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The conserved-axial-vector-current hypothesis and current commutation relations are used to predict
that the weak-interaction coupling of nucleon resonances to nucleons is described by a ¥ —A theory.

T has been shown by one of us! that the assumption
of a partially conserved axial-vector current (PCAC)
or conserved axial-vector current (CAC) with zero-mass
pions can be combined with the assumptions of current
algebra and analyticity to provide an explanation for
the degeneracy of various meson Regge-pole vertices
coupled with mesons or currents. These restrictions on
the couplings have been shown to apply to the Regge
daughter trajectories as well as to the parent trajec-
tories. The extension to daughters is a necessary require-
ment in order to write simple Veneziano formulas for
amplitudes including only mesons and currents as
external lines. In addition, these restrictions on the
couplings predict directly the form of the couplings
governing the decays of various mesons.

It would be of even greater interest if we could obtain
predictions regarding the couplings which govern elec-
tromagnetic and weak production and decays of the
baryons. The V—A theory? for the 3 decay of the
neutron is already well established, but the renormaliza-
bility of the axial-vector couplings under the assumption
of the CAC current commutation relations is still open.?

In this paper we extend the techniques mentioned
above to the case of axial-vector and vector couplings
to baryons. We show that the assumption of CAC with
zero-mass pions allows us to predict the form of the
couplings to higher-mass baryons and to show that in
the CAC limit, the weak production and decay of
higher-mass baryons are described by a V' —A theory.

We start with the form of the Ward-Takahashi
identity for the three-current amplitudes*

ik, / d'xd*yd‘s expli(g-a—q" y+k-2) KN (p") | T(Va'(y) A57(x) 4,5 (2)) | N ¥(p))

=/ dhedtyd’s expli(g-a—q'-y+k-2) {{V(0) | (A @), Vo' (5)JA57()) | N 2(p))6(20—0)
HVP)  TCA* (), 457(0) TV () I N2 (P))o(z0—20)}, (1)

where we have assumed the CAC hypothesis
3ud u(x)=0.

The superscripts 4, 7, and K are the isospin indices of
the currents, and the subscripts «, 8, and u are the
Lorentz indices.

The form factors of the axial-vector current are de-
fined in the usual fashion:

(Ne(p") [ A50) [ N2(p))= [/ (2m)*T(5) vt (')
XyslvuGa(k?)+ik,Gp(k?)Ju(p), (2)
where k= p’ —p, so that the CAC condition
k(N (") | A,5(0) | N®(p))=0
yields the relation connecting the form factors,
Gr(k?)= 2m/k*)G 4(k?) .
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If we proceed to take the limit of Eq. (1) as k, — 0,
the only contributions to the left-hand side come from
the graphs® in Fig. 1.

Our result differs from the case considered by Adler®
in the existence of the contribution coming from the
pole of the form factor G,(k?). This difference is entirely
due to the assumption of CAC and a massless pion in
our model. In the &, — 0 limit, the contribution to the
left-hand side of Eq. (1) therefore has the form

—i(m%/ pop! )PP () oy s(La g IV, AN,
(T as VA1) (PG40, (3)

where we have defined

i(m?/ pop’ )24 (p (T a6 (V,A4))cru(p)

=/ d*xd*y exp[i(g-2—q'-y) KN*(p")]|

XTIV (y)Ag’ (@) NP(p)). (4)
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Fic. 1. The Feynman graphs which contribute to the left-hand
side of Eq. (1) in the limit £ — 0. V,* and 4 g’ represent the vector
and axial-vector currents, respectively.

We next consider the right-hand side of Eq. (1). We
assume the validity of the now familiar equal-time
commutation relation of the currents

LAE(2),V oi(¥) Jegmne= texind «™(2)83(3—7)
+8xiDor(2)0,83(z—y) (1 —840) (5a)
and

LA0%(2),4 (%) Jeymey= i€xaV " (2)83(3—2)
+18x;Cpr(2)8,6°(z—x) (1 —8g0) , (Sh)

where the C, and D, designate the Schwinger terms and
the summation index 7 runs from 1 to 3. Since very
little is known about the Schwinger terms, we consider
the cases in which they do not contribute in Eq. (1). We
therefore limit our consideration to the cases where
K7 and K5 4. In these cases, the right-hand side of
Eq. (1) becomes

- (m2/;0017'0) 1 lzﬂ(pl)[eKin(Ta.Bn'j(A aA))ab
+exim(Tas"™(V,V))as Ju(p)

where To,6(44) and T,,s(VV) are defined by expres-
sions similar to Eq. (4).

