
= +
3(a,s)  9(9u8)

Now, the free-field part of £, Eq. (2.7a), does not
depend on derivatives of s,, nor does £;%, by definition.
Thus the first-order Lagrange equations read

(5.3)

ALY/ ds5,=0 (5.4)
and hence the useful correspondence
0L? oLt
— = = —gh (5'5)
0(3,8)  0(,s)
bolds. Analogously,
0L? 9Lt
= =—Gm. (5.6)
9(9.v,)  0(9.v,)

Using these results in the Lagrange equations of motion
gives (for either £' or £2)

8L/8s+ 0,ust=0,
88/60,+9,G=0.

(5.7)
(5.8)

These correspondences provide the tools necessary to
express the functional dependence of the currents on £2
(The simplicity of these relations is a consequence of
the original choice of limiting the momentum transfer at

CHIRAL SU(3)XSU(3)--- 601
each vertex by not allowing any explicit derivative
couplings in the first-order formalism Lagrangian.) In
terms of the auxiliary fields, the assumption that V°
is quadratic in canonical fields implies that an exact
equation for V* is (Egs. 2.15)

V"a = (gab/mb2) avGVMb_i_ Fu,bsﬂb_‘_ Zlabcsubsc_{— Z2abc'vvwa‘c
+Z3abcsbavaﬂc+ Z4abcavsva”c- (5~9)

(We have already seen in Sec. IV and ¥ and ¥, are
required to be zero in this formalism.) Using Egs. (5.5),
(5.6), and (5.8) to eliminate the auxiliary fields gives the
following result:

Zab. 6L 0L oL
V“a"—"__'"—— L ab ‘—Zlabcsc
’mb2 5vyb 53,,8(, 53“85
oL 0L
—Z2abelpb —Z3abeS~— —Z 1abc0,S b . (5.10)
pluc 0Vpe oVpc

Since V*#, is a linear combination of »* and 9#s [Eq.
(2.8)], Eq. (5.10) may be viewed as a functional
differential equation for the second-order formalism
Lagrangian.

It is useful at this point, for the purpose of solving
the functional differential equation, to define new vari-
ables and introduce a linear combination of v* and s
that is “orthogonal” to the linear combination of
6/6v* and 8/89,s that appears in Eq. (5.10). The same
procedure was followed in the SU(2) X SU(2) analysis
in IT, where a combination of »#, s#, G*, and s was found
which did not appear in the SU(2) analog to (5.10).
The appropriate quantity here is

Y#a= Sab—F oW a7 F ap) 045y — F o oW oq™2gasv*y
—Z1aWastss V¥, (5.11)

where

WabEgacgbc/mg"{_Ziacha- (5.12)

[The first Weinberg sum rule, Eqgs. (3.12) and (3.14),
evaluates W,s. Alternatively in terms of the com-
ponents 4 and B of Eq. (4.9) and Appendix B, one may
write

I’VA,azozI/VB,ay a= 1, -.',8, i, ...,8 (5.133.)
Waa=g/m*+58v, Wpp=g,/m +36v, (5.13b)
Wa,5=Wga=—35V26y, (5.13¢)

where 6v is undetermined. Similar relationships, with
04, hold for the axial-vector components, I and I1.7] It
is also useful to define

]J;waE auvva_ aﬂjua‘*— gad—II/VedﬁICebc Vub Vuc . (5-14)
With this choice of variables, Eq. (5.10) becomes simply

SE(Vr kI, 5)

oV s

Vig= =Wy

, (5.15)



602

where use has been made of the three-point current
commutator conditions Egs. (3.1). Equation (5.15) has
the obvious solution,

L= —3Ver (W) 0oVt £ (v,Hys).  (5.16)

The quadratic parts of £ are determined so that £ have
the required free-field parts. One has then

£L= _'%V“a(W—l)aanb—T}:Hwanb
—%(Bab’*_mezged_leagecﬁchb)'Y”a'Yub

—3na’sa*+Lr(v,H,5), (5.17)

where £r(v,H,s) is any Lorentz, isotopic, and octet
CS-invariant structure of v, H, and s that involves
products of at least three fields. Some of these terms (all
of those containing the components of s, involving un-
conserved indices) will be determined by the PCC con-
ditions and will be discussed in Sec. VI. Note that v and
H are primarily derivative-coupling terms. Any term in
£1 containing only these two quantities is determined
neither by the current algebra nor by PCC. Thus, even
with the ground rule that £ shall have no more than one
derivative acting on any one field, the terms in £ repre-
senting the highest powers of momentum transfer, i.e.,
those with the most derivatives, are not determined by
the current algebra.

The relations between the functional derivatives of
the new and old variables give some insight concerning
their meaning. For instance,

0L 1 68

=- =—1G,, (5.18)
oH® 2 4o’
by Eq. (5.6). Hence,
Gpva= Huva_zacel('Y,H,S)/aH"Va,. (519)

Thus H ,, differs from the canonical auxiliary to v* only
by terms in £; over and above the minimal terms re-
quired to satisfy the current algebra. The definition of
v* was so chosen that

8ab 0 )
e,
b2 Vb 60,81

) 0
+Sc<Zlabc""’”‘ +Z 34006 >]7pc =0 ) (520)
58;‘511 Vub

so that functions of v* would not affect Eq. (5.10).

