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Coupling-Constant Analyticity in the Charged-Scalar Static Model
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The analytic properties of the two-point function for the charged-scalar static model in the bare coupling
X are investigated. The proper self-energy function appears to be an analytic function in the X plane cut along
the positive real X axis, and the value of ) determined by mass renormalization lies well below the nearest
branch point on the real ) line. The perturbation series will, therefore, converge at this point, . The Pade
approximants to the full propagator and to an important subsequence of graphs are studied. Although these
approximants appear to converge in the cut X plane, the convergence is not rapid.

I. INTRODUCTION

~ 'HE field theory of the charged-scalar-meson Geld
interacting with a fixed two-component nucleon

source (CSSM) is a very interesting model for severai
reasons. It is suKciently complex that it has many of
the properties desired for a realistic pion-nucleon inter-
action~ but suKclcntly simple thRt many of its plopcI'-
tlcs may bc studied rigorously. Most important the
model is fully renormalizable and therefore provides a
"theoretical laboratory" for the study of the general
properties of renormalizable theories.

Usually, numerical calculations based on field theory
are done with perturbation expansions in Lagrangian
coupling-constant parameters. This computational tech-
nique has several drawbacks. The first is merely a
calculational problem: The increase in number and.
complexity of contributions ln lncI'cRslng orders is so
great that normally first- or second-order calculations
must su%ce. In addition, such a series cannot be used to
study bound states, for example, since by definition R

pole in an amplitude lies outside of the radius of con-
vergence of the series.

In fact, it seems to be the case for some interactions
that the radius of convergence of the perturbation series
is zero. The Xp' interaction for bosons is an example of a
field theory with this difficulty. ' The problem here may
be seen in the analog of this system in ordinary quantum
mechanics, the anharmonic oscillator. For X (the
strength of the anharmonic term) )0 there is a poten-
tial well having normal bound. states; for X&0, the
potential turns over and there is no ground-state level.
The complete change in characteristics of solutions at
A, =0 is indicative of a branch point in the X plane at that
point. Even if the radius of convergence is finite for
some model, extension of the power-series solution to
large coupling constants may not be possible.

For the CSSM it has recently been shown that the
perturbation series actually converges for small X.' The
result obtained in that paper, henceforth referred to as

' A. Jaffe, Commun. Math. Phys. 1, 127 (1965}.' P. B. James and G. R. North, Phys. Rev. D 2, 695 (1970).
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I, is that the series converges for

"a(x)dx —'

This was a ra, ther weak result, however, and it is
interesting to investigate the exact structure of the
various e-point functions in the complex P plane to
determine the actual radius of convergence of the
perturbation series for these quantities. Sufhcient basis
has been found to conjecture that the power-series
expansion for the proper self-energy function converges
at the value of iX necessary for renormalizatioTl of the
nucleon mass.

The problem of the large number and complexity of
Feynman diagrams has been circumvented by prepara-
tion of a computer program which constructs and
computes the coefficients of A~ in the e-point function
automatically. ' Using this program, it is possible to
consider not only the perturbation series but also the
Pade approximants which may be obta, ined from the
seI'ics.

The use of Padc approximants to represent ampli-
tudes in quantum field theory has recently become
quite popular. ' The Pade approximant t n, m j is defined
as the ratio of two polynomials (numerator of degree m
and denominator of degree e) whose power-series ex-
pansion agrees with the known coefficients up to and
including order e+m.

Unfortunately, there is a dearth of rigorous mathe-
matical results on the conditions necessary and su%-
cient for convergence of a sequence or a subsequence of
the approximants to the desired function. The work of
Baker contains perhaps the best available summary of
known results applicable to physics. ~ If the power series
of interest is a series of Stieltjes (to be defined below)
and. if the power series has a finite radius of convergence,
then the sequence of approximants [E,1V+j],j)—1,
converge to the function defined by the series in the
complex plane with a cut on the real axis. Since it is
quite dificult in practice to ascertain whether a power

'P. B. James and G. R. North, J. Comp. Phys, (to be
published).

4 D. Bessis and M. Pusterla, Nuovo Cimento 54A, 243 (1968);J.Basdevant, D. Bessis, and J. Zinn Justin, iMd. 60A, 185 (1969).
5 G. Baker, Advan. Theoret. Phys. 1, 1 (1965).
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series is a series of Stieltjes, this result is not of over-
whelming practical significance. In addition, there are
obvious subtle difficulties with any series which has zero
radius of convergence, e.g., X&4 theory.

