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In this paper we derive the Reggeized absorption model from field-theoretic diagrams. This model has
been used to describe a large number of quasi-two-body reactions. It involves a Regge-cut correction to
Regge-pole amplitude which is generated by the exchange of the Regge pole and a Pomeranchuk pole.
The cut features the product of the Reggeon and Pomeranchon (without complex conjugation of either)
and a large magnitude for the cut (coherent inelastic effects add to the original cut term). The fundamental
physical assumption of our derivation is that physical particles are composite objects of constituent pieces
of matter. In a scattering process, some of the constituent matter takes part in the scattering while the rest
stands by as a spectator. These ideas lead us to describe double-scattering processes by a class of diagrams
involving exchange of two Reggeons in the crossed channel and propagation of composite physical particles
in the direct channel. When the direct-channel particles are Reggeized, we obtain an expression for the Regge
box diagram. We begin our analysis of diagrams by discussing the Amati-Fubini-Stanghellini diagram and
similar diagrams to demonstrate how the absence of third double-spectral functions leads to the absence of
a cut. For simple diagrams, we find that we are forced to invoke properties of form factors to show absence
of the cut, but that for sufficiently composite diagrams the absence of the cut rests solely on the absence of
the third double-spectral functions. Next we discuss the Mandelstam diagram and similar diagrams to
demonstrate how the presence of third double-spectral functions leads to cuts. For each diagram we bring
the expression for the amplitude to the form of the absorption model. Finally, we study the general class of
diagrams referred to above. These diagrams feature compositeness in the direct channel (physical particles
are composite), third double-spectral functions (physical particles have definite signature; no exchange
degeneracy), and two-Reggeon exchange (double scattering and the Glauber spectator approximation).
By assuming saturation of direct-channel amplitudes by physical states, we are led to an absorption formula
(no complex conjugations) that includes the coherent inelastic factor N (diffraction production of direct-

channel resonances).

I. INTRODUCTION

HE idea that the asymptotic behavior of a scatter-

ing amplitude A (s,#) is determined by singulari-

ties of the partial-wave amplitude f;(#) in the complex j

plane is ten years old.! During this decade, this idea

has been studied both phenomenologically, with various

models that describe specific reactions,? and theoret-

ically, with the investigation of sums of Feynman

diagrams that define amplitudes with various types of
j-plane singularities.*

The main school of thought has been that f;(f) is
meromorphic in the j plane with simple poles at values
j=a;(t) that correspond to physical particles. Phenom-
enological models with these Regge poles were used to
fit a large number of elastic and quasi-two-body

* Preliminary versions of the present work have appeared in
Proceedings of the Regge Cut Conference, University of Wiscon-
sin, 1969 (unpublished), and LRL Report No. UCRL-19453,
1970 (unpublished). The Sudakov variable techniques, used ex-
tensively here, were first applied to diagrams with Reggeons in a
comprehensive work to develop a Reggeon calculus by V. N.
Gribov (Ref. 19). In the work at hand we have employed these
techniques to analyze the diagrams considered here in obtaining
the absorption model. After our work was completed, our attention
was called to a series of six papers by Gribov and Migdal, Kaidalov
and Karnakov, and ter-Martirosyan which extended the earlier
work of Gribov and, among other things, obtained the absorption
model. In Sec. IV we compare our approach with theirs and discuss
the similarities and differences.

1T, Regge, Nuovo Cimento 14, 951 (1959).

z G. E. Hite, Rev. Mod. Phys. 41, 669 (1969). o

3R. J. Eden, P. V. Landshoff, D. I. Olive, and J. C. Polking-
horne, The Analytic S-Matrix (Cambridge U. P., Cambridge,
England, 1966). . )

sR. J. Eden, High Energy Collisions of Elementary Particles
(Cambridge U. P., Cambridge, England, 1967).

reactions. Meanwhile, the theoretical study of various
field theories led to the conclusion that Regge poles
arise in field theories also.

However, the use of phenomenological models with
poles alone led to several difficulties and complications
in the attempt to explain features of differential cross
sections®—such as dips, crossovers, and forward peaks
(in m-exchange reactions)—and features of total cross
sections—such as the rise at Serpukhov energies. This
suggested that in the j plane the properties of f;(f)
might be more involved that containing poles only.
Meanwhile, the study of field-theory models produced
amplitudes with fixed poles, moving cuts, fixed cuts,
and essential singularities.?

One of the earlier models with more complicated
singularities was developed by Abers et al.® (following
earlier work by Udgaonkar and Gell-Mann?) in the
study of w-deuteron scattering. Glauber® had shown
that the amplitude 4,4 could be expressed as a sum
of single and double 7wV scatterings. Abers et al. then
showed that these scatterings correspond to the
amplitudes for the diagrams of Fig. 1 where the particles
in the direct channel (cut by the dashed line) are to be
evaluated near the mass shell. Furthermore, if the

5 F. Henyey, G. L. Kane, J. Pumplin, and M. Ross, Phys. Rev.
182, 1579 (1969), hereafter referred to as HKPR.

¢ E. S. Abers, H. Burkhardt, V. L. Teplitz, and C. Wilkin,
Nuovo Cimento 42, 365 (1965).

?B. M. Udgaonkar and M. Gell-Mann, Phys. Rev. Letters 8,
346 (1962).