VI. PCC CONDITIONS ON N-POINT
LAGRANGIAN

Since Eq. (5.9) is exact [a consequence of the condi-
tion that V° be quadratic in the canonical fields (pole
dominance of the ¢ commutators)], a simple relation
can be obtained for the divergence of V* Ior those
currents that are conserved, these conditions merely
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require, of course, that £ be symmetric under the trans-
formations which they induce. For the unconserved
currents, however, the relation produces a functional
differential equation which determines the dependence
of £ on s, for those indices corresponding to the uncon-
served currents. In this section we examine these equa-
tions and also show that they are simultaneously in-
tegrable. It is thus a straightforward task to construct
this s, dependence of £7 to any desired order.
The divergence of (5.10) is computed using (5.7) and

(5.8) to get

oL 0L 0L
auvuaz _"Fab—‘_' _Zlabc sc_Zlabc“_*

0sp oS 00,5

0,8

0L 0L 0L
_'Z3ubcausb'*—' +Z2abcauvvb_~‘“ +Z2abcvyb—_"

Vue 00,756 0yc

0L
+Z4aboavs .
00ye

6.1)

The right-hand side must equal F 525, by PCC. This
equation also is made more tractable by changing to
the V, H, v variables of Egs. (5.11) and (5.14). One
finds

0L 0L 0L
Fab’“"" = _Zlabc _sc+ 7”0)
08s 0y %

0L 0L
—Cabo< V“c+gbdg—190

oV*Ey SH#

H’“’e) —F pup?ss. (6.2)

If a is a conserved component, i.e., if Fg;=0, then
Zlabc:fadeS—ldeea by Eq. (4.7). Equation (6.2) be-
comes for this case

0L oL
0= fa.chﬁldbSce(_—se‘*‘ 'Y“e)

0Sa oyt

0L 0L
+fabo<'*— V”c"{'gbdg_lec

oV 0H*#

H""e>. (6.3)

LEquation (6.3) requires only that £ be constructed to
be invariant under isotopic and hypercharge rotations,
a well-known consequence of conserved currents, and
the motivation for originally requiring £ to be con-
structed to be isotopically invariant.

For the unconserved components, £ is proportional
to the chiral symmetry breakdown in the V and H
couplings. Since the only V* term in £ allowed by the
quadratic current condition, Eq. (5.16), is chirally
symmetric (as a consequence of the first Weinberg sum
rule), the 6£/8V* term of Eq. (6.2) vanishes. Thus Egs.
(6.2) and (5.15) are mutually consistent, as a conse-
quence of the absence of ¢-No. ST.

In the subspace where F,; has an inverse, Eq. (6.2)
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yields

6L 0L 0L

- = —F_larzlrbc<——sc+ 'y#c _I(L“larcrbc

8Sq osp 0v*s

oL 0L
X< v VEt-goag e »H“”g)-—ufsa, (6.4)
)

Ep ol

where it is understood that all indices of F~1,, range
only over the unconserved subspace. Equations (6.4)
are a set of functional differential equations to determine
the dependence of £ on the unconserved components of
sq. However, for a solution to exist, it is necessary that
the integrability condition
6%L 828

05p0S,  05408p

(6.5)

be satisfied. A verification of Eq. (6.5) is most conveni-
ently carried out by induction. The proof is analogous
to that in the SU(2)XSU(2) case (Appendix A of
Paper II) and so we only sketch the details here.

Let £™ be the contribution of all terms to £ con-
taining # fields. Then Eqs. (6.4) read

sen IR Y
T = (P"l)arzlrbc<—__sc+ _‘y“c>
0Sa 0y v s

n—1 n—1
_F“larcrbc< V“c+g brlg_lec IJ’“’G) (66)
8V oH" 4
for n>3. Hence
52£n 52£n~1 62£nal
= _Iihlarzlfrmn< Sn+ ’yﬂn>
055084 0808y v m0Sp

521 5201
—F—larcrmn< "Vﬂn“*_gmdg—lcn“ '_‘_IIMVE)
856V, 0sp0HM 4

n—1

-'Fhlarzlrmb (67)

0Sm

The induction proof proceeds by assuming that £711is
integrable and so an £7~! exists obeying

5£n-—1 5£n~1

= . (6.8)
05408y  0Sp0Sy

Here a and b range over both the conserved and uncon-
served indices. The second derivatives in Eq. (6.7)
involving y#, s, etc., and the term §£"~!/8s,, can be cal-
culated from Eq. (6.6) by replacing # — n—1. One finds
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by direct calculation then that

s
= _F—Iurzlrmb_

52

055084

s2Len

05408 0Sm

. 5£"_2 5£n—2
+F_1arzlrstF~1meImqs "_‘_’St+ 'Y“t

0Sq oty
5£n—~2
+1"_larcrstl"ﬁlbmcfnqs I/“t
oV,
st
+F‘1arZ2rtsFAlbm22msq H’wl_(a'(_‘) b) . (69)
oHw

Using now the current-algebra conditions (2.21¢) and
(AS5)-(A7) and the full PCC condition (6.2), one may
directly verify that the right-hand side of Eq. (6.9)
vanishes. This result, plus the fact that £2 and £2 have
been explicitly constructed, completes the proof of the
integrability. Note that Egs. (A6) and (A7) were ob-
tained from the commutators of the quadratic parts of
V® demonstrating the inherent compatibility of the
current-algebra and PCC equations with the assumption
of pole dominance of the ¢ commutators.

The integrability conditions guarantee the existence
of a solution of Egs. (6.4). Thus if we denote by ®, and
o, the unconserved and conserved components, respec-
tively, of the 18 spin-zero mesons s,, then one may write
the £r of Eq. (5.17) as

L1(v,H,5)= L101)(v,H,®,0)+ L2y (v, ,0)

where £7¢) contains at least one factor of ® and is com-
pletely determined by Egs. (6.4). £1¢) is arbitrary and
undetermined either by the current-algebra or PCC con-
ditions. In practice, it is straightforward to determine
L1y to any desired order. Thus, if one inserts £7° of
Eq. (2.7b) on the right-hand side of Eq. (6.6), one may
integrate to obtain £ra)% etc.