Similarly, we can consider a variation of Eq. (1) in
which V¢ and A’ are changed to 4,° and V4, respec-
tively. It will also be convenient to consider the com-
bination in which the 7" product of the left-hand side is
changed to

T(Vai(y)Ag' () A5 @)+ T(A @) Vei(x) 4,5 (2) . (6)
The left-hand side of the equation then becomes

—i(m?/ pop’o) (")
X {(TK)0075[(Ta,ﬂi'j(V7A))cb+(Ta-Bi’j(A7V))cb]
+ [(Ta,ﬁ’i’j( V)A'))ac+ (Tasﬁi'j(A ’ V))a,;]’75(TK) Cb}
Xu(p)G40), (3)
while the right-hand side becomes

—(m?/pop’ o) *a(p’)
X {éKin[(Taan'j(A7A))ab+(Ta,Bn'j(V:V))ab]
+ exim (Lo 8" (V,V))as+(Tas"™(A4,4))as ]} u(p) -
#)
We can show that the quantity (4') is zero for K1
and K= 7. First, let us look at the case where i j. We
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then have the identities
€Kin= €Rij= —E€Kji= —€Kjm-

The expression within the curly brackets of Eq. (4')
therefore becomes

EKij[(Tmﬁj'j(A ?A))ab—‘(raA,Bi'i(A,A))ab o
+(Tﬂ,ﬂj"7(V>V))ab'—'(Tﬂt,ﬁl"(v7v))ab] ’
and since

(Tap"(4,4))ap=(Tas"(4,4)) av=(Ta,5"(4,4))as
where we define the amplitude 7'+ by
Tasi(4,4)=6iTas (A4, 4) Vi jur'Tas (4,4), (7)

it is evident that the quantity in (4') must vanish for
17 j. Next, we consider the quantity in (4) when i= j.
The expression within the curly brackets of (4') then
takes the form

exin (Ta,6™(4,4)) a6+ (T, (4,4))as
F(Tas™ (V,V))at+(Tas""(V,V))as], (8)

which can also be seen to vanish if we insert Eq. (7)
into (8).

Since the right-hand side of the equation vanishes,
we have the following equation for the left-hand side of
3":

a(p ) {L(75)acys
X(Ta g™ (V,4)) bt (T4, V) acys(15) 1]
‘+[(TK)M"/5(Ta,3i'j(A:V))cb+ (Ta.ﬂi'j(VyA))ac
Xys(r¥) e JJu(p)=0, (9)

where we have assumed that G4(0)7%0 and restricted
ourselves to the case where K7 and K5 j.
We define the s channel by the variable

=—(p+9’

If we consider Eq. (8) in terms of the charge states
rather than the isospin indices where ¢ and j equal 1, 2,
and 3, we find two independent cases in which K equals
neither 4 nor j. We can then rewrite Eq. (9) in terms of
the s-channel total isospin amplitudes

(N [vsTa s (V,A)+ Ta,s'(4,V)ys]
+vsTas'(4,V)+Ta s’ (V,4) Bu(p)=0, (10)

where I represents the total isospin of the s channel.
Following similar arguments we can obtain the
identity

p ){[’YSTa 5I(V V)+Ta 5I(A A)7 ]
5T a s (4,4)+ Ta s (V,V)vs Ju(p)=0 (11)

by starting with an equation similar to (1) in which the
T product of the left-hand side is taken as

T(V () V(@) AX @)+ T(AL ) A (0)A,5(2) . (12)

We can, of course, also start with expressions in which
the plus signs in (6) and (12) are replaced by minus
signs. Prior to considering the cases involving differences
we will discuss some of the implications for coupling



3 V—4 THEORY FOR NUCLEON RESONANCES

strengths implied by the identities in Egs. (10) and
(11). These equations should be valid for any values of
the parameters s, £, ¢2, and ¢’2. In particular they should
be true for values of s corresponding to s-channel
baryon poles.