However, the sequence of [1V,X] approximants has
been seen to converge for the anharmonic oscillator. '
This has encouraged several authors to use very-low-
order approximants as approximations to exact 6eld-
theoretic situations. It would be desirable to study the
behavior of the approximants in the case of a reasonable
field theory. In this paper, the methods of the Pade
approximants are applied to the two-point function for
CSSM. The four-point function will be analyzed in a
subsequent paper.

In addition to studying the Padh-approximant results
for various features of the full perturbation series for the
two-point function, the paper considers a subsequence
of graphs which can be shown to be a series of Stieltjes.
The convergence properties of the approximants can be
studied in detail in this case and the results compared to
the series for the full propagator. It is likely, as indicated
below, that the analytic structure of this subsequence
closely resembles the full two-point function and, there-
fore, this is probably a better laboratory for studying
the application of Pade approximants to field theory
than many of the trial functions used elsewhere.

Section II considers the CSSM; in particular, an
argument for the convergence of the perturbation series
at the value of A=go' necessary for renormalization is
given, and the interesting properties of the two-point
function which may be studied, by use of Pade ap-
proximants are defined. In Sec. III, the subsequence
mentioned above is considered. The numerical results
obtained from the full propagator function are presented
in Sec. IV, and the conclusions reached are summarized
in Sec. V. The Feynman isles of the CSSM are given
ln I.

II. CSSM

In this section some of the more interesting properties
of the two-point function in CSSM are presented. The
most interesting feature is the mass renormalization.
There are two parameters in the theory, the bare mass
iso and the bare coupling constant, A=go'. However,
when the propagator is required to have a pole at E=O,
the position of the renormalized nucleon pole, a relation
between X and mo results.

It is more convenient to consider the inverse propa-
gator S '(E), which is related to the proper self-energy
function Z(E—mp, X) by

&(E—mo, &) =
~(x)dxr, (E—m„Z)

(4)
E—m, —x —Z(E —m, —x, ~)

where o (x) is the cutoff function, including phase-space
factors, and I",is the proper three-point vertex function
for external meson momentum x. If it is assumed that
F, contributes no closer singularities, the location of the
first branch point will occur when the singularity of the
integrand denominator pinches the endpoint of the
integration (at E=O):

mp+1= —Z( —mp —1, R).

If this is the closest singularity to the origin, the power
series for Z( —mp, X) will converge for X(A(mp). Note
that A(mo)=), (mp+1) by comparison of (5) and (3).
Within the radius of convergence of the series for Z, X

is an increasing function of mo, this is due to the fact
that the decrease of —Z in (3) with mp must be
compensated by an increase in X. Therefore, . h(mp)
=X(mo+1))X(mp).

Therefore, except for the possibility that I', provides
a more nearby singularity than this one, the perturba-
tion series will converge at the point necessary for
renormalization. The convergence described above is

supported by the numerical calculations described later
and by the analytic structure of the Pade approximants
to S '(E=O).

The conclusion suggested then is that the proper self-

energy part with E=O is analytic in the X plane except
for a cut running from 'k to ~, and finally that h) X(mo).

There is a possibility of a dynamical pole in the
vertex function for some value of E, 0(E(1.This pole
would also appear as a pole in S '(E) because of the

relationship between Z and I', expressed in Eq. (4).
[This pole could. not occur for XXX(mo) however, at

the proper self-energy function is

mp= —&(—mo, &).

This condition leads to a relationship X(mp) between the
bare coupling and the bare mass.

The function —Z( —mp, X) is a positive definite, de-
creasing function of +mp for X)0 within its radius of
convergence. (This was shown in I.) It is of particular
interest to consider the possibility that the perturbation
series for Z (—mp, X (mp) ) actually converges. The
following argument indicates that this is the case
although, as will be pointed out, there is a gap in the
proof. The proper self-energy part satisfies an integral
equation (Fig. 1)

S—'(E) =E—mo —&(E—mo, ~). (2)

Evidently, if S '(E=O) =0, the resulting condition on

~ C. Bender and T. T. Wu, Phys. Rev. Letters 21, 406 (1968);
J. J. Loeffel, A. Martin, B. Simon, and A. S. Wightman, Phys.
Letters 164, 656 (1969); B. Simon, Ann. Phys. (N. V.) S8, 76
(&970).