(6.10)

VII. SUMMARY AND CONCLUSIONS

In this paper a general solution has been given to the
problem of determining hard-meson N-point functions
in chiral SU3)XSU(3) current algebra within the
framework of pole dominance. The current-algebra con-
straints are realized by constructing an effective Lagran-
gian, from which the V-point functions may be obtained
by calculating the tree and seagull diagrams. The effec-
tive Lagrangian is not presumed to have any funda-
mental significance and is merely a convenient device
for realizing the current-current commutation relations
(CCR) and partial-current conservation (PCC) condi-
tions. No a priori assumptions as to the size or nature of
the SU(3) or chiral SU(3)XSU(3)-symmetry breaking
are made.

Since the calculations of the previous sections are
somewhat lengthy, we give here first a brief summary of
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the results, in order to obtain some perspective on what
has been done. In Sec. IT the constraints imposed by the
CCR and PCC conditions on the coupling constants of
the three-point functions (cubic part of the effective
Lagrangian) were obtained. Section III is concerned
with the general solution of these algebraic equations.
These solutions determine some of the coupling con-
stants completely and allow others to be expressed in
terms of a set of undetermined coupling constants. The
absence of ¢-No. ST, when combined with the other
current-algebra conditions leads, of course, to the
general first Weinberg sum rules. When one goes be-
yond three-point functions, one encounters a new ele-
ment, viz., the o commutators, and it is necessary to
make some assumption concerning them. In Sec. IV, it
is assumed that V?, is quadratic in the canonical vari-
ables, i.e., that the o commutators are pole dominated by
the spin-zero mesons [ Eq. (4.3)]. This is within the gen-
cral spirit of pole dominance of the currents themselves,
but implies an additional assumption. Section IV out-
lines the conditions imposed on the three-point function
coupling constants (over and above those obtained in
Sec. III) due to this extra condition (details are given
in the appendices). The o-commutator hypothesis can
only be achieved for effective Lagrangians having
a specific form. This form is calculated in Sec. V [Eq.
(5.17)]. Finally, Sec. VI completes the analysis by
determining the PCC conditions on the general N-point
Lagrangian. These are a set of coupled functional
differential equations [Eq. (6.2)] which are shown to be
simultaneously integrable. They determine the de-
pendence of the Lagrangian on the spin-zero fields ®,
whose indices correspond to the unconserved currents;
they may be integrated straightforwardly to any de-
sired order.

The complexity of the results are in large part due to
the simultaneous imposition of the CCR and PCC con-
ditions. Thus the former are consistent with the assump-
tion of perfect chiral and SU(3) symmetry, while the
latter describes the breakdown of these symmetries.
(A4 priori it is not clear just how much symmetry break-
ing the chirally symmetric CCR will allow.) If one were
to assume all the currents were conserved, then it is
fairly easy, using the methods of this paper, to obtain
general results for arbitrary SUn)XSU(n) [or Un)
X U(n)] chiral groups. The complications of much of the
analysis given here is due to the need to take into ac-
count the particular idiosynchrosies of the physical
symmetry breakdowns of the SU(3)X.SU(3) case. This
can be seen, for example, in the solutions for the three-
point coupling constants (Sec. III), the analysis of the
PCC conditions for the general N-point functions (Sec.
V1), and elsewhere.

The logical tightness of the simultaneous require-
ments of CCR and PCC is further illustrated by the
additional results obtained when one also assumes pole
dominance of the ¢ commutators. Here one finds that
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if one makes the usual experimental assignment of
positive G parity to the scalar isotopic singlets and nega-
tive G parity to the scalar isotopic triplets, then the
SUB)XSU(3) current algebra can no longer be satisfied
by introducing octets of particles. The simplest consistent
choice is to introduce nonents of mesons. The previous
success of the field-current identity then suggests that
one consider nonents of currents and examine the U(3)
X U(3) algebra, although this of course is not demanded
by the formalism. (Even if one were to alter the G-
parity assignments, a consistent octet formalism would
require unphysical conservation laws, such as conserva-
tion of the isotopic singlet and triplet components of the
axial-vector currents, and so be unacceptable.) A further
important consequence of the pole dominance of the o
commutator is that the scalar mesons must form a
“scaled” (3,3*)4(3*,3) representation of the chiral
algebra [Eqs. (4.7), (4.8), (4.3), and (4.4)]. The scaling
parameters of the matrix .S (which vary with the isotopic
multiplet) are determined in terms of the PCC param-
eters F .5 and scalar masses u, [Egs. (C26) and (C23)],
and hence are governed by the magnitude of the lack of
current conservation. The scaling parameters are just
the wave-function renormalization constants and arise
due to the use here of renormalized fields. That is, the
formalism uniquely forces a symmetry breakdown corre-
sponding to a (3,3%)-(3%,3) term in the interaction.
The previous discussion points to the fact that the
type of symmetry breakdown is a direct consequence of
the pole-dominance assumption when these are com-
bined with the current-algebra constraints. This sug-
gests the possibility that the correctness of this choice
of symmetry breakdown may be due merely to the
approximate dynamical validity of pole dominance,
rather than possessing any fundamental origin. On the
experimental side, the situation appears mixed. Thus
in the SU(2) X SU(2) subspace the (3,3*)4(3*,3) sym-
metry breaking assumption implies that the ¢ commu-
tator is an isoscalar and hence that the /=2 and I=0
7 scattering lengths obey'” the Weinberg relation!®
a®/a*~—3.5. A recent experimental determination of
this quantity'® has yielded a value in very close agree-
ment with the theory (a°/a?~—3.3). On the other hand,
matters are less clear in the strange-particle sector.
Thus, as pointed out previously,® the assumption of
a (3%,3)4 (3,3*)-type breakdown leads to a £ parameter
of the K;; decay amplitude close to zero. While the
value of £ is still quite uncertain, recent experiments?!
appear to favor £ —0.5. If £ indeed is large and nega-

