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V—A Theory for Nucleon Resonances*
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The conserved-axial-vector-current hypothesis and current commutation relations are used to predict
that the weak-interaction coupling of nucleon resonances to nucleons is described by a U —A theory.

'T has been shown by one of us' that the assumption
~ ~ of a partially conserved axial-vector current (PCAC)
or conserved axial-vector current (CAC) with zero-mass
pions can be combined with the assumptions of current
algebra and analyticity to provide an explanation for
the degeneracy of various meson Regge-pole vertices
coupled with mesons or currents. These restrictions on
the couplings have been shown to apply to the Regge
daughter trajectories as well as to the parent trajec-
tories. The extension to daughters is a necessary require-
ment in order to write simple Veneziano formulas for
amplitudes including only mesons and currents as
external lines. In addition, these restrictions on the
couplings predict directly the form of the couplings
governing the decays of various mesons.

It would be of even greater interest if we could obtain
predictions regarding the couplings which govern elec-
tromagnetic and weak production and decays of the
baryons. The V —A theory' for the P decay of the
neutron is already well established, but the renormaliza-
bility of the axial-vector couplings under the assumption
of the CAC current commutation relations is still open. '

In this paper we extend the techniques mentioned
above to the case of axial-vector and vector couplings
to baryons. Ke show that the assumption of CAC with
zero-mass pions allows us to predict the form of the
couplings to higher-mass baryons and to show that in
the CAC limit, the weak production and decay of
higher-mass baryons are described by a V—A theory.

We start with the form of the %ard-Takahashi
identity for the three-current amplitudes4

ik„d'xd'yd's expLi(q x q' y+—k s))(X'(p') I T(V '(y)Ap''(x)A„"(s)) I,'7'(p))

d xd yd s expl i(q x—q' y+k s)j((X'(p')
I T(LAO (s), V '(y) jAs''(x)) I:V (p))b(so —yo)

+(.i (p) I T(LA, (.),A, (x)]V.'(y)) I X'(p))S(- —xo)), (1)

where we have assumed the CAC hypothesis

a„A„(x)= 0.
The superscripts i, j, and X are the isospin indices of
the currents, and the subscripts cx, P, and p are the
I.orentz indices.

The form factors of the axial-vector current are de-
6ned in the usual fashion:

(~'(p') IA. (0) I&'(p))= L/(2 )'j( ). (p')

~y"h.G (k')+ik.G (k')]u(p), (2)

where k= p' —p, so that the CAC condition

k„(Ã (p') IA x(0) IX'(p))=0
yields the relation connecting the form factors,

G~(k~) = (2m/k2)G„(k~)
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If we proceed to take the limit of Eq. (1) s,s k„—+ 0,
the only contributions to the left-hand side come from
the graphs' in Fig. 1.

Our result differs from the case considered by Adler'"
in the existence of the contribution coming from the
pole of the form factor G„(k'). This difference is entirely
due to the assumption of CAC and a massless pion in
our model. In the k„—+0 limit, the contribution to the
left-hand side of Eq. (1) therefore has the form

'/p p'o)"' (p')I( )., (T, ''(v, A))„.
+(~-,s"(V A))-7 "(r ).~lu(p)G~(0), (3)

where we have de6ned

i(m'/p, p', )' 'u(p')(T. ,
s' (V,A)).&u(p)

d'xd'y expLi(q x —q' y) j(X (p')
I

xT(V„'(y)As (x)) I.i'(p)) . (4)
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then have the identities
( q')

PIG. i. The Feynrnan graphs which contribute to the left-hand
side of Eq. (1) in the limit k ~ 0. V„'and A p'represent the vector
and axial-vector currents, respectively.

Wc Ilcxt consider thc llgllt-11Rlld sKlc of Eq. (1)~ Wc
assume the validity of the now farnihar equal-ti&sse
commutation relation of the cuncnts

LA o (s),v-'(y) j..=.,= 1«'-A-"(s)~'(» —y)
+iSir D(s).8 8'(s —y) (1—8 0) (Sa)

RDd

I
A "(),A p'( )1:.=..= ~;.VP( )6 ( —.)