Fn. 1. Diagrammatic representation of Eq. (4). Open circles
containing P's represent proper functions; shaded circle represents
the full propagator including disconnected terms.
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6+=0. Since —Z is positive definite, if a pole were its
h all ositivcfirst singularity, —Z would run throug a p

values~ Including mo, Rs X was varied. g Sucll R pole
would be detected when X is fixed at X(mo) and m, is
varied in suc a way

'
d

'
h .y that the 8—m0 variation in Z

mlmlcs Rn lnclcaslng E from ~—~ 0 ~ ~ E=O to A=1.
A dynamical RI'guIncnt R]so suggests no 1Iltclfcrcncc

in the integrand of (4) by a pole in 1',. Such a pole would
be of the "bound-state" type discussed by Goebe Rn

Sakita. ' Though of no phenomenological interest, such
l can occur. However, usually such poles approachPO CS CRIl 0

E=O only as A. —&~ in static models. This last sugge
no nearby contributions from I' .

-f nctlon 1enormalization coils tant, Z2 1s

nts. Thecalculated as below by use of Pade approximants. e
renormalization zero discussed above will appear as a
pole in the (11m], Pade approximant for 5(E). That is,
if the pole is factored out explicitly,

f(E,X)
L& NjIsI»I =

X —nc I'—m0)

The renormalization constant is the residue of the pole
at E=O in the energy plane. Expanding n(E —mo) a, out
jv=O

BX
n(E —mo) =X(mo)+

BEi g 0

Therefore the residue of the pole at L~=O is given by)

f(O,X(m.))
ResLl, ej=—

an/aEiii o

The quantity an/aE~ s=o may be easily computed by
noting that the functions involved are actually func-
tions only of I'"—m0, so that

~'

Since the functions involved are smooth functions of
m0, the derivative and, therefore, the wave-function
renormalization, may easily be computed.

Strong-coupling theory makes spccihc predictions
concerning proper ies o
normalization used here the relation X(m, ) takes t e
form, for large X,

+ ~ e ~

FIG. 2. First few terms of the sequence of turtle graphs. These
grap s seem o p ay ah t lay a particularly important role in determining

e X lane.the structure of the self-energy function in the p ane.

renormalization should go to zero in the large-X limit as

Sc —& ~
—0.335K (11)

The normalization used in (10) and (11) is such that the
l b bble graph (first term of Fig. 2) is given by

oo klco

(1+a'fI') (E—mo —a))

where a is the cutoff, taken here to be 5 in units of pion
1Tlass = 1.

IIL SUBSEQUENCE

As a model for the proper self-energy part, we consider
the subsequence of "turtle" graphs sho~n in Fig. 2. This
su scqubsequence seems to have analytic structure in A. simi-

estlar to the full self-energy part and is by far the larges
graph numerically in each order of perturbation theory
studied. Table I compares the contributions from turtle
graphs to the exact coeKcients of x~ for m0 ——. It is
interesting to note that this subsequence was omitted in
the crossing-symmetric formalism of Freeman, North,
and Rubin no doubt contributing to their error in the
relation mo(X) in the strong-coupling regime.

The eth-order term for the turtle sequence may be
written explicitly. The coefficient of X" in —Z(E=O)/X
(a positive function) is given by

o.(x)dx " o(y)dy -"
e ~

(mo+x) "+' I mo+x+y
~ ~This series may be summed exactly, giving

o(x)dx

mp+x —Xf(x)

T I. Numerically computed coeScients of the full pertur-
bation series for —Z(E=O), c„, are compare mi e
graphs for the same order E. In addition, the number of graphs
in each order is given.

m, = (25/24)~X. (10)

Since X(mo) is likely to be inside the radius of con-
vergence of the power series, both the power series an
the Pade approximants were studied for large to
COIIlpRlc witll (10). In RddltIon, tile WRvc-fullctio11

1

3
13

461

3.768
0.6946
0.3051
0.1701
0.1055
0.0708

3.768
0.6946
0.2073
0.0747
0.0300
0.0129

7 C. Goebel and B. Sakita, Phys. Rev. Letters ll, 293 (1963).
8 A P '

d R. Serber, Phys. Rev. 105, 1636 (1957),This paper
contains many references to earlier work.