17 The fact that pole dominance of the ¢ commutator in SU (2)
XSU (2) chiral algebra deduces Weinberg’s assumption on the
isoscalar nature of the ¢ commutator was derived in IT.

18 S, Weinberg, Phys. Rev. Letters 17, 616 (1966).

1 L.J. Gutay, F. T. Meiere, and J. H. Scharenguivel, Phys. Rev.
Letters 23, 431 (1969).

20 R. Arnowitt, M. H. Friedman, and P. Nath, Nucl. Phys.
B10, 578 (1969).

2 D. Haidt et al., Phys. Letters 29B, 691 (1969). See also the
recent review of experimental results on the K3 form factors by
L. M. Chounet, CERN Report No. 70-14 (unpublished).
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tive, then it would be difficult to maintain both pole
dominance and (3*,3)-+(3,3%)-type chiral breakdown,
and one or both assumptions would have to be modified.

We note that the general formalism described in this
paper can be applied directly to a number of problems,
e.g., Kr scattering, Ky decay, w— 3r decay, KT-K°
mass differences, etc. Some of these will be treated in
detail in subsequent papers.

Finally, we briefly compare the results obtained here
with other hard-meson discussions of the chiral SU(3)
XSU(3) current algebra. Pande?? had previously ob-
tained expressions for the four-point functions for the
case of channels involving strange mesons. The tech-
niques used are similar to those employed here and pole
dominance of the ¢ commutators is also assumed. The
three-point functions for all the SU(3) channels have
been examined by Gerstein, Schnitzer, and Weinberg?!®:2®
using the Ward’s-identity approach. When pole domi-
nance is imposed, this analysis is equivalent to the
three-point discussion of Sec. IT. However, these authors
do not carry out the analog of the solution of the cou-
pling constant equations (Sec. IIT). More recently, a
very elegant approach to the general N-point function
using the Ward’s-identity method has been proposed
by Zumino.?

APPENDIX A
This appendix will consider solutions to the equations

[V %@ (%), V% 2 () 18(x0—y°)

=1'Cachc(2>54(x"y) ) (Al)

where the subscript (2) denotes those terms in the
canonical expansion of ¥° which are quadratic in canoni-
cal fields. In particular,

V8% @y= —Z1actS850e1 Z2anc0i8Gosc
+Z346c550iGoict Z 4ab:0:55Goie

+ 265t (V1ab6¥i60:Vkc+ Vaavc0iss0ivie) . (A2)

The algebraic relations implied by Eq. (A1) can be
compactly presented in a matrix notation. The second
and third indices of a coupling constant will be con-
sidered to be matrix indices and will be suppressed in
the notation. For instance, the matrix Z;, will have
elements

(Zla)bc::Zlabc: (ZlaT)cb- (As)

The structure constants Cys. can be represented by the
matrix C,, where

(Cu) be=Cabe (A4)
and the algebra representation is
[Cm,cb] = —CupCo. (AS)

2 L. K. Pande, Phys. Rev. 184, 1683 (1969).

B1. S. Gerstein and H. J. Schnitzer, Phys. Rev. 175, 1876
(1968).

#B. Zumino (private communication) and lectures at the
Brandeis Summer Institute, 1970 (unpublished).
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In this notation, the algebraic equations implied by
Eq. (A1) take the following form for the integrated
algebra:

[Z16,Z15]= —CabiZ1c, (A6)
[Z2a,Z25]= —ClabeZse, (A7)
21" ZsvtZsoZoa— 216" 230t 216" Z30= CuvZse,  (A8)
ZiZoa—ZLsaZoovt+Zsaloovt+ 21" Z = CapeZac, (A9)
Z2aV 1o+ YV1Zoa" = Zop(V1a+Y1.7) = —=Casc V1., (A10)
~Z4Y 1ot Zu Vit ZsaV 1ot Zaon V1™
712"V 25— VorZoaT=CapeVse. (A1)

The absence of ¢-No. ST requires in addition the follow-
ing equations:

210" 2w+ Z 36220+ a > b=0, (A12)
VisZooT—Z2. V1 7+a =0, (A13)
~YouZa T+ 24 Vo T+a > =0, (A14)
Z3 Y10+ 21TV 20 T+a > b=0, (A15)
Z1 Y157 —Y 9522, "+a > b=0. (A16)

Since Eqgs. (A6) and (A7) are structurally identical to
Eq. (AS), an obvious solution to Z1, and Zs, is C,. There
are other solutions, however, which depend on the group
structure chosen. At this point, therefore, we specify
that Cqs. will be the structure constants for U(3) X U(3).
The indices will run over 18 values, 1-9 and 1-9, the
bar denoting an unnatural-parity component. One has
then

Ciir=Cizx= fijn,
Cin=Ci=0,

where 7, 7, and & run over the indices 1-9.