In general, the form factors for the process

N+4+V,— B,

where the spin of the baryon B, Jg, is greater than %,
can be written in terms of three independent functions

1 mM g 2 3
(2 Lot
@m)3\ pop’e/ =1

XOup,a,- Ou(p)Grs@(g?), (13)

where #,,,,...(p") is the spinor representing the baryon
B. For definiteness we take the tensors O as

Ou,v,n‘,p,---(l): qalp * - (Puqv"—P'qﬁp.V) R
O”’V’G_’P'.”@)_—_ Qoo+ (7'Y;4(1V'_7:'Y (]5,“:) ,

(BN V.(0)|N(p))=

and (19

Oumiopie- P =g+ (qugp— %) ,
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where P=p+p’, and g= p'— p, in the case of a normal-
parity transition, viz., mp=(—1)73"1/2 For an abnor-
mal-parity transition we have a common factor v; in
(14). In the following parts we discuss mainly the nor-
mal-parity transition, but the arguments can be applied
as well to the abnormal cases.

Correspondingly, we can also define the form factors
of the process N+4,— B by

1 mM’B 1/2 3
( - ) > e, (P)
27)3\ pop’o i=1
XY350u,0,... Qu(p)Gas (g%,

(B 4,0)|N(p))=

(15)

using the same set of tensors 0. In the preceding
discussion we have omitted the isospin dependence.

If we now consider Eq. (10) for s~mp? where the
baryon resonance B is assumed to dominate the scatter-
ing amplitudes, we can insert the forms of the vertices
from Egs. (13) and (15) and the appropriate propagator
for the baryon B to obtain the equation

3
2 WPy O0am,00- PPy oiivrsor o [¥508,00 00,0 DGy D*(¢"2) G 4 D (g?)
7,0=1
F(=1)0p,7,0 .. Pv5G a5 V¥ (¢ ) Grs P(g?) 14O, 000e PPy gt 0 [(—1)i0p 1 o7 DGap O*(¢'NGyp P (g?)

where P,,... is the numerator of the propagator for the
baryon B. The factor (—1)* comes from the structure of
the tensors 0 which requires the relations

{0(2)575} =0 )

_ 17
[0©ys]=0 for i=1 and 3, (17)

and
74[011:":‘7"'(”:'*74: OM,V,U({) )

74[750;1,7,0"- (i)]T'Yri: ('— 1)i750”,y,¢‘.. (@) ,

where u74.% It is, therefore, obvious that Eq. (16) can
be satisfied if

Gy () ==(=1)GssD(¢>) (1=1,2,3). (19)

An inspection of Eq. (16) further reveals that the in-
dependence of the kinematical factors implies that the
only solutions to Eq. (16) are the trivial solution where
all G® vanish and the solutions given in Eq. (19).
We have specifically examined the case where Jz=2
and have found that for this case Eq. (19) is the unique
nontrivial solution. These solutions also satisfy the
equation analogous to Eq. (16) which arises from Eq.
(12).

Next, we discuss the form of Eq. (1) for the cases in

(18)

¢ Equation (17) can be used also for the cases in which u is 4,
since we should consider the effect to take complex conjugate of
the polarization vector to be multiplied.

Hv508.57,07 0. PGy ¥ (g"))Gas P (¢) Thu(p) =0,

(16)

which we take the combinations of 7 products as

I(V () A () A5 (@)~ T (A () Vi) A, 5(2) (6')
and
T(Voi(y) V() A5 (@)~ T(A' () A67(2)4,%(z)), (117

rather than the combinations in (6) and (11). The left-
hand side of Eq. (1) in the case (6”) becomes

—i(m?*/pop’o) F*u(p’)
X aevs[(Ta,59(V,4))e0—(Ta 654, V)1
F[(Ta s (V,4))ae— (T 64, V) ac Jys(r5) c0}
Xu(p)Ga(0). (20)

Here we can write T%(V,4) and T%(A4,V) in terms of
T*(V,A) and T#(4,V) which are defined as Eq. (7).
It is not, however, convenient to do so, since the initial
and final currents differ and it is necessary to symmetrize
V and 4 in the ¢ channel in order to obtain an actual
i-channel isospin definite amplitude.