'T. D. Lee, Phys. Rev 95, 1329 (1954). Note that X(bare)
=4) (renormalized) in the strong-coupling limit.

'0 D. F. Freeman, G. R. North, and M. H. Rubin, Phys. Rev.
188, 2426 (19N).
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where
0(y)dy

zzzo+x+y
(14)

Actually, this is just (4) with P truncated at its lowest-

order term, 1, and Z approximated by only the simple
bubble graph in the integral.

The power series for —Z(E=O)/X, P a„X",is a series
of Stieltjes. Define a function zz(x) =f(x)/(zzzo+x). It is

ea,sily seen that dzz/dx is strictly & 0 and zz(x) & 0 in the
region of integration. The coefFicient a may be written

0(zz) dx
dQ Q )

=0 zzzp+x(zz) 8zt
(15)

wllere zzp =f(1)/( zzz+o1). The quantity in square
brackets in (15) is a negative function in the region of
integration. Therefore, the function

" —0(x) dx—dl
zzzo+x 8zz

(16)

'gO

zz"d j(N), (17)

where $(N) is a positive nondecreasing function on

[0 zzp]. Define a function p(N) by

y(zz) = j(zz), 0&zz&zzo

= j(zzo), No&zz& ~ .

P(zz) is also a positive nondecreasing function of I and

is a positive nondecreasing function of I for u&0. The
power-series coefficient may be expressed

from the Inversion of the nearly singular niatrices re-

quired makes computation dificult. The first propert~
of interest is the location of poles and zeros of the vari-
ous approximants [zz,zz]. The [zz,zz] approximant to
S '(Lj=0) is equal to —zzzo+X[zz, zz 1]approximant to
Z(E=O)/X. Since Z/X is the function represented by a,

Stieltjes series, the poles and zeros of the approximants
should interlace, as discussed by Baker. The poles of the

[n,zz] approximant to S ' will be those of the [zz, zz —1]
approximant to Z/X; the zeros are slightly displaced
and, in addition, a new zero appears to the left of the
first pole. This zero is just the X(zzzo) computed from the
subsequence. The positions of the poles and zeros in the
X plane are shown in I'ig. 3. It will be noted that these
singularities move to the left as the order m is increased
and appear to be approaching 7i as they attempt to
represent the X plane cut on the real axis.

I.t is of particular interest to consider the convergence
of the sequence of [zz,zz] approximants for values of

X )R. Two values of ~X~ were chosen, ~X~ =3 and
=10 (with zzz0=5, K=1.59); the phase was chosen to

approach the real axis along the appropriate semicircles
from X =m. to X= ~'~w. Since the exact value of the
subsequence is known (13), the convergence may be
examined in some detail. Tables II and III list the
values for S '(E=O) calculated from various Pade
approximants for mo ——5. The corresponding power-
series partial sums, of course, diverge rapidly.

It will be seen that, while the sequence of [zz,m] Pade
approximants does converge, the convergence is not as
rapid as might have been hoped. This result seems to
shed some doubt on the usefulness of low-order ap-
proximants as calculational approximations for field
theories outside of the radius of convergence of the
power series, especially above a branch cut."It would

I"dy(N). (19)

A power series whose coefficients may be expressed in
the form of Eq. (19) is a series of Stieltjes.

Therefore, the turtle graphs form a series of Stieltjes,
and the [zz, I+j] approximants will converge to the
function everywhere in the complex P plane cut on the
real axis. The branch point in this case is determined by

zzzo+1 —hf(1) =0, (20)
so that

g = (zzzo+ 1)/f (1)= 1/zzo.

Since X(zzz, ) for the subsequence is determined by

(21)

zzzo=l~f(0)+P X"u„ i, a„ i)0
n=2

(22)

it is clear ths, t X(zzzo)&ji determined from the turtle

graphs alone.
The Pade approxirnants for 5 '(E =0) = zzzp

—Z (E'=0) have been calculated. for this subsequence up
to and including [7,7]. For zz) 7, the roundoff error

FIG. 3. Poles and zeros of the t e,eP Pade approximants to
S '(E=O) for the turtle sequence. Here 0's represent zeros and
x's represent poles; the vertical line is the value X(m0) for the
bare mass used here, mo=5. A few poles and zeros for 'A))5 were
truncated for convenience.