It is useful now to split up the matrix equations
(A6)-(A16), into several 9X9 matrix equations, with
each matrix representing a specific parity combination.
For instance, all of the nonzero elements of Z;; can be
represented by the following four 9X9 matrices:

(lei)]'kz Z]’L]k )
(Z:2)ie=Z1i3%,
(Z3) = Z1zir.,
(Z1*)ie= Z1zz.

(A17)

(A18)

The same convention will be used for all the Z’s. We
also define the 9X9 matrices?®

(fdix= fijr,
(d3)je=diju,
(do)ir=(V3)bir; (f6)ix=0. (A20)
In this notation, Eq. (A6) implies several equations,

% We follow the notation of M. Gell-Mann, Physics 1, 63
(1964).

(A19)

with
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two of which are
(214,245 ] = — fijnZa's, (A21)
[Z:2,2:%]= — finZa. (A22)
A solution for the first eight components of Eq. (A21) is
Z1h= fs. (A23)

Z1'y is required by Eq. (A21) to commute with all f;.
Hence it must be zero or diagonal, with the first eight
elements equal. However, we want the ninth component
to have the same type of coupling as the eighth compo-
nent, and the same G parity. The only choice which
satisfies this requirement is Zil=0; hence, Eq. (A23)
holds for all nine components.
The most general, acceptable solution of Eq. (A21) is
then
Zii= <S1)—-1fi51 .

Likewise, the most general, acceptable solution for
Z12i iS

(A24)

Z2= (SZ)—lfiS2 ,

where S and S? are nonsingular matrices. Isoinvariance
places severe restrictions on the form of S. From Egs.
(2.21¢) and (2.23b) we find that for conserved currents?t

(A25)

Zi=f, 1i=1,2,3,8. (A26)
Applying Eq. (A24) to Eq. (A26) shows that
L/i5']=0 (A27)

fori=1, 2, 3, and 8. From this and charge conjugation
invariance, one can show that S is diagonal, with ele-
ments constant throughout each isotopic multiplet,
except for possible mixing of isotopic singlet states. The
same restrictions apply to S2.

Note that the solution for Z, [in Eq. (A7) ] is specified
by the three-point algebra to be [see Eq. (3.1a)]

Zsa=GTC.(GT)1, (A28)

where (G)ap= gap. Thus for Z,, the role of St is taken by
the vector field-current coupling constants, and the role
of S%is taken by the axial-vector field-current coupling
constants. The invariances initially imposed on g.s are
precisely those required of .S* and .52 Note that Eq.
(A28) gives a solution to Eq. (A7) which thus provides
no new information.

Returning to Eq. (A6), we now consider an equation
containing Z® that is part of Eq. (A6):

leiZ13j—Z13jZ11f= _fijkzlzik . (A29)
Using the solutions for Z;! and Z? and defining
X3p= S2Z0%:(SY) 1, (A30)

26 More precisely, when all three indices of (Z:1!)y are in the
I'=1 multiplet one has that S!is an orthogonal matrix. By Eqs.
(2.16a) and (2.7b), Z,! for this case corresponds to the pds coupling,
and S! can then be eliminated by transforming the 8(x) field by
8;— (571)40; since the free s-meson Lagrangian is invariant to
an orthogonal transformation.
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Eq. (A29) becomes

LfoX?]= — finX%. (A31)
There are two possible solutions,
X3=csfs (A32)
or
X3=cyd;. (A33)

Either choice (but not a combination) would con-
serve G parity, but the two choices result in different
G-parity assignments for the particles coupled, namely,
the scalar nonets. The correct choice for the Z, equa-
tion would be given by Eq. (A32), but for Z;3 this choice
is not correct. Z;® couples an axial vector with a pseudo-
scalar and scalar. For this combination, G parity (and
the phase conventions chosen) requires d-type couplings,
and Eq. (A33) must be used. Hence

Zlgfi: 63(52)_1di51 (A.34)
and likewise one finds
Z1%i=cs(SH)7U,S. (A35)

There is yet another type of equation contained in
Eq. (A6):
Zl4izlsj—"Zl4jZ13i: - iijIIk- (A36)

Using Eqgs. (A24), (A25), (A34), and (A35), this becomes
cscal didi]= — fijuf- (A37)

Up to this point, each condition used could have been
satisfied by octets of mesons satisfying SU3)XSU(3).
Such a choice cannot satisfy Eq. (A37). More states are
required than the octets afford. A double nonet of cur-
rents satisfying U(3)X U(3) is not necessary to satisfy
Eq. (A37), but is sufficient. This condition is a result of
the requirement that the general “c commutator” be
pole-dominated, for if this requirement were relaxed,
Eq. (A6) would no longer hold. The same phenomenon
was observed in the SU(2)X.SU(2) analysis, where it
was found that pole dominance of the ¢ commutator
required a scalar singlet state. The close connection be-
tween Z; and the general “o commutator” can be seen
from Egs. (4.3) and (4.4). The singlet states can be
eliminated, if necessary, preserving the current com-
mutators and divergences, for instance by taking the
limit as the masses of the singlet terms approach in-
finity. This results in a ¥° which is no longer quadratic
in canonical fields and a general “o commutator” which
is not pole-dominated.

For a U(3)X U(3) algebra, Eq. (A37) holds provided
that

cea= —1. (A38)

There is no loss of generality if ¢; is chosen to be 1 and
C4= — 1.