8R. J. Glauber, in Lectures in Theoretical Physics, edited by
W. E. Brittin and L. G. Dunham (Interscience, New York, 1959),
Vol. I; V. Franco and R. J. Glauber, Phys. Rev. 142, 1195 (1966).
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16, 1. Diagrams for =d scattering.

single-scattering terms were given by Regge poles
Arp(s) =B(H)s*®, ¢y

then the double-scattering term of Eq. (1) took the
form of an amplitude with a cut in the j plane at
i =2a(it)—1,

A (double) =si®/Ins . (2)

This cut term, the Glauber shadow correction, was
observed experimentally in differential and total cross
sections. However, it was next shown that if in Fig. 1(b)
the contribution was evaluated from the region of
integration where the = was off the mass shell, this
exactly canceled the cut. The sum of both contributions
behaved as (Ins)/s® and had no leading cut.’

This type of theoretical difficulty also occurs in
models that describe two-body processes in terms of a
multiple scattering series. In describing 7—p — 7%,
one is led to the formula® (where 4~ —1)

7
A (S,t) =4 p(S,l) - 37; (]Q /I p(S,h)A el(S,fz) s (3)

qLm

where 4, is the amplitude for p exchange, and Aq is
the elastic w-nucleon amplitude. This can be derived
from either a Glauber eikonal series'®! or from the
Sopkovitch formula.® It can also be derived from
Feynman diagrams of the type of Fig. 2(b). The
second term in Eq. (3) corresponds to the contribution
from Fig. 2(b) in which the direct channel #° » are
evaluated on the mass shell. However, if one evaluates
the contribution from the region where the #%n go
off the mass shell, the previous term is again exactly
canceled and their sum has no cut.

o
T° n m P n
>\M/~< + 7T° n
P o P P
T p e~ A
(a) (b)

F16. 2. Diagrams for absorption model.

9 A solution to this difficulty, different from the one we present,
has been suggested by Dr. C. Wilkin, University College, London,
report (unpublished). . .

10 R, C. Arnold, Phys. Rev. 153, 1523 (1967) ; ANL Report No.
ANL/HEP 6804, 1968 (unpublished).

11 C, B. Chiu and J. Finkelstein, Nuovo Cimento 57A, 649
(1968).
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The difficulty encountered in both of these examples
is related to the diagram version of the work of AFS.12
The discontinuity of the amplitude of Fig. 3 across the
branch cut of the two-particle direct-channel state is
given by!?

d*k
mAG)s [Saenatn,
S

and A(s,t) has a branch point at j({)=2a(:t)—1.
However, in a ladder representation of a Reggeon,
there are further contributions to the unitarity equation
that cancel the cut.!*

Although the three diagrams considered do not have
cuts, there are diagrams which do have cuts, for
example, the double crossed diagram?1s of Fig. 4.

In this work we will reconcile these results for
Feynman diagrams on the one hand with the experi-
mentally valid multiple-scattering models on the other.
To do this, we start from assumptions about the
composite structure of physical particles, and combine
them with the ideas of multiple scattering. This leads
us to a class of Feynman diagrams which can be
evaluated in the high-energy limit. The final expression
we are led to agrees with the multiple-scattering models
discussed above.

The organization of the paper is as follows. In Sec.
II A we point out the features of the AFS diagram that
cause it not to have a cut. In Sec. IT B we discuss why
the double crossed diagram of Fig. 4 does have a cut,
and we bring the amplitude to a form similar to the
absorption model. Next we extend the results to more
complicated diagrams with cuts. In Sec. II C we discuss
two further diagrams without cuts, drawing out the
role that third double-spectral functions and form

Py Ky k ko P,
VAN /\
-P,+q a+p,

F16. 4. Mandelstam diagram.

2 D. Amati, S. Fubini, and A. Stanghellini, Phys. Letters 1, 29
(1962), referred to as AFS.
3 P. G. Federbush and M. T. Grisaru, Ann. Phys. (N.Y.) 22,
263 (1963); 22, 299 (1963).
1 J. C. Polkinghorne, Phys. Letters 4, 24 (1963).
( 15 g) Mandelstam, Nuovo Cimento 30, 1127 (1963); 30, 1148
1963).
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factors play in the analysis. This leads to the analysis
in Sec. IID of a very general class of diagrams in
which the presence of a cut is thrown completely onto
the presence of third double-spectral functions.

In Sec. III we present our view of the composite
structure of physical particles and combine this with
the diagram results to obtain the derivation of the
absorption model. We compare our results with the
work of Gribov et al. in Sec. IV. In Sec. V we summarize
the assumptions, results, and unsolved problems of
the paper.

II. MATHEMATICAL DERIVATIONS

A. AFS Diagram

To begin, we briefly point out the features of Rothe’s
treatment!®:'” of the AFS diagram that are relevant to
our later derivation. In terms of mass variables, the
amplitude is given by

1 dt\dls
4 (5 i) / / (Z.S‘llng
sIacmm<o (=N 2 (,01,m>0
R(s,t1; 51,52) R (8,025 $1,52) 5)
, (5
(s;—m2+ie) (so—m?+1ie)
where

\(a,b,c) =a*+b*+c?—2ab—2ac—2bc .

As a function of sy, the integrand of Eq. (5) has singular-
ities in the lower half-plane consisting of a pole at
si=m?—ie and cuts from the form factors of the
Regge amplitudes. Also, it is known'4!® that as s;
becomes large,

R(s,t; s1,82) = 1/s. (6)

(This is valid in the limit s fixed, s; — <, and also in
the limit s~s;— ».) The s; integration runs from
s1=—o to sy~s (Fig. 5). Therefore, if we distort the
sy—and similarly s;—integration in the lower half-plane,
we obtain

1dls

e /dt
S,t) < —
(=N

where R(s,t;) is the Regge amplitude evaluated on the
mass shell, 4, is the contribution from the cuts in the
mass variables, and A3(s,?) is the contribution from the

-R(Sail)R(S)fQ) +4 2(5)[) +4 3(5)[)7 (7)

St

.
=

T16. 5. Integration contour for Fig. 3 in the complex s; plane.

|o

=

16 H, J. Rothe, Phys. Rev. 159, 1471 (1967).

17 C. Wilkin, Nuovo Cimento 31 377 (1964).

18 This is also easily seen from a d-line analysis of the Reggeon
in the ladder representation.
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large semicircles. This last term is negligible because of
Eq. (6). The first term in Eq. (7) is the usual AFS
amplitude [but without complex conjugation of
R(S,lg):].