Instead we consider the following approach. Consider
the cases in which the initial and final states, N+ J7
and Ne+J¢, form pure I=$ states. Then Eq. (1) gives
an equation which includes only /=% amplitudes on
both the left-hand and right-hand sides. The Schwinger
terms are assumed to be isoscalar, which implies that
our equation will be free from Schwinger terms. There-
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fore, we can neglect all Schwinger terms on the right-
hand side of Eq. (1), giving us the expression

—(m?/ pop’ o) *a(p’)
X{eKin[(Ta,Bn'j(A,A))ab_(Ta,ﬁn'j<V7V))ab:]
+ijn[(Ta,ﬂi’n(V;V))ab'“(Ta,ﬂi’n(A;A))ab]}“(P) ’

1)

where (a,7) and (b,7) are restricted to combinations
giving /=% states and K is restricted to ensure charge
conservation.

We have examined all of the possible 7=§ states for
the combinations of (a,7) and (b,7) and found that the
I=3% part of Eq. (1) for the combination of T" products
in (6") gives

PNyl Tas®*(V,4) =10 *(4,V) ]
H[Ta?(V,4) = Ta (4, V) Jys}u(p)G a(0)
=20(p ) Tas**(4,4) —Ta g *(V,V) Julp) ,  (22)

which is satisfied by the same solution for the G’s
given in Eq. (19), provided that G4(0)=-1 for the
solutions with (+) sign in (19) and G4(0)= —1 for
those with (—) sign in (19). So Eq. (19), the solutions
of equations of the type (16) for all cases, can be written
as

GasP (gD =(—1)Ga 0)Gvs9(¢?,

Ga(0)==1. (23)

Our result, Eq. (23), may be expected to be accurate
to within 209, since we have completely neglected the
pion mass and since the Adler-Weisberger calculation is
known to add a 209, correction to the CAC value,
G4(0)= —1. The correction due to the CAC violation
can presumably be calculated using PCAC and by
considering some approximation for the five-point
amplitudes which appear in the basic expression, Eq. (1)

The condition G4(0)===1 which we have obtained
depends upon our assumption of the commutation
relations for the currents and CAC. This is, however, by
no means a trivial result as was shown by Blin-Stoyle.?
Tt would be interesting to discover whether this relation
can be proven in perturbation theory for some Lagran-
gian model in which CAC and current commutation
relations are both satisfied.?

In summary, our results predict that the weak pro-
duction or decay of the higher-mass baryons with
Jp>3 and wp=(—1)75"12 must be described by a

with
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V — A combination in the sense that

(NPT 0)| B(p)) ! (M3m>mi i(p")
Vi « = i
2m)*\ pop’o

i=1
X[1+G )\(O)'Y5]Oa,v,<r,--- (i)uv,v,---(?>GVB (i)(q2) 3 (24)

noticing Egs. (17), (18), and (22), where G4(0)==1
and the choice G4(0)>0 has been determined by the
analysis of 8 decay of the neutron.” In the case of
= (—1)78+1/2 the abnormal-parity transition, Eq.
(24), is true if we replace O® with —O0@y; in (24),
which gives exactly the same form apart from an over-
all sign. It would be most interesting to measure
G 485, (g%) by the process v+ p — p~+ AT+ to check the
relation G4a®@(g®)=Gya(¢?), since this provides a
direct test of the current commutation relations since
we have fairly accurate results for the values of
GVAsa(i)(qz)'S

Finally, we add a few remarks. Quite similar argu-
ments can be applied to the caseof Jz=3%, if we use
0@’ ag?

0w P =74 —quy-q
and
O"(Z) = 0wy,

except for the case of B=N, in which v;0,® for the
axial-vector form factors violates G invariance.

For the nucleon form factors, we find another limita-
tion. In this case Egs. (10) and (11) cannot be brought
into the form of Eq. (16), since our assumption of a
massless = meson requires that the point s=my? is not
a simple pole but is the site of infinitely many branch
points. Higher baryons do not encounter this difficulty
since they are resonances, and therefore correspond to
the poles in the second sheet.
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