We can now put the entire solution of Z; into a com-



3 N-POINT FUNCTIONS

pact equation of 18X 18 matrices,

St 0
Zlazs—lA aS, S:< >, (A39)
0 S
where
Aa = Aa b= abey
(Aa)se=(Aa)e= far (A40)

(43)5e= —(Aa) se= dabe-

The fact that S is diagonal (except for mixing in the
eighth and ninth components) with a common value in
a given isomultiplet, shows by Eq. (4.3) that the spin-
zero mesons form a “scaled” (3*,3)4 (3,3*) representa-
tion of the chiral algebra. Conditions on the scaling
matrix .S due to the PCC conditions are given in Ap-
pendix C.

The scalar fields of the effective Lagrangian are, of
course, renormalized fields. If one defines the unrenor-
malized fields by

§aESabSb (A41)

then Egs. (4.3) and (4.4) show that 5, transform like
a (3%,3)+(3,3*) representation of the algebra. The S,
are directly related to the wave-function renormaliza-
tion matrix

Sas~(V'Z)as (A42)

of Glashow and Weinberg,® who postulated a (3*,3)
4 (3,3*)-symmetry breaking. One sees, therefore, that
the pole dominance of the o commutators implies resulis
equivalent to a chiral-symmelry-breaking interaction trans-
Sforming according to the (3*,3)+ (3,3%) representation of
the current algebra.

Equations (A8), (A9), and (A12) give no new infor-
mation; they are satisfied by any solution to Eq. (A6)
and solutions to the three-point current algebra.

There is another restriction of .S due to the three-point
commutation relations (2.21c). This equation reduces to

ApeaM aa—AaeaM va= CapaM ac, (A43)
where
MabE FucShc . (A44)
The solution to (A43) is
Mup=A4,4.K,. (A45)

By isoinvariance, K. can have nonzero components only
for e=8, 9. Since both .S and K are undetermined in
scale, we can set the scale by requiring that the two
components of K be the sine and cosine of some unde-
termined angle. However, in this formalism, it is more
convenient to use certain linear combinations of the 8
and 9 states, namely

()= "HE) -5,
(B)=(VHE)+VH9).

The details of this transformation are given in Appendix
B. Here, we just mention it to give a motivation for the
actual form that we choose to express the linear com-

(A46)
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bination given in Eq. (A45):
M o= Aspa cosy~+ A gpp sing .

The angle ¢ is determined by PCC conditions, the
details of which are given in Appendix C, along with
expression for those components of S which are
determined.

Note that M,, has the following structure: For
unnatural-parity states, it is diagonal, with different
elements for different multiplets; for natural-parity
states, 4 qpg is zero, and A,ps= faps 1S nonzero only for
the strange components. For these, M, is not diagonal,
but the nonzero elements are M= —Mz= Mg
= — M. Since .S is diagonal, we see that this structure
of M,y is consistent with Eq. (A44) and the structure
of Fqp given in Sec. I1. If we had chosen Z:3, to be f,
instead of d, in Eq. (A34), A4 would be [, for all
states, and the unnatural-parity states would also have
the same structure of M ,; as given above for the natural-
parity states. The only consistent solution would be for
all the axial-vector currents to be conserved, clearly an
undesirable consequence. Since the choice of Eq. (A34)
was dictated by the G-parity assignments of the scalar
mesons, we see that there is a close connection between
the type of interaction allowed for the scalar mesons,
and the type of partial-current conservation allowed in
this formalism.

A similar treatment is used to analyze ¥; and V. The
actual calculations are lengthy and only the results are
given here. There are several solutions for ¥; and ¥,
which satisfy the current-algebra equations, but none
which conserve G parity. A few components of ¥; and
¥V, for which one of the indices are 9 or O are not re-
stricted by the current algebra, but are then eliminated
by the integrability conditions on the PCC equations.
The only acceptable solutions of ¥; and ¥, are for all
components of both to vanish. This result also depends
on the assumption of pole dominance of the “oc commu-
tator” and might be quite different were it relaxed.

The ¢-No. ST equations give no additional informa-
tion. The above solutions represent the entire content
of the current algebra in this formalism.

(A47)

APPENDIX B: REPRESENTATION OF U(3)
ALGEBRA WHICH DIAGONALIZES ISO-
TOPIC SINGLET INTERACTIONS

For U(3) nonets, the symmetric invariant coupling
dab. connects the two isotopic singlets, since dggs= (%)1/2.
It is mathematically useful to choose linear combina-
tions of the 8 and 9 states such that this does not occur.
Matrix equations which must be solved in Appendix C
are thereby diagonalized. The resulting linear combina-
tions are also physically interesting, in that they appear
to be approximately those combinations chosen by the
w, ¢, system. Moreover, this formalism appears to force
this combination on the pseudoscalar singlets, as will be
seen in Appendix C.
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The combinations chosen are those of Eq. (A46). If
we let U be a 9X9 matrix such that

Vi =i
(Uar)= , ¢,b=89
Vi +vi
=dap, either a or 6#8, 9, (B1)
we can give the transformations of f and d:
jabcz Uaa'Ubb’U‘cc’fa’b’c' y (Bz)
(zabcz Usw Upp UcorQarvror - (B3)

The transformed 9X9 matrices, f, and d,, satisfy

[]:a;fb]: _fabcfo 5
[]?aagb]: _]Tabcfzc ’
[dods]= favefe-

Thus, the algebra of U(3) can be expressed just as
well with the f’s and d’s as with the f’s and d’s. For
instance, the results of Appendix A are equally valid
with f and d. [In Appendix A, however, it was more
convenient to use the standard representation, since the
8X8 matrices form an irreducible representation of
SU(3). Having used this representation to find the most
general solutions to the current-algebra restrictions, it
now becomes convenient to change representation to
express the particular solutions that the PCC conditions
permit. ]

The numerical value of the changed f’s and d’s are

(B4)

ﬂsA:fmA:\/%,

f453= f67B:721‘ ,
dia=dosa=dsa=0,

(anf—‘ (22213:‘ J3332 1,

éZ44A= CzssAz (ZﬁﬁAz FZ77A= —\/’% )
(244132 (2551;’—” (Zsssz (27713: % ,

(ZAAAz —\/Z, (Z[iBB:]-, JAﬂlﬁzfiAAIfZO-

(BS)

The f’s and d’s are, or course, completely antisymmetric
and symmetric, respectively. Note that the d coupling
does not couple the 4 and B components. The 4 and B
components then represent the diagonalized isotopic
singlet states which are not coupled by U(3)-invariant
couplings.