"It is not difficult to show that the physical region is above
the branch cut. This follows from letting E have a small positive-
imaginary part to continue past the branch point in the ) plane.
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TABLE II. Convergence of the Ln, nf Pade approximants to S '(E=O) for the turtle subsequence examined for mo ——5 and
x=3e'&, @=7l-, 477-, ~'~~, and 6'4'. The exact value for each phase, computed from (13), is given for comparison.

Li, ij
L2,2$
L3,31
L4,43
$5,5)
t 6,ef
L7,7)
Exact

—12.2812
—12.8031
—12.8382
—12.8408
—12.8410
—12.8410
—12.8410
—12.8410

—1.6663+15.2593i
—2.7005+11.2077i
—2.7585+12.1402i
—2.6966+11.9152i
—2.7292+ 11.9513i
—2.7274+11.9519i
—2.7274+11.9519j
—2.7274+ 11.9519i

16.8642+ 9.9624i
—5.8011+14.1940i

9.5457+ 11.2913i
1.9710+18.4599i
7.7925+14.6213i
7.2265+14.0974i
7.2197+14.0969i
7.2197+14.0972i

20.0350+ 2.7532i
—19.5941+ 8.6486i

13.7009+ 3.6030i
—12.2087+55.8327i

17.0268+ 6.6958i
14.0146+ 6.0193i
13.9826+ 6.0189i
13.9827+ 6.0191i

TABLE III. Convergence of the j n, np Pads: approximants to S '(I'"=0) for the turtle subsequence examined for m0=5 and
&=10e'&, @=w, 47'-, ~'~77-, and 6'4'. The exaCt Value fOr eaCh phaSe, COmputed frOm (13), iS giVen fOr COmpariSOn.

Li, ig
L2,2)
L3,3$
144$
L5,5|
f6,6]
[7,7)
Exact

—18.259
—21.5215
—22.2890
—22.4891
—22.5265
—22.5272
—22.5272
—22.5272

—28.9180+14.9012i
—12.4126+35.2237i
—6.3371+22.8819i

—12.5962+20.5773i
—13.9373+22.9425i
—13.9087+23.0470i
—13.9086+23.0472i
—13.9086+23.0472i

$ 677

—46.6162+ 9.4263i
53.0998+60.3266i
6.7420+10.0182i

—24.1757+14.3822i
—38.210 +47.0451i
—37.3063+49,8257i
—37.3033+49.8317i
—37.3033+49.8319i

4 7l

—49.5350+ 2.5913i
95.5694+23.3508i
8.1375+ 2.6212i

—29.1310+ 4.2990i
—94.6997+33.8412i

—101.972 +40.5013i
—101.990 +40.5191i
—101.990 +40.5193i

seem unlikely that this behavior would improve as more
classes of graphs are added.

Since the subsequence of turtle graphs is known to
have only one singularity at a well-determined value of
li, it is possible to employ an alternative scheme for
computing the function outside of the region of con-
vergence for the power series. A conformal mapping may
be used to map the complex plane cut from R to ~ onto
the interior of the unit disk; the real line from P, ~] is

mapped onto the boundary of the disk. It is then
possible to compute the power-series coeKcients for the
function f(w), w being the transformed variable. This
series will converge for all

~

w
~
& 1, that is, for all values

of the original variable 'A not on the real axis with

The convergence of the resulting series was examined
at the same points in the complex A plane at which the
Pade series was computed. The series did indeed con-
verge, although the convergence was not quite as rapid
as that of the Pade series. Since the effort required to
compute the coefficients of the series for f(w) is con-
siderably greater than that for computation of the
Pade approxirnants, it would seem that the mapping
method had little to offer in this particular problem.

IV. FULL PROPAGATOR

In this section we investigate the full propagator
numerically through the sixth power of X. This allows
construction of the L3,3jPade approximant as a tool for
exploring the analytic structure of Z(E=O, X). As an
example, Table I gives numerical values of the coeffi-

cients as well as the number of graphs contributing in
each order for mo ——5.

It may be asked how it is possible to identify a
particular zero of the Pade approximant for S '(E=O),
or, for that matter, of the perturbation series with the
desired X(mo). There are several reasons that the zero
nearest the origin represents this root. For the power
series for the function —Z(—mo, X), all coeKcients are
positive. For any finite polynomial, there will be one
solution of —Z( —mo, X) =mo for X)O. The other roots
of this equation will be for A. negative or complex; these
roots will be farther from the origin, since the various
terms in the polynomial tend to interfere destructively.
Therefore, there is only one candidate for X(mo) from the
power series; whether or not this may actually be com-
puted from the power series depends on the convergence
of the series at that point.