On the other hand, if we close the contour of S;
integration in the upper half-plane, we obtain for 4 (s,?)
only a term similar to 4;(s,f), which vanishes as s — .
Hence we conclude that 4 (s,f) must vanish as s — «
[the Feynman parameter technique gives (lns)/s%],
and the apparent cut of the first term in Eq. (7) is
canceled by 42(s,t).

To summarize, the cut does not appear because of
(a) the ahsence of a third double-spectral function, and
(b) the presence of form factors. We shall see that the
correct interpretation of these two features leads to
the Reggeized absorption model.

B. Diagrams with Cuts

We now turn to diagrams that do have cuts, leading
to the general diagram of Sec. II D that will connect
with our ideas of the composite structure of physical
particles and yield the absorption model.

First consider the double crossed diagram of Fig. 4.
We follow the treatment by Gribov,!® and then extend
the analysis further to obtain a result resembling the
absorption model. The amplitude of Fig. 4 is given
by!6:19

Als,f)=i / (d*kd*Frd*hs/ H AR (kb )

=1

R (Pl kl, z—kg, q k) (8(1,)
The essential feature of the analysis is to note from
Eq. (6) that the internal Regge amplitudes R and R’
become small if their external masses d; become large
as fast as or faster than s. Therefore, the dominant
contribution to Eq. (8a) comes from the region of
integration where d; remains finite relative to s as s
goes to infinity. After s has become asymptotic, the
integration over the remaining large values of d; can
be completed. To express this precisely, let A be a finite
number and define

O —d?)
An(st)=i / PEEd ERR TT —

i=1

(8b)

7

Then the above arguments state the leading behavior
of A (s,t) is given by

lim A (s,t) =l§m [lim Aa(s,t)]. (8¢)

8 V. N. Gribov, in Proceedings of 1967 International Conference
on Particles and erlds edited by C. R. Hagen, G. Guralnik, and
V. S. Mathur (Intersc1ence New York, 1967); Zh. Eksperlm i
Teor. Fiz. 53, 654 (1967) [Soviet Phys. JETP 26, 414 (1968)].
Gribov apphed to diagrams with Reggeons the variable techniques
of V. V. Sudakov, Zh. Eksperim. i Teor. Fiz. 30, 87 (1956) [Soviet
Phys. JETP 3, 65 (1956)1.
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To perform the analysis embedded in Egs. (8a) and
(8c), it is convenient to replace the external momenta
p1, p2 by lightlike momenta py/, po’ defined to order
1/s by

m? m?

p/=p1— —p2, pd=pa— —p1.
S R

The momentum transfer is given by q= (#/s) (p2'—p1’)

+Q, where Q is a two-dimensional vector perpendicular

to the incident vectors p1, p2. The Sudakov variables of

integration are introduced by

k=a{72'+ﬂ[)1/+K , ki=aip2'+ﬂipi'+K,- for l=1, 2,
d*k=%|s|da dB dk, etc. ,

where K, K; are again two-dimensional vectors perpen-

dicular to pi1, ps. In terms of these variables, the
denominators for the left-hand side of Fig. 4 become

dl=k12-—m2+ie=a1,31$+K12—~m2—He ,

mZ
dz—'—‘- (pl—k1)2—m2+ie=<a1— ——>

S
X (B1—1)s+K2—m2+ie,

dy=(ky—k)’—m*+ie= (a1—a) (B1—F)s
+(K1—K)—m*+ie, (9)

r o m?
(l4= (/zl—/e—l—q—[)l)2~m2+ie=<a1——a+ —_—— ‘—>

N N

l
><<Bl—,8—- - —1>s+(K1—K~Q)2—m2—I—ie,
s

with similar expressions on the right-hand side.
Performing the analysis of Eqs. (8a) and (8b), we
first find the region of integration over which d;<A. By
solving the equations d1,ds=0(A) for ai, B1, we find
from Eq. (14) that a1=0(A/s), B1=0(A). After a
similar analysis on d3, ds; ds, ds; dv, ds, we conclude that
the dominant region of integration as s — o« is given by

(JZ1,C!,6,B2=O(A/S>; Bl:a2=O(A> . (10)

Comparing Eq. (10) with Eq. (9), we see that we can
neglect @ relative to By, and a relative to as. If we change
variables ais — a1, as —a, Bs — B, B5 — B, Egs. (9)
become

dy=aif1+ K —m?+ie

do= (a1—m?) (81— 1)+ K2—mP4ie, )
ds=(er—a)Brt (K1— K ) —m+ie (
da= (1 —a+t—m?) (B1— 1)+ (K1—K—Q)>—m?+ie ,

and the Regge energies, momentum transfers, and
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direct-channel energies become
Ur—ass, Us— (1—ag)(1-B1)s,
B=K, (@—Rr=Q-K), (12)
si=mi—a+K?, so=m?+p+K2.