APPENDIX C: THREE-POINT PCC RESTRICTIONS
ON N-POINT CURRENT-ALGEBRA RESULTS

In Sec. IT it was seen that the three-point PCC rela-
tions lead to the constraint (2.23a) on Zigs.. In Ap-
pendix A, it was shown that the current-algebra con-
straints when combined with pole dominance of the o
commutators required that Z; take the form of Eq.
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(A39) where the diagonal matrix S is constrained by
Eqgs. (A44) and (A47). We investigate here the effect of
the three-point restriction on the general results of
Appendix A. Let us define

GabcE 6Faa’be’Fcc’g7a' b’ . (Cl)
Then, by substitution into Eq. (2.23a), one has
- TabczMbb’Aub’dec’~1C6'0+bH ¢, (CZ)
where
CabEFachcu2c- (Cs)

The 8 and 9 channels of Eq. (C2) are mixed. To
separate them, we use the transformation equations
(A46) discussed in Appendix B. With this choice of
representation, the matrix M, takes on a simple form
with the following elements:

M .= M= M3= M33=siny,
Mx= M= Mysz= Mygs= M7
— —(v/3) cosp+} sing,
M=Miy=Mag= —M=—M
= (V/3) cosp+3 siny,

(C4)

Mza=Mzz= —V2 cosy,
Me= Mpp=-siny.

The matrix Cqp is diagonal in many of its elements:

Cx=Cu=Cs=Cs=Cr=Fguk?,
Cy=Cu=Cs5;=Ce6=Cr1= Fx2#x2~

(C3)

The A and B components of C will be referred to by
index.

The quantity Ges. is nonzero only for those compo-
nents for which all indices correspond to unconserved
currents. Since by parity conservation, one component
must refer to a natural-parity scalar, the only possible
nonzero combinations are

I. 7Kk,
1I: AK«x, (C6)
1I1: BKk.

From channel T we have (on account of the total sym-
metry of Gus.)

1/ Mk M,
—Gig= *(“‘—‘ K CK) (C7)
2 Mx K
1 MK Mr
= ~<————~ ,r—- CK> (C8)
2 M'rr MK
1/M~ M
- ~(~—cx— - ~c,) (©9)
2\M -
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Channel IT gives

M, Mk
—Gag= (\/%)(;[—CK — _Cx> (C10)

K K

M, Mz M,
=(‘\/7)<—_CAA-" —Cy _(\/2)_‘CBA> ((:11)
Mz M

K

Mg
+ <\/%>—~cm) (C12)
Mz

and channel IIT gives

1/Mx M,
—GB= ~<*~CK—~ CK> (C13)
Mx MK
MB Mx K
= —(—C,‘— Cap+V2- ng) (C14)
2\M Mz Mz
Mg Mg
= (‘*CBB— "*-CK"‘F\F—"C > (C15)
2\M 5 Mg Mz
The solutions to these equations are
Cas=Cpa=0, (C16)
CZZE Z:2<CK+CK) C7r7 (C17)
Cpp=Cs=C,, (C18)
2Gis= —V2Ga5=2Gs5=+VA, (C19)
where
A=C4Cg*+C2—2C,Cx—2C.Ci—2CxC,
=(Cx—C)?—CaCs (C20)
and
tany=V2C,(C,—Cg=A2)~1, (C21)

The quantity A, defined in Eq. (C20), is unfortunately
not well determined experimentally. For one, it depends
on C,, and the « has not been definitely established.
However, A must be positive and hence there results a
restriction on the mass of the k, namely,

| Fos| > | Fopin |+ | Frux]
or

{F,(MK|<HFK,UK|'~'IFW,U'W[|) (C22)

a result that was first derived by assuming that the
chiral-symmetry breakdown term transforms as'®
(3,3%)+ (3%,3).

Equations (C16)-(C22) result from two features in
the formalism: (1) the assumption that the general “o
commutator” is pole dominated and (2), the G-parity
assignments for the scalar meson octet.

The determination of Cap gives Fop by Eq. (C3) for
the singlet pseudoscalars, to within an undetermined
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mixing angle:

5= (Ca)'/? cose/ps,
FA.s— —(C4)'?sine/us,

. . (C23)
= (Cp)"? sing/us= Fpx sine/ps,
F5,5=(Cp)"? cose/ps=F rux cOs¢/us.
The inverse of F,; over these states is
Fyg a7 '=yug cose/(Ca)'?,
F5771= —ug sing/(C4)t/?,
5,4 s sing/(C4) (C24)

Fs 37 '=uz sing/(Cp)1/2,
F55 1= us cose/(Cp) /2.

