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We study the threshold singularities in the Jplane for spinor and scalar massive quantum electrodynamics.
It is found that they are responsible for the promotion phenomenon discussed recently by Cheng and Wu. .

' X a recent letter, Cheng and Ku' have discovered
~ ~ the phenomenon of promotion. " Stated simply, it
says that in massive quantum electrodynamics (QED),
an invariant amplitude A(s, t) alters its high-energy
behavior as follows:

if A{s,t) s, then A(s, t)
shoo- t=o gazoo; t=tO

where I, =10 is the crossed-channel threshold and c is
some constant. It was also found' that such a promotion
does rot happen at three-particle thresholds.

It appears to us that this phenomenon is strikingly
reminiscent of threshold po]es found by Desai and
newton' and by 6ribov and Pomeranchuk. ' The
singularities that we refer to are an infinite set of poles
which approach the orbital angular momentum value
t= —

2 (3N —5) at, any n-particle threshold. ' The proof
of their existence requires rather general considerations
like analyticity and unitarity. ' 4

For the case of spin, e.g. , e+e —+yy, at the two-

particle threshold t =4',' (where m„ is the mass of the
"photon") the singularities at t= ——,

' are raised in the

J plane to a maximum of J=2—2=2. At the three-

particle threshold these singularities are at l= —2 and

get shifted to (at most) J= 1.Thus the (Pomeranchuk)
singularity' at J=i when 1,=0 is promoted to J=-,'
when t=4m„', but no promotion occurs at the three-

body threshold. This conclusion agrees precisely with

that of Cheng and Ku. In this paper we study the

problem of promotion in terms of the threshold singu-

larities directly, since to our knowledge they have. not
been investigated in QED. For illustrative purposes
we discuss Compton scattering, rather than pair
production as done by Cheng and Ku. The technical
details of the computation are much simpler for the
former process than for the latter, while the phe-
nomenon of promotion is identical for both (promotion
takes place to J=1 for Compton scattering, but to
J=-,' for pair production). We compute explicitly the

parameters of the threshold trajectories and study
their motion near threshold for spinor as well as scalar
(massive) QED for lowest order in the coupling con-
stant. As a prototype of our eRect we discuss spinor and
scalar Compton scattering. In what follows we describe
the spinor case. Towards the end, we quote the corre-
sponding results for the scalar case.

Ke find it necessary to work in the I.S representation
because it is the partial-wave amplitudes (L'5'j T~

~
L5)

which have the well-defined threshold behavior q~+~'

as the c.m. three-momentum q
—+ 0. For the scattering

of a positive-parity spin-~ particle from a massive,
negative-parity, vector meson, we have six states:
three of one parity, i.e., ~

L=J+2, 5=2), /L= J+
5=—',), ~L=J—~, 5=2), and three of the opposite
parity. It is only the former set which has the leading
singularities near J= I and hence is of interest in the
context of this paper. The elastic unitarity condition
for Tr (in matrix notation) reads

ImTs= (q/W)TstTs,

where W=gs is the total energy in the c.m. system.
I~et p=q and define A(p J) =t'ts &P&P —&

(pip )"'+'"
0
0

0
(p/p )5/)+)/4

0

0
0

(p/p )Z/) —8/4

where M has no elastic right-hand cut and thus is
expandable in a Taylor series near v=0. The continua-
tion of Eq. (3) for complex J reads

A '(v,J) =M{v,J)+(Qpo/W)X(p, J),

and po is a dimensional constant. Kith this normali-
zation the elements of A(v, J) approa, ch constants at
threshold. The unitarity condition (1) then allows us
to write

A '(v, J) =M (v,J)—Z(q/W)ks',
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FIG. 1. Born terms for spinor Compton scattering.
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X(v,J) =

J+:l e-sx (J+1)

vo sins. (J+1)
J+~ e

—' (z+a)

vo sin7r(J+1)

(
J'—i. e

—ix(J—1)

vo sins (J—1)

The Regge poles are the solutions of the equation

det[M+ (Qvo/W) X]=0.

We are interested. in solutions near v=0 and J~ 1.
It is only the last element, i.e., X», which survives at
threshold (as J~ 1), rendering the problem a single-
channel one.

It should be clear then that to compute the Regge
trajectories what we need now are the elements of the
M matrix (in the LS representation). We shall do the
calculation to lowest order in e', i.e., the Feynman
diagram in Fig. 1(b).

We need not calculate Fig. 1(a), since this only has
Kronecker-5 terms in the J plane which vanish at the
(unphysical) value 9 =1. The contribution to A(v, J)
due to Fig. 1(b) is computed in the following tedious
manner. From the Feynman amplitude which is given
in the tensor basis, we 6rst obtain the 12 independent
parity-conserving helicity amplitudes fi,&„,i,,i„+(s„).'
The next step is to obtain the partial-wave helicity
amplitudes T&„i,„i.i,~+(s). Then, following Jacob and
Kick, ' we use the transformation

2L+1
I J».») =P

i, , s 2J+1

to obtain finally the amplitudes (L'S'~ T~~LS). Here
another technical detail needs attention. To continue
in J, we need to construct the even- and odd-signature
amplitudes A~~. To lowest order in e', they are simply
the negatives of each other. There is a separate unitarity
condition, Eq. (4), for each A~~. As stated earlier, we

only need (J—$, —,
'