The factors az, 81, etc. in Eq. (12) tell what fraction of
the original energy s flows through the Reggeons and
what portion flows down the sides of the diagram. We
see that the terms di, ..., ds depend only on the
variables of the left-hand loop—ai, B1, Ki—and on
a, K, but not on 8. Similar dependence is seen for the
terms ds, . .., ds.

Next we assume that the Regge amplitudes of
Eq. (8a) can be written in the factorized form

R=g1(dy,ds, k) et 9100 gy (dy,d7 k2
R =g/ (dayda, (q— k)Derirsala=h [ ol e
ng(dﬁad& (9 - k)2) .

Then Eq. (8a) can be recast into the following form:

Ar(s,l) / AK (em125) $1(ED+92 1@ -1
o)

XN(K,Q)N:(K,Q), (13a)

Ny (K’Q) =

0(A)

4
da ((ZaldﬁldKl/H (iz)
=1

Xgig1'81#1(1—61)%2, (13b)

Na(K,Q)=

8
dﬂ (daz(l’ﬂgdKz/H dl)
0(A) =5

Xgagdas?t(1—as)??. (13c)
Here we see that 4, is an integral over the usual energy
term s®1t92-1 times structure functions N; and N,
that involve the Feynman amplitudes, the form factors,
and the Regge energy factors on each side of the
diagram.

Now let A — o in accord with Eq. (8c). We denote
the integrand of N; by

+o0 4
A1(e,K,0Q) =/ (dendBrdK /11 d2)

=1

Xg1g1'B1# (1 —B1)%2.

Note from Eq. (14) that 8; runs between 0 and +1
only. If 3:<0, then the integrand as a function of g;
has singularities that all lie in the upper half-plane
[see Eq. (11) and Fig. 6]; the g; contour of integration
can be closed in the lower half-plane to give zero. If
B1>1, the singularities all lie in the lower half-plane.
Butif 0<B8,<1, then the singularities pinch the contour
of integration and the integral is nonzero.

(14)
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ar CN) =N1FAatXs+A, (17¢)
EE T T N R e LT (170)
| %R 8 S, |-d | .da This can ‘pe written in the more familiar Feynman

BI <0 B|>| 0<B<! representation as

F16. 6. Singularities of the « integrand in the complex « plane.
The integration on « runs from — e to 4.

To bring 4 (s,t) into the form of the absorption model,
we find it necessary to understand the analytic proper-
ties of A1. This can be investigated in the following way.
(We neglect the form factors, which can be handled by
dispersing in their masses.?’) Introduce Feynman
parameters®=? into Eq. (14) via

4 1 1IN /> 4 4
- ——~<f) (T despG ). (19

i=1d; 1 =1

(The 4e in d guarantees convergence.) Then, the dK;
integration can be done directly. The da; integration
can be done by using

~+o0
/ do e’*B = §(B).

—oc

(16a)

The quantity B involves (i, and this allows the dg;
integration to be performed. We find

)\2+)\4

fi= —————— (16b)
AtNoFAs Ay
and that
© 4 Aa+AN\ P!
Ax1(s1,l; tyyls) (Hd)\i)< - )
0 =1 C
}\1+}\3 P2 617])()\,81,11,1)/(}()\)
><< > - , (17a)
C [CVP
where
Do\asl,“l) =>\2>\351+)\1>\4M1+>\1)\3t1+)\2)\4t2
Fm2(AheFNhg) —m2C(N)?,  (17b)

m2 “

Fi1c. 7. Diagram for the
fz amplitude 4;. When g; and 3,
are included, we obtain 4;.

mée

}
Sy

2 1. T. Drummond, P. V. Landshoff, and W. J. Zakrzewski,
Nucl. Phys. B11, 383 (1969).

2P, V. Landshoff and J. C. Polkinghorne, Phys. Rev. 181,
1989 (1969). )

2 We are very indebted to P. V. Landshoff for suggesting this
approach.

1

(1T de)s(1—C)

0 =l

astas\?! /o Faz\ ¢ 1
Y iy
C(OJ) C(Ol) [D(ayslaul):]g

Note that for ¢1=¢»=0, A; reduces to A, the ordinary
Feynman amplitude of Fig. 7.

From Eq. (17¢) the analytic properties of A can be
read instantly. First, 4; has the same Landau curves
as A1 because these come from D(a,s1,11). Second, the
term ;%! does not introduce a new singularity because
if @a=a4=0, then

A 1(5‘1,1; 11,12) <

D(a,s1,81) =arasti— (artas)'m?;

but since #,<0, then D is strictly negative and cannot
pinch with 8;¢1. Finally, it can be seen from Eq. (17b)
that for

S1,%1< 2m?

D is strictly negative; therefore, 4 is strictly real
there. This region, labeled D, is shown in Fig. 8.
We summarize the results in Fig. 9(a). The expression
for 41 in Eq. (17¢) in terms of invariants also allows
us to write

didis
A (S,/) < /Z;B;E

s\ $1E0+¢2(82)—1
X(T) Ni(Ltnt2) Na(tnls),  (18a)
i

+
Nl = / dsid i(sils nls) . (18b)

We can now bring 4 (s,t) to the form of the absorption
model. In Fig. 9(a) we distort the contour of integration
around the right-hand cut. [4; — (Insy)/si?ass1— «.]

S‘=4m2
t= 4m?

N
\%

> 5
U0 (sett = 2m 41, +1,)

Ug=am?(s +t=-2m2+1, +t,)
su fy=0
F1c. 8. Analytic properties of A;; A; has singularities at

si=4m? uy=4m? and f1=0 (boundary of double spectral func-
tion), and it is real in D.
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)

+A03 [+ o] [¢9]
N, = . » TT %
1 f dsg f ds_Z_-ldeﬁK
P 42 1 4m21 t X

F16. 9. (a) Contour of integration for ;. (b) Representation for N; of Fig. 4 in terms of the integral of the absorptive part of 4.