For the Pade approximants, there are two reasons for
choosing the zero of the approximant to 5 ' which
occurs for smallest X. This first zero of Ln, ng results
from effectively solving the equation mp=kLn, n —17,
where Ln, n —1] is an approxirnant to —Z( —mo, X)/X.
The first zero is the additional root generated by this
equation and lies to the left of the first pole of the
cn, n —1j approximant to —Z( —mo, X). ln addition, if
one examines the zeros of Ln,nf to S '(E=O) as a
function of e, it is seen that the 6rst zero is relatively
stable; this is taken to be an indicator of the dynamical
signihcance of that zero.

It was seen in Fig. 3 that for the turtle graphs the
first pole of the Ln,nj Pade approximant approaches the
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I I TABLE IV. Values X(mo) computed from the truncated power
series of order N and from the corresponding Pade approximant
given for mo= 5. For odd N, the I ~ (N —1), ~ (N+1)j approximant
is used, because this corresponds to the t~(N —1), ~(N —1)g
approximant to Z/) .

Power
series
(order)

Z(m, )
(P.S.)

1.3268
1.1027
1.0378
1.0091
0 9940
0.9850

Pade
approximant

~ ~

I 1,1)
L1,2j
L2,23
I:2,3l
t 3,3$

X(m,)
(P.A.)

1.0661
0.9990
0.9789
0.9722
0.9657

FIG. 4. Poles and zeros for the I 1,1), L2,2j, and I 3,3g approxi-
mants to the full S '(E=O) function for mo=5. The structure of
these quantities closely resembles that for the turtle sequence.

position of the actual branch point of the function. The
poles and zeros of the approximants to the full propa-
gator resemble those of the turtle graphs very closely, as
may be seen in I ig. 4. This strongly suggests, therefore,
that the zero representing X (mp) lies within the radius of
convergence of the power series. This is because X(mp)

always lies to the left of the erst pole and, therefore,
must lie to the left of the branch point represented by
the location of the first pole of [e,e$ as ts ~eo. Again,
this result does not prove that the series converges at
X(mp) but does strongly suggest such a conclusion.

The values X(mp) computed. in various approxima-
tions are shown in Tables IV and V for two values of
mo. mo ——5 and 36. It will be seen that the values ob-
tained are consistent with convergence of both the

20

rnp

Pade sequence and the power series at the bare masses
considered. Apparently the convergence improves with
decreasing bare mass. The most interesting feature of
the X(mp) is the striking agreement obtained with the
strong-coupling limit, as indicated in Fig. 5. Because of
normalization factors, absorbed into the X used in this
work, X~1 should be a "large" coupling. It will be seen
in Fig. 5 that the X(mp) computed from the various
Pade approximants very nicely follows the strong-
coupling curve until a point is reached where the results
begin to deviate. This is presumably due to the less
rapid convergence of the sequence to X(mp) at large mp.

This is substantiated by the fact that the higher-order
approximants agree with strong coupling to larger
values of X.

No evidence was found for a dynamical pole in the
inverse propagator function. Such a, pole must, by
definition, lie outside the region of convergence of the
power series; the Pade approximants must be used,
therefore, to search for this pole. Since the Pade ap-
proximants handle cuts by interlaced poles and zeros
which move together as the order of approximants is
increased, it is diAicult to distinguish between this sort
of singularity and an actual dynamical pole. Presumably,
as in the case of the zero discussed above, a dynamical
pole shouM remain stable as the order of approximant is
varied. None of the poles which appeared in the Pade
approximants to 5 '(E=O) seemed to satisfy this

TABLE V. Values X(mo) computed from the truncated power
series of order N and from the corresponding Pade approximant
given for mo ——36. For odd N, the L~(N —1), —,'(N+1) j approxi-
mant is used, because this corresponds to the $~ (N —1), —,'(N —1)g
approximant to Z/P.

0
0

Fro. S. Values XieIol computed from the Lhtl L2,2), aud I 3,3$
Pads approximants for various mo's compared to the strong-
coupling result (soHd line).