+ilII,Cp, (s) 8,8'(s x) (1—8po)—, (Sb)

where the C„and D„designate the Schwinger terms and
the suIDIIlatloll index f runs froID j. to 3. Slncc very
little ls known about thc Schwlngcl terms, wc coDsldcx'

the cases in which they do not contribute in Kq. (1).We
therefore limit oui consideration to thc cases where
If&i and K/ j. In these cases, the right-hand side of
Eq. (1) becomes

—(m'/PoP'o)'"u(P')$«(T p"»'(A A)) g

+ex;„(T,p' "(V,V)).1]N(P),

where T,p(AA) and T,p(VV) are defined by expres-
sions similar to Eq. (4).

Similarly, we can consider a variation of Eq. (1) in
which V ' and A p~ are changed. to A ' and Vp&', respec-
tively. It wiQ also be convenient to consider the com-
blllatlon ln which thc T product of thc left-hand sldc ls
changed to

T(V.'(y) A p'(x)A„"(s))+T(A„'(y)Vp&(x)A„x(s)) . (6)

The left-hand side of the equation then becomes

1(~'/POP'o) '"—~(P')
&& {(~ )-var.(T,p"(V,A)).l+(T.,p"(A,v)).~]
+t(T.,; (V,A))..+(T.,; (A, V))..]„(,)„~

&&I(P)G&(0), (3')

while the right-hand. side becomes

—(m'/POP'o) '"II(P')
&& & «'-L(T, p" '(A,A)).~+(T,p" '(v v)).~]
+« -L(T-p* (V,v)).,~+(T-p' "(A A)).,~j)N(P).

(4')

We can. show that the quantity (4') is zero for XWf
and EA j.First, lct us look at the case where i4 j.Wc

The expression within the curly brackets of Eq. (4')
therefore becomes

«CL(T-p", (A,A)).» (—T-p' *, ( A, A)).~

+(T,p"(V,v)).~—(T,p"'(V V)).lj,
and slncc

(T,p' &(A,A)).'g= (T,p' '(A,A)).I, (T,p+—(—A,A)).p,

where we dchnc the amplitude T+ by

T.,p' ' (A,A)= p'@T,p+(A, A)+I'e;,;,Ir'T, p (A,A), (7)

lt ls evident thRt 'tllc qllalltlty 1I1 (4 ) lllllst. VRIllsll fol'

lW j. Next wc collsldel 'tllc qllantl'ty 1I1 (4 ) wlMI1 $= j.
The expression within the curly brackets of (4') then
takes the form

«,.$(T.,p" '(A, A)).b+(T.,p' "(A,A)).b

+(T.,p""(V,V)). +(T p"-(V,v))..3, (»
which can also be seen to vanish if we insert Kq. ('7)

into (8).
Since the right-hand side of the equation vanishes,

we have the following equation for the left-hand side of
(3'):

N(P')(L(~ )-v'-
X(T-,p*"(V,A)).~+(T-,p"(A,v))-xl(r ).lj
+L(r )-v'-(T-p" (A V,)).t+(Tp" (V A,))-

&&& (").j).(p)=0, (9)

where we have assumed. that G~(0)40 and restricted
ourselves to the case where X&i and E/ j.

We dehne the s channel by the variable

p= —(1+v)'.
If we consider Eq. (8) in terms of the charge states
rather than the isospin indices where i and j equal 1, 2,
and 3, we 6nd two independent cases in whi. ch E equals
neither i nor j.We can then rewrite Eq. (9) in terms of
the s-channel total isospin amplitudes

N(P')(fvlT-, p'(V, A)+ T-,p'(A, v)v5j
+&~,T.,p'(A, V)+T., p (V,A)]~I(p) =0, (1O)

where I lcpI'cscDts the total isospin of the s channel.
Following similar arguIDents we can obtain the

ldcntlty

N(P')&blT-. p'(v, v)+T-,p'(A, A)vl j
+h5T-, p'(A, A)+T-,p'(V, v)vs j}~(P)= o (11)

by startlllg wltll Rll ccluatloll slnlllal' to (1) 111wlllcll flic
T product of the left-hand side is taken as

T(v-'(y)vp'(~)A. (s)&+T(A-'(y)Ap'(*)A. (s)) (12)

%c can, of course, also start with expressions in which
the plus signs in (6) and (12) are replaced by minus

signs. Prior to considering the cases involving differences
we will discuss some of the implications for coupling
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strengths implied by the identities in Eqs. (10) and
(11).These equations should be valid for. any values of
the parameters s, t, q', and q". In particular they should
be true for values of s corresponding to s-channel
baryon poles.