Then

0

.’\710,151,152) o« f dSl dlSC[A 1(51,)5; tl,tQ)] . (1921,)
4m?

Since A1 is real analytic between the cuts of Fig. 9(a),
note that

disc[A41]=2iImA4; . (19b)

Since the discontinuity is generated by the denomina-
tors ds, d3, and since A4 is real analytic, we can invoke a
Cutkosky-type theorem to give

0

4’7\71(t,l1,t2> o ’L/ dSl
4m?2

daldﬁldK1
Jh

B1#1(1=B1)*%8(d2)d (ds)F,  (19¢)

104

where F involves the Jacobian of the transformation to
mass variables. Integrating on the & functions, we obtain

JV1 (f,h,l’z) o« ’L[ dsldelBUBL* 5 (19d)
4m?
where

ﬂldu

BU= —(F)\?

d

(1—B1)%
, BL=-

do=d3=0 4

Py

do=d3=0
(19¢)
In terms of graphs, we can write N, as in Fig. 9(b).

Thus we can split N into an integral of factors
BUBM* where BU involves the upper part of the

diagram and B’ involves the lower part. Performing

the same operation on N, we get

.Z\T2OC t/ ng](iKzCUCL*.
4m?

Returning to Eq. (18a), we can bring 4 (s,t) to the form

(19f)

—i [ dhdls
A(s)l) o« — dK1dK
s (_)\)1/2
s\ o121 5\ 92(t2)
[o(2)" e o) ] ano
1 1
Writing
Mi=BU(s/i)*CV, May=BL(s/i)#Ck, (20b)

we finally arrive (see Fig. 10) at
—1
A(s)f) o« — / AKdK K M M*eims2@) | (20¢)
s

With B and C real, Eq. (20a) agrees with the absorption
model. In particular, when ¢; is the Pomeranchuk pole,
then A (s,t) interfers destructively with the pole term
of ¢s. In Eq. (20c) the extra phase term restores the
correct phase to the M, amplitude.

To extend this result and prepare for the general dia-
gram of Sec. IT D, we briefly discuss the diagram of Fig.
11. There are several noteworthy features. '

In the first place, one sees that on the left-hand side
of the diagram only the lines 1, 3, 5, and 7 attach to
Regge amplitudes. Hence we might suspect that only
these are subject to the finite-mass condition. It turns
out this would not give enough conditions to provide an
immediate solution for the Sudakov variables. There
are two ways we can argue to extend the class 1,3,5,7:
On the one hand, we can argue that, in the spirit of
Arnold,” HKPR,? and of the work to follow in Sec. III,
the external physical particles should themselves also
be Reggeized. This would place form factors on the
external vertices also, and would lead to the require-
ment that the lines 2 and 6 also satisfy the finite-mass
condition, and would provide enough lines to perform
the Gribov analysis. On the other hand, Polkinghorne®
has recently extended the Gribov analysis to diagrams
with internal Reggeons constructed from Veneziano
amplitudes without any form factors at all. The
integrations are done by a steepest-descent analysis,
and, as it turns out, this leads to the desired finite-mass
conditions on all internal lines (see also Refs. 24 and 25).

In any event, after satisfying the finite-mass condi-
tions, one finds, in the same way as before,

al,az,a,ﬁ,,33,ﬂ4~A/S )

One again obtains the amplitude 4 (s,f) in the same form

0<B1,Bs,a3,0a<1.

M, =
Fic. 10. Single scattering l l ] |
amplitudes M, M, of Eq.
(20c). = >( ><
M2 = oA

28 J. C. Polkinghorne, Phys. Rev. 186, 1670 (1969). See also
Refs. 24 and 25.

24 S, N. Negrine, Nuovo Cimento 68A, 165 (1970).

2% G. A. Winbow, Phys. Rev. 177, 2533 (1969).
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F16. 11. Extension of the Mandelstam diagram.

as before, with the amplitude 41(sy,Z; ¢1,f5) now given by

1
A (Sl,l; tl,l‘g) =/ dﬂl(ZﬂQBl¢lﬂ2¢zg1g2
0

+o0 7
X/ daldaszlng/H [l1 (21)

=1

The amplitude Ni(t,t,t) is given by a sum of four
unitarity terms (Fig. 12). Therefore, 4 (s,f) takes th
form :

—1
A(s) 20— [ d

i S

el o e (o], e

a sum of all possible unitarity cuts on the left-hand side
of the diagram times all possible cuts on the right.

C. Diagrams without Cuts

We now pass on to diagrams that do not have cuts.
The essential point we shall demonstrate is that a
diagram has a cut if it has third double-spectral
functions on its sides. As we shall see in Sec. III, this
will tie in conveniently with our physical ideas about
the composite structure of physical particles.

To demonstrate this relation we will show that the
amplitude of any diagram with two-Reggeon exchange
(Fig. 13) can be brought to the form

§\ S+l
A(s,) = / dK(—) NiVa,
1

where N, is related? to the amplitude of the blobs

(23a)

00
IVl(t,frl,h)’\’/ (iS1A 1(31,1; tl,tg) . (23b)

R e B[R T)

Fic. 12. Representation for N; of Fig. 11 in terms of the
integral of the absorptive parts of 4;.