~

A~~
~

J——,', —,'). A rather unpleasant
calculation along the above path yields, to lowest
order in e', for v —+0,

where vo=m, (2m —m, ), n=e'/4s, m is the mass of the
electron, and m, is the mass of the vector meson. ~
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Away from threshold the leading singularity in theJ plane is a fixed pole at J= ~. We shall now show that
promotion occurs at threshold. We obtain the threshold
poles near J=1 from Eq. (4) by solving an algebraic
equation of the form

X in(v/v~) =2nsi+0(X'), )~=~1, ~2, . . . , (y)

where X=J—1 and

1 m„m,
vy vp exp W 1+—2 ——1 . (g)

For ~ii~&&~»(v/v~) ~/2s and to first order in X, we
obtain the solutions

J„+(v)—1= —+Z
)»(v/v+) ) l»(v/v+) I

For a fixed value of v there are only a finite number of
poles to the right of J=1—e, where e is an arbitrary
small positive number. Note that it is the parameter
pp which determines the realm of validity of the thresh-
old, expansion. of our amplitude, but it is the parameter
v+ which is of most interest to us since it gives inforoia-
tion concerning the motion of the threshold poles.
Owing to the factor 1/n in the exponential, both the
even- and odd-signature poles are very near to 7=1 for
0&v((vp —any motion at a)l is roughly along the imag-
inary X axis.

If the poles behave at all like their potential-theory
counterparts (and our u-channel pole is certainly a
well-behaved, albeit mildly energy-dependent, effective
potential), a more exact calculation would show that
as the energy increases, the trajectories move rapidly
into the complex X plane with both Reh and Im'A

tending to ~. Interesting diagrams showing their be-
havior in potential scattering can be found in Newton'
and in Carnahan. ' Such a calculation is extremely
tedious and at present not worth the effort since we
feel certain that the result would leave our conclusions
unchanged. The behavior of the above threshold poles

' We have assumed that 2m as well as 2p &m„. This renders the
vertices stable. p is the mass of a scalar electron to be discussed
later.
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is surely not that usually associated with poles destined
to produce resonances at higher energies.

An analogous calculation was performed for scalar
Compton scattering. Here the signatured partial-wave
amplitudes of interest are (J—1, 1~A+$~J—1, 1).
Again, the threshold poles nea, r J=-,' are given by an
equation similar to (7) with a new i+'"'"'.
v '-"'i=m (2p —m )

Xexp (1
m„+ii

(1o)
n [m„(2p—m.)]'"

where p is the mass of the scalar particle.
Another interesting question is to ask if an in-

finite number of poles also converge at the pseudo-
thresholds. [A psuedothreshold is at s=s2= (m —m.)',
in contrast to the physical threshold, which is at
s=si ——(m+m, )'.j Here we just make a few brief
remarks and hope to return to this question in detail
elsewhere. For spinless scattering, it is known that if

'G. Frye and R. Warnock, Phys. Rev. 130, 4/8 (1963); E.
Abers and V. Teplitz, Nuovo Cimento 39, 739 (1965).

the amplitude possesses an sN double-spectral function,
then

Ti($) - ci($ $2) +—di($ —$2)
8~80

where ci and di are independent of s. Thus, for l( —,
' (our

region of interest) the behavior at sg appears analogous
to the one at the physical threshold, s&. Hence we expect
an infinite number of poles to arrive at J= 1 for spinor-
vector scattering and at J=

2 for scalar-vector scatter-
ing for s —+ s2 as well. The answer to this question may
also be found by observing the asymptotic behavior of
the scattering amplitudes near the pseudothresholds
and noting whether or not promotion occurs.

Finally, since both the leading even- and odd-
signature threshold poles remain almost stationary near
J=i for small energies, it would seem to be the case
that neither set is able to generate physical resonances.
So, unless the situation is dramatica]ly changed by
higher orders, we find no support for the Cheng-VVu

conjecture that such generation may occur.
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'I'he breaking of conformal and chiral symmetry within the framework of effective Lagrangians is studied,
and it is shown that the {8,8) type of symmetry breaking leads to unacceptable values of the pion-pion
scattering lengths. A combination of (3,3)+{3,3) and (8,8) is then proposed, the particular form being
uniquely fixed by the requirement of Kuo transformation. This is then shown to lead to improved scattering
lengths for meason-meson scattering processes.

I. INTRODUCTION

S INCE conformal symmetry is a physically interest-
ing generalization of the Poincare symmetry, it is an

extremely attractive idea to investigate the spontaneous
breakdown of conformal symmetry to the symmetry of
the Poincare group. Although it is fairly straight-
forward to formulate effective Lagrange functions which
are simultaneously invariant under the conformal group
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of transformations as well as under a chiral group of
higher symmetry like SU(3) SU(3), there is no unique
way of introducing explicit symmetry-breaking terms
into the Lagrangian. The suggestion has therefore been
made by Isham et al. ' that one should choose a sym-
metry-breaking term which belongs to an irreducible
representation of the combined conformal and chiral
groups so that one can take advantage of the existence
of a fundamental scalar field &(x) of conformal weight—1 and of its nonzero vacuum expectation value. For
the case of chiral SU(3) CRSU(3), one then has the free-
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