In general, the form factors for the process

where the spin of the baryon 8, J&, is greater than ~,
can be written in terms of three independent functions

1 t'mMs
&B(P')

I V.(o) I»'(P))=,I, 2 u. .., - (P')
(2s)'k pop'o

&&0, ..., ..."'u(p)Gi pi&'&(q'), (13)

where u„,,, ...(p') is the spinor representing the baryon
B. For definiteness we take the tensors 0"' as

O„..p, '.",=,.q.,q, (&iq, P q&„—.),
Ov, v, v, p, ... = qvqv' ' '(i'rpqv i'Y q8pv) ~ (14)

(2)—

O. ..," "'=q.q." (q.q —q'4)

where P= p+ p', and q= p' —p, in the case of a normal-
parity transition, viz. , ms

——(—1)~~"'. For an abnor-
mal-parity transition we have a common factor y5 in
(14). In the following parts we discuss mainly the nor-
mal-parity transition, but the arguments can be applied
as well to the abnormal cases.

Correspondingly, we can also define the form factors
of the process»t+A„~ B by

(B(P')
I A.(o) I &(P))=

(2~)' PoP'0

X&.o„,„,.,... i'&. (p)G..i'&(q ), (»)

using the same set of tensors 0"'. In the preceding
discussion we have omitted the isospin dependence.

If we now consider Eq. (10) for s~mii', where the
baryon resonance 8 is assumed to dominate the scatter-
ing amplitudes, we can insert the forms of the vertices
from Kqs. (13) and (15) and the appropriate propagator
for the baryon 8 to obtain the equation

3

Q u(p')(y50. .. i"I.',, „„;,, ..fy5,Op, .„.. ,;, "'Gyii"'.*.
(.q")Ggs"'(q')

i, j=l

+( 1)'O—s ""- "'v"G»"'*(q")«~"'(q')j+O-. ~ " "'&. ~ — "" - L(—1)*Os" " - "'G»"'*(q")Grs"'(q')

+Vv)Os, v', v', " 'YGGvB '*(q")GAB '(q') j}u(p)=o, (16)

where I'„... is the numerator of the propagator for the which we take the combinations of T products as
baryon B.The factor (—1)' comes from the structure of
the tensors 0 "& which requires the relations 2'(V.'b)A p'(~)A I (s))—T(A«'b) Vt'(*)A. (s)) (6')

(O"' v &
=o

[0&'& yq7=0 for i= 1 and 3,

'r 4[O~, v, v" ~

'

7 y 4 =O ~, v, v

v4h5Ou, . '""'j'v4= (—1)'v~O. ,.'""',
where u/4. ' It is, therefore, obvious that Eq. (16) can
be satished if

Grii"'(q') = & (—1)*'G~& i'&(q') (i = 1, 2, 3) . (19)

An inspection of Kq. (16) further reveals that the in-
dependence of the kinematical factors implies that the
only solutions to Eq. (16) are the trivial solution where
all G~'i vanish and the solutions given in Eq. (19).
Ke have specie. cally examined the case where Jr=-,'
and have found that for this case Eq. (19) is the unique
nontrivial solution. These solutions also satisfy the
equation analogous to Eq. (16) which arises from Eq.
(»).

Next, we discuss the form of Kq. (1) for the cases in

' Equation (17) can be used also for the cases in which p is 4,
since we should consider the effect to take complex conjugate of
the polarization vector to be multiplied.

nV. (~)Vs(*)A. ())-~(A-(»As()A. ()), (»')
rather than the combinations in (6) and (11).The left-
hand side of Kq. (1) in the case (6') becomes

i (m'/P pP—'p) '~'u(p')

&&&(r )-~~[(&-,s"(V,A)).~
—(T.,s* '(A, V)&.~]

+[(2'-, "(VA)&-—(2'-, "(A,V))-jv ( ). )
Xu(p)Gz(0). (20)

Here we can write T'&(V,A) and 2'&'(A, V) in terms of
T+(V,A) and T+(A, V) which are defined as Eq. (7).
It is not, however, convenient to do so, since the initial
and 6nal currents diGer and it is necessary to symmetrize
V and A in the t channel in order to obtain an a,ctual
t-channel isospin definite amplitude.