26 J. C. Polkinghorne, Nucl. Phys. B6, 441 (1968).
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Ay Az
~— h —~
Fic. 13. General two-Reggeon-
7 exchange diagram.
\S | S2
——— )
S

Furthermore, if 4; has a third double-spectral function,
then the integral in Eq. (23b) is nonzero. But if 4; has
no third double-spectral function, then N, is identically
zero; in this case, Eq. (23a) is also zero and the leading
behavior of 4 (s,t) is of lower order in s than Eq. (23a).

We saw earlier that the leading behavior of the AFS
diagram vanishes as s — o. [It behaves as (Ins)/s%.]
Its amplitude can be brought to the form of Eq. (23a)
even though the coefficients N1, N, are zero. To do this,
apply the Gribov analysis to Fig. 3:

di=(p1—Fk)*= (1—B) (m*/s—a)s+K>—~mi+ie
do= (pa-+k)*= (14+a) (m2/s+B)s+K2—m?+ie .

Then di,de~0(A) gives a~B~0(A/s); setting a — as,
B — Bs, we have

dy=—a+K2+ie, dy=p+K2—ie, 1L=K2, ly=(K—Q)*.

(23¢)

Since we have kept d1,d; finite as s went to infinity, we
can write the Regge amplitudes in factorized form,

s $1(t1)
R=g1(d17h)< > ge(dayts)

i

s\ 92(12)
R’ =g1' (d1,t1)< ) gzl ((iz,lg) .

i
The amplitude takes the form of Eq. (23a) with

+0 gl -0
Ni(lints) = / de ;gl’= / dsiA1(sy,l; ). (24)
—0 1 —0

In Eq. (24) the integrand as a function of « has pole
and cut singularities in the lower half-plane (Fig. 14).
Since the form factors decrease as d;— o,

gi(dyt) >0 as di— =,

we can close the o contour of integration in the upper
half-plane and get for N zero, as expected. We conclude
that Eq. (23) holds for the AFS amplitude, but its
value is zero.

In the discussion of the AFS diagram, we need to
invoke properties of the form factors in order to prove

°1
YA
¢ X F16. 14. Contour of integration
>ap in e for V; of Fig. 3.

-
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4m?

Fic. 15. (a) Diagram without a cut. (b) Contour of integration in s; for N; of Fig. 15(a).

that the amplitude does not persist. For the diagram of
Fig. 15(a), we must also employ knowledge of the form
factors. However, for more complicated diagrams
~(Fig. 20, for example), the absence of the cut rests
completely on the absence of the third double-spectral
functions.
Consider Fig. 15(a). After performing the finite-mass
analysis, we arrive at Eq. (23) with

1 +° daydK
A= / dﬂl /
0 —w (1dodsds

XB1#1+92g, (dy,ds ) g1 (dsydayts) -

(25a)

As a function of si, 4; has only a right-hand cut in the
lower half-plane, so in Eq. (23b) we are tempted to
close the s; contour of integration in the upper half-plane
[Fig. 15(b)]. This cannot be done if we ignore the form
factors because the amplitude without form factors
satisfies

[Il(é‘l,t; l1,t2) b d (lnsl)/51 . (25b)

Therefore, the contour cannot necessarily be closed.
We must invoke the presence of the form factors. We
do this by interchanging the orders of integration in
Eq. (23b) and first integrating on a (~ —s;). Then

dB1dadK 4 T da g1ge
N1=/.__“__'31¢1+¢z/ .
drdods —w A

The « integrand has singularities in « in the upper
half-plane. The contour can be closed in the lower
half-plane. Since g, and g, decrease as d3; becomes large,
we see that the o integral is zero. The remaining
integrals in Eq. (25c) converge, and hence N,=0.

(25¢)

Py ky k ks P2
(. 243
5 76
k2 k4

!

S

F16. 16. Diagram without a cut.

Finally, we discuss the diagram of Fig. 16, which will
lead to the general case of Sec. II D. We obtain Eq.
(38), with

7
Ar= [ (dydBrdK 1dasdB:dK s/ T1 di)B1#182%°g1g . (26)
=1

Again, 4, has only a right cut, but now the amplitude
without form factors satisfies

A;— (Insy)/s? as s;— o |

and hence the contour of integration in Eq. (23b) can
be closed in the upper half-plane to give N;=0. For
Fig. 16 the absence of the cut is thrown entirely on the
absence of the third double-spectral function.

D. General Case

We now come to a general class of two-Reggeon-
exchange diagrams which is the basis for our derivation
of the absorption model. Just how general can this
class be? What we are interested in is the amplitude for
a diagram of the type of Fig. 13. However, we do not
wish the amplitudes 4; to be completely arbitrary,
because in the form of the absorption model we are
interested in we require that they be strictly low-energy
amplitudes relative to s. That is, we require that the
incident energy s flow across the Reggeons and not
down the sides of the diagram, because we will want
to identify the A; with direct-channel physical particles
near the mass shell.

Ay Az
Py ™ kg > kK ' P2
1
- 2 -
p,-k, /; k- K
Al A%
[/ .
k2+q—p1 5 a 6 -k2+k-q
- k q-k
q Pi \ 2 ) N ,

T16. 17. General two-Reggeon-exchange diagram with low-
energy direct-channel amplitudes.
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(a)

F1c. 18. Diagrams not contained in Fig. 17.

Note that the diagrams we have studied satisfy this
condition. For example, we have found that whereas
the four-momenta on the sides of the diagrams can
become large (e.g., ki=pipr+aips’+K1, 0<B:1<1,
a1~A/s), the energies s; always remain finite relative to
s (e.g., si=—as+m*+K? a~A/s). The large energy s
flows only across the Reggeons.