Power
series
(order)

1
2
3

5
6

X(mo)
(P.S.)

24.523
18.129
15.8b4
14.644
13.859
1.3.301

Pade
approximant

~ ~

)1,1j
Li,2$
L2,2)
I 2,3$
P3,3g

) (mp)
(P.A.)

16.602
13.692
12.340
11.470
10.894
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criterion. If one fixes X(mp) by the position of the
renormalized nucleon pole and varies the energy (or
E—mp), the pole of the Pade approximants which ap-
pears at the lowest value of X corresponds to a pole at
roughly E=2.8 for ma =5, which is well above threshold.
It therefore appears that no dynamical pole occurs in
the Pade approximants for 5 '(E), at les,st through

P,3] and mo(36.
The results for the wave-function renormalization

constant Z2 were not in good agreement with the strong-
coupling result of (11). For example, with mp ——5,
Zp"=0.36. The values of Zp computed from the L1,1],
[2,2], and L3,3] approximants are 0.69, 0.55, and 0.47,
respectively. The results are even farther from the
strong-coupling result as X is increased. Optimistically,
the values of Zp computed in Lip, m] do seem to be con-
verging in the direction of Z&", as they also do at the
larger values of X.

Apparently, the problem with Z2 is that this quantity
involves the derivatives of functions evaluated at X (mp).
It is well known that differentiation of a power series
interferes destructively with the convergence of the
series. This explanation is supported by a study of the
convergence of the series

Z(E —mo, X(mo))
~
z=o,

dri

which may be obtained numerically from quantities
which have been computed. This series converged much
less rapidly than that for Z(E mp, X(mp))—(E=p. In
terms of the convergence proof given in I, differentiation
of the perturbation series for Z has two effects: An extra
factor is added in each denominator, and there are
2X—1 times more terms in the Ãth ord.er. The series for
the derivative will still converge, but the factors of
2X—1 will have the effect of slowing the rate of
convergence.

It is true that Z2 computed in each order of Pade
approximant goes to zero as X —&~. Also, Z~ —+ 0 much
more strongly a,s the order of approximant is increased.

V. CONCLUSIONS

The fact that the bare perturbation series for the
CSSM appears to converge at the value of the bare
coupling constant necessary for renormalization is
probably the least expected but most important result
of this work. Although there is no ironclad proof of this
property, unfortunately, the result is suggested by the
analyticity argument of Sec. II, by the locations of the
poles and zeros of the Pade approximants to Z(E=O),
and by the behavior of X(mp) actually computed from
the power series directly for the first few terms. In

addition, this is a property of the important subsequence
of turtle graphs.

Questions which arise in this context which will re-
quire further work are as follows.

(1) Can the result be proved rigorously?
(2) Does the result extend to other field theories?
(3) ~hat is the behavior of X (mp) in the point-source

local-field-theory limit P

The last question is probably the most dificult one to
answer because of the uncertainties involved in the
point-source limit.

The behavior of X(mp) computed directly from the
perturbation series and from the Pade approximants
appears to be in excellent agreement with the results of
strong-coupling theory as X(mp) becomes large. This
may be contrasted with the work of Freeman, North,
and Rubin, '0 in which contributions from all orders
were included but certain classes of graphs were omitted.
In particular, the turtle graphs, which appear to be
particularly important in determining analytic structure
in the X plane, were omitted. there. The behavior of Z2,
while not in such excellent agreement with strong-
coupling theory, appears to not be inconsistent with
that limit if one considers the slower convergence to be
expected in this case.

The values of X(mp) obtained from the Pade ap-
proximants do converge more rapidly than the values
computed from the power series. However, the im-
provement is not great enough to allow the use of the
L1,1]or f2,2] approximants for la.rge values of mo. The
Pade approximants for the turtle graphs actually con-
verged rather slowly, particularly near the positive real
X axis. Since such values of X are the ones of interest in
this model, this property detracts from the attractive-
ness of such approximants for CSSM. In particular, if
X(mp) is held fixed and E is varied, E) 1, this is exactly
the situation which is encountered. So use of the
approximants to compute scattering amplitudes above
threshold, for example, is questionable. Of course, this
result depends on the fact that the X-plane singularities
in this model appear to be confiried to the positive real
axis. It is an interesting, but difficult, problem to study
to X-plane structure for other field theories to determine
if this is a general rule.
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