Instead. we consider the following approach. Consider
the cases in which the initial and 6nal states, Xb+J'
and ¹+J',form pure I= ~~states. Then Eq. (1) gives
an equation which includes only I=~3 amplitudes on
both the left-hand and right-hand sides. The Schwinger
terms are assumed to be isoscalar, which implies that
our equation will be free from Schwinger terms. There-



G»'*'(V') = (—1)'G~(0)G~~"'(C')

Gg(0) =+1. (23)

Our result, Eq. (23), may be expected, to be accurate
to within 20%, since we have completely neglected the

pion Tnass Rnd siIlce the A(Hcr-%clsbcrgcr calculation ls

known to add a 20/q correction to the CAC value,

Gz(0) = —1. The correction due to the CAC violation
can presumably bc ca,kulated using PCAC and by
consldcrlng some RpproxlInatlon fox' the 6vc-poln t,

amplitudes which appear in the basic expression, Kq. (1).
The condition G~(0)=%1 which we have obtained

depends upoD oui Rssulnptlon of thc corQIQUtatlon

relations for the currents and CAC. This is, however, by
Do means R trlvlal lesUlt Rs was show& by Shn-Stogie.
It vrould be interesting to discover whether this relation
can be proven in perturbation theory for some Lagran-
gian model in vrbich CAC and current commuta, tion
I"clatlons RI'c both satlsdcd.

ID SUIDIQRryq our lcsults predict that thc vMak pIo-
duction or decay of thc hlg1Mr-Inass bRryons %'ith

Js+ 2 and 7I's = (—1) ~ I must be described by a

fore, we can. neglect all Schrodinger terms on the right-
hand side of Eq. (1), giving us the expression

—(~'IPoP'o)"'l(P')
&&(«'.L(2'-,s" '(~ ~)).~ —(2'. ,s" '(I' I')).~l

+«;.3(2'.,s' "(l',1')}.& —(2'-, s' "(~,~))„&3N(P},
(21}

where (u, i) and (b,j) are restricted to combinations
giving I= ~~ states Rnd X is restricted. to ensure charge
conservation.

AVC have examined RH of the possible I=—', states for
the combinations of (u,i} and (b,j) and. found that the
I= 23 part of Kq. (1) for the combination of T products
in (6') gives

N(P') h~L2'- s""(~'l) —&'- s'"'("& l')j
+LT'-,s'"(l',~) &.,

~'—"(~,I')3v.-)N(P)G~(0}
= 2e(P') $T.,s"'(A,A) —T.,s'"(V,V))N(P), (22)

@which is satis6ed by the same solution for the 6"'s
given in Eq. (19), pmvided that G~(0)=+1 for the
solutions with (+) sign in (19) and G~(0)= —1 for
those with (—}sign in (19).So Eq. (19), the solutions
of equations of the type (16) for all cases, can be written
RS

V—3 coTAblnatlon '!ll. thc sense that

«~(p')IJ-(0}l&(p))=, —, Z (P')
(2~)' PoP'o

«1+G (0}»»..„.. -,,. (p}G- "(~ }, (24}

noticing Eqs. (1'/), (1g), and (22), where Gg(0)=+1
and the choice G~(0) &0 has been determined by the
analysis of P decay of the neutron. ' In the case of
7ra=( —1)~~+'", the abnormal-parity transition, Eq.
(24), is true if we replace O~o with —0"'y; in (24),
which gives exactly thc salnc forM Rpalt froII1 an over-

all sign. It vmuld be most intelesting to measure

G~~,„"'(q') by the process v+p-+p +5++ to check the
relation Ggz"'(q')=Gy~"'(q'), since this provides a
direct test of the culrent commutation ref.atlons since

hRve fall ly accurate I'CSUlts fol thc values of

G& (o(~2) 8

Finally, we add. a few remarks. Quite similar argu-

ments can be Rpphcd to the. case of Jg= —'„ if ere use
0("8as'

O '"=7.q' —q.v. q

W (2)

cxccpt for thc cRSc of 8= ~V» 1D vfhlch 7o&Op fol thc
axial-vector forIn factors violates G lnvarlancc.

For the nucleon form factors, vrc hnd another hmita-

tion. In this case Kqs. (10) and (11) cannot be bmught
into the form of Eq. (16), since our assumption. of a
mRsslcss g IQcson I'cqUllcs that the polDt s=- tsar ls not
a simple pole but is the site of in6nitely many branch

points. Hlghcx' baryons do Dot encounter this dl@culty
slncc they RI'c resonances, Rnd thcI'cfoI'c correspond to
the poles in the second sheet. .
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