Tt is not hard to convince oneself that a general type
of diagram satisfying these conditions is that of Fig. 17
below. The effect of the elementary lines 1,2 is to tell
us where the internal Reggeon line ends and to prevent
Ay from having Regge behavior in s. Thus Fig. 17
excludes all the diagrams of Fig. 18. It includes all the
diagrams discussed before. (For the double crossed
diagram, A, in Fig. 17 would be various é functions.)
It also includes the diagram of Fig. 19, if the lines #; are
grouped into a single line of mass M. Most important,
it includes the diagram of Fig. 20(a). When the rungs in
the direct channel are summed over, this provides a
model for the Regge box diagram of Fig. 20(b) (first
introduced by Arnold and discussed in HKPR).

We consider, then, the diagram of Fig. 17. We use
the notation

AZA(S,t) y A1=A1(Sl,t; t],tz) ’ A1/=A1(81,11,,M1,; (iz) .

The amplitude 4, is to be quite general; we are
interested only in whether or not it has a third double-
spectral function, and so write it in the form

* f(517§> *
A= / d¢ + / ¢
4m? ¢ -t/ 4m?

that is, we can treat 4, as a propagator of mass
¢{>4m? The analysis now goes through as before.
We indicate the essential features.

After the finite-mass analysis has been performed,
A (s,t) takes the expected form of Eq. (23a) and (23b)
with

s
genf) . (27a)
f'""lh’

1
A 1(5‘1,[ ; tl,lz) =/ (1,81({,82
0

+-o0 5
X/ (daldaszlng/ H di)ﬁld’lﬂg‘“glgz/l 1, 5 (27b)
—w =1

=

F16. 19. Class of diagrams
contained in Fig. 17,

A\
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where

di=a1B1F+K2—mP e,

dy= (a1—m?) (Bi— 1)+ K 2—m>+ie
ds=(a1—a)B1+ (K1—K)*—m*+ie,
di=asBs+ K2 —m?+-ie

ds= (arrtt—m) Ba— 1)+ (Q+ Ko —mi-Hie
do= (az+i—a)Bs+ (Ko+Q—K)?—m?+ie
si=—a+K:+Hm?, wuy=m*+a—i+(K—Q)?,
i = (aet+t—ay) (Be—B1)+ (Ko4-Q—K1)?,
' = (1 F-astt—a—m?) (B1+B2—1)

+ (KK +Q—K)2.

We consider separately the cases of the #' and ui
dispersion contributions.

(28)

uy’ Contribution

As before, the first task is to establish the analytic
properties of the amplitude 4;. This can again be done
by introducing Feynman parameters. The amplitude
A takes the form

0

/11(5‘,%1; [1,!2) = d§ f(slyg-)Fl(sl;ul; t1,12,§> ) (293)
Fl=‘/oo dN\1- - cdN\g
£iD (\31,u1$) 1€ OV
X[B1(\) 19 [B(N) oo, (29b)
L 1908\ ] COT
OC/ dal- . 'da76(1 —Eai)
) @, (29
[D(aysbulyf)js ' : ’
where
B1(a) =[az(stastastar) tar(atas)])/Cla), (29d)
Ba(e) =[as(artaetasta)tarlatas)]/Cla), (29)
C@=Ea, (296)

[T

—

1]

(b)

AN

(a)

I'te. 20. Representation of the Regge box diagram in terms
of diagrams of the class of Fig. 17.
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+asasert-asasar |+ icnasn
+m ara (astastastai) +oasar ]
+m asas(artaetastar) Fasear ]
+ K anas(@stas+astar) +aser |
+(Q—K ) Louas (e +artastar) Fasiar]

—[azr+( ?_;,l ai)m][ (a1 tas+as) (astas+as)

Far (e Fastastactastas) . (29g)
The analytic properties of 41 now follow easily. First,
A1 has all the singularities that A, has because they are
determined by the Feynman discriminant D of Eq.
(29g). Second, A4; does not have any new singularity
arising from the B3; factors. If B8; vanishes, say, then
various a; in Eq. (29d) also vanish. Further, since we
have assumed ¢1> —1, 81%! is integrable; therefore, we
are only interested in those singularities in which the
propagators di, ..., de¢ also participate. This means
that all the remaining «;’s must either vanish or pinch.
However, these are just the conditions for a Landau
singularity of the Feynman amplitude 4;. We conclude
that any singularity of 4; associated with the vanishing
of 81 must already be a singularity of 4;. Since the sheet
structure of the singularities is determined by the 7e
prescription in D and is unaffected by the presence of
the 81%1, we see that A; has no more singularities than
4.

Third, it is easily seen from Eq. (29g) that D is
strictly negative for si,u;<2m?; hence, A; is real in
this region.

So we conclude that 4; has the same real analytic
properties as A1.

Now we can return to Ny and bring it to the unitarity
form. Since A; has left- and right-hand thresholds
(Fig. 9), we can close the contour of integration around
the right-hand cut to obtain (see Fig. 21)

1\71'—‘2/ dSl (hSC[Al:I‘;ZZZf dSlB,;UBiI’*. (3())
i Jag i Jag

The sums in Eq. (30) are over all possible s;-channel
unitarity cuts with thresholds A;.

(B B1E BB

F16. 21. Representation of Ny of Fig. 17 in terms of
absorptive parts of 4.
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Fic. 22. Regge amplitude with form factors representing
composite external particles.