Note that the particle-state labels are referred to still
as 8 and 9. These were just names anyway, since no
U(3) or SU(3) symmetry was assumed for these states.
They remain just names, which could be changed to 4
and B if desired. However, no mixing transformation
will be performed here on the particle states, or on any
coupling constant which couples to a particle.
We now use the equation

SaszcaF~lbc (CZS)

to compute those elements of the scaling matrix S which
are determined:

Su=S5=Ses=S7y= [(\/%) C05¢+% sim//]/FK,

S11= S55=Ses= 57 (C26a)
=[(—=+/3) cosy+3 siny]/F,
and
S7,8= —V2 cosy cose uz/(Ca)'/2,
S57,5=V2 cosy sine uz/(Ca)'/?,
S5.5=siny sine uz/(Cp)'/?, (C26b)

SB,5=siny cose us/(Cp)2.

The components of S, for @, b= 8, 9 are not determined.
The elements of S~ for the pseudoscalar singlet ele-
ments are

S5, 73= —cose (Cz)%/(V2uz cosy) ,
S7%5,72=sine (Cz)Y'%/(V2us cosy) ,
S 5=sine (C5)"?/(us siny)

S lg,B—COSgo (C3)Y2/ (uz siny) .

The coupling constant g7, is determined in terms of
Gabe and Fy; as follows:

6g7abc:F-Iaa’F—lbb'F—]cc'Ga’b’c’ ) (C28)

where the sum is over only unconserved components,
ie., the channels connecting the « with two pseudo-
scalars. For these channels,

6g7I57: :l:\/A/ZF,,—FKFK

(C27)

(C29)
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and
-+ (\/A)usl" —Cos@ sing
687555 = + :I ,
FxF, L\/(2C0) ' 24/Ca 30
+ (\/A)p.gr sing cose
6g"055= =+ “f] .
FxF. Lv/(2Ca)  24/Cs

FRIEDMAN, NATH,

AND SUITOR 3

Equation (C29) was first obtained by Pande.'® One may
also easily verify that Egs. (C26a) and Eq. (C21) are
identical to the results of Ref. (23) [Egs. (19) and (20)]
with the notational changes Sx/S.=+/(Zx/Z.) and
Se/Sr=—~/(Z:/Z,). Again, unlike Ref. (23), no @
priori assumption of (3,3%*)4 (3*,3)-symmetry breaking
has been assumed here.
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We examine the matrix elements of the divergences of the vector and axial-vector current between nucleon
states. These matrix elements are related to the nucleon mass difference and the corrections to the Gold-
berger-Treiman relation, respectively. For the nucleon mass difference we indicate that for the sign of this
quantity to be understood in terms of the electromagnetic interaction requires (i) comparable longi-
tudinal and transverse virtual photon-nucleon cross sections, or (ii) ;7 (g%,v) —o*(g%») <0 over a large region
of the (|¢?|,») plane, where ¢* is the spacelike virtual-photon mass and » is the photon energy (this require-
ment is contraindicated by experimental data at ¢*=0), or (iii) fixed J-plane poles at J=0,7=1 in the virtual
Compton amplitude. We also estimate the electromagnetic correction to the Goldberger-Treiman relation,

and it is shown to be very small.

I. INTRODUCTION

N this paper we discuss the transition matrix ele-
ments (p| V. (0)|n) and (p|4,4(0)|n) of the
vector and axial-vector currents between nucleon states
in the presence of the electromagnetic interaction. Our
interest in these matrix elements stems from the obser-
vation that the matrix elements of the divergence of
these currents are related to the nucleon mass difference
and the corrections to the Goldberger-Treiman formula.
Neither of these quantities is well understood on a
theoretical basis.

For the nucleon mass difference we obtain the usual
Cottingham formula,! assuming that the mass difference
is electromagnetic and the interaction is treated to
lowest order in a=1/137. Assuming that the total cross
sections for longitudinally polarized photons or nucleons
is suppressed relative to that for transverse polariza-
tion, we discuss the extreme difficulty of obtaining the
correct sign for 6M = M,—M,. Here it is pointed out
that if the recently reported? qualitative character of the
total photon-nucleon cross section [o(yp)—o(yn)>0
for physical photons of energy 4-18 GeV] can be ex-
trapolated for virtual photons, then the deep-inelastic
region, which is an important region for the nucleon

* Research sponsored in part by the Air Force Office of Scientific
Research, Office of Aerospace Research, U. S. Air Force, under
AFOSR Grant No. 69-1629.

!'W. N. Cottingham, Ann. Phys. (N. Y.) 25, 424 (1963).

2D. O. Caldwell et al., Phys. Rev. Letters 25, 609 (1970); 25,
613 (1970).

mass shift, will contribute with the wrong sign to 6.
We conclude that to have the possibility of understand-
ing the sign of 6M in terms of electromagnetism, we
must have (i) comparable longitudinal and transverse
cross sections, or (ii) ¢.£(¢%r) —a(¢%») <0 for a large
region of the (|¢?|,») plane, or (iii) fixed poles at J=0
I=1 in the virtual Compton amplitude. The first two
of these possibilities can be examined in the forthcoming
experiments at SLAC.

We have also examined the radiative corrections to
the Goldberger-Treiman formula for #* decay. They
are estimated to be very small, ~a/4r relative to the
observed correction ~0.1. In accord with our expecta-
tion, the origin of this correction is to be sought in
hadron dynamics and not in electromagnetism.

II. VECTOR CURRENT

First we consider the matrix elements of the vector
current between proton and neutron states, which has
the general form

PNV 0) [n(p))=u(® ) [vul1(1)
+i0u(p'—p)uF ()4 (' —p)uFs(1) Ju(p) -
The divergence is specified by
(") =9,V (0)|n(p))
=u(p)TH SMF1(t)+1F5(t) Ju(p),
where = (p' —p)? and 6M = M ,—M . If the current is

(2.1)