The amplitude 4 becomes

A(s,)==2i 3 | dKdsidse
¥

oo} o

ty’ Contribution

The calculations proceed as before. One again verifies
that 4; has the same real analytic structure as A;.
When we come to consider N;, we observe that as a
function of s; the integrand of Eq. (23b) has singularities
that all lie in the lower half-plane. (This is another way
of saying that A’ has no left-hand cut.) Hencewe can
close the s; contour of integration in the upper half-plane
to get zero. Therefore N1=0, and 4 (s,£) does not persist.

III. PHYSICAL IMPLICATIONS—COMPOSITE-
NESS, MULTIPLE SCATTERING,
AND ABSORPTION MODEL

Now consider the relationship between the math-
ematical results obtained and the physical meaning of
compositeness and multiple scattering. It is not hard
to see why the AFS diagram does not give the double
scattering we would expect. On the one hand, the form
of a Reggeon amplitude in Fig. 22 implies a composite-
ness of the external particles M; which is reflected in
the form factor dependence on 3 ;. It was through just
this dependence that the Rothe cancellation occurred.
This compositeness is also reflected through the ladder
representation of a Reggeon (Fig. 23). On the other
hand, when the Reggeon of Fig. 22 is inserted in an
AFS diagram, the external particles M1,M, are given
elementary particle propagators. We claim it is this
inconsistency that deprives the AFS diagram of a cut.

What must be done is either to remove the M;
dependence from Fig. 22 or to represent the external
particles M; by more realistic propagators. We would
like to discuss the second alternative.

It is our belief, in the spirit of Arnold, HKPR, and
Yang, that physical particles are complicated composite
objects. In a Bethe-Salpeter framework, for example,

F16. 23. Ladder representation
of a Reggeon.

>Vv~<: I+ +Tteee o
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one writes the equation of Fig. 24, where the right-hand
side represents the physical pole of the left-hand side.

In a scattering process of a physical particle, some of
the constituent pieces of matter take part in the
scattering, while the rest stands by as a spectator not
taking part. A single-scattering process that is drawn
as Fig. 25(a) microscopically looks like Fig. 25(b),
where the double lines are the physical particles and
the single lines are their constituents. Similarly, a
double-scattering process that is drawn as Fig. 26(b)
should actually be drawn as Fig. 25(b). The incident
particle at 1 separates into scattering and spectator
constituents. At 2 the constituents unite to form a
physical particle in the intermediate state. At 3 the
same process occurs again, and the physical particle
emerges at 4.

In a field-theory model, the intermediate physical
particle can be represented by the direct-channel
ladders of Fig. 23. We can interpret this as a direct-
channel Reggeon. This suggests Fig. 27(a). From the
results of Sec. II D, we know that Fig. 27(a) does not
have a cut because the sides lack third double-spectral
functions. Physically, this corresponds to an appar-
ent cancellation between the contributions to fds;
X A1(sy,t; t1,t2) that come from even- and odd-signature
physical particles in an exchange-degenerate trajectory.
A direct-channel Reggeon with signature is represented
as in Fig. 27(b). Figure 27(a) becomes replaced by
Fig. 27(c), which has a cut.

In a phenomenological calculation, we replace the
direct-channel amplitudes of Fig. 27(c) by the known
physical particles. Thus, for 7—p — 7%, the contribution

/oo (ng disc4 2(Sz,t; tl,tz)
4

m2

Fi. 24. Bethe-Salpeter re-
resentation of composite physi-
cal particles.

is written as in Fig. 28, where we include all recurrences
of the p and continuum states. A typical term con-

tributes
. grpnEppP .
dsy disc| —— ) < 8ppnppP -
So2— mP2+’l €

P

(a)

Fic. 25. Single scattering of
composite systems.

CLIFFORD RISK 3

! Fic. 26. Double scattering of
< ) composite systems.
2

(b)l

The scattering amplitude becomes

—1i s\t s\ %
A (S,t) o« —'/dK g1r7rp<—:> g'ﬂppg‘n’ﬂ'P<_:> gpPP (3234)
N 1 1

—i [ dtidts W
— t RICEZ)B
o s (_)\)I/ZMP(S’ 1) 1(8 )

(32b)

This is the absorption model.

In HKPR the contributions of the remaining terms
of Fig. 28 are assumed to have the same s, dependence
as Eq. (32b), and are added by multiplying Eq. (32b)

+T

T T (c)

Fie. 27.
ladders. (b) Ladder representation of a direct-channel Reggeon
with signature. (c) Diagram for two-Reggeon exchange with
direct-channel Reggeons with signature.

(a) Two-Reggeon exchange with direct-channel
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F1c. 28. Contributions to the amplitude NV, from the direct-channel
physical states that are contained in 4.

by a factor . It has been shown? that the amplitude for

p+p — ptanything (33a)

proceeding via Pomeranchuk exchange may be as
large as 509, of the elastic amplitude

prp—ptop.
This suggests that A could be about 2.

(33b)

IV. COMPARISON WITH WORK OF GRIBOV et al.

In Ref. 28, Gribov and Migdal studied amplitudes
generated by the exchange of a Regge pole. Their
program is to write a Reggeon field theory that can be
solved by summing Reggeon diagrams to determine the
scattering amplitude. For example, the amplitude in-
volving the Pomeranchuk cut and the PP cut is given by
Fig. 29. This implies for the absorption model that in
addition to the diagrams of Fig. 2 one must consider
effects of /-channel iteractions in Fig. 30. It is well
known that if the diagrams of Fig.30(c) are summed, the
sum has a pole term related to the pole of Fig. 29(a),
and a cut term related to the cut of Fig. 29(b). Is one
double counting by including the pole of Fig. 29(a)
separately? Compelling physical arguments have been
given in HKPR for why this is not so, and why the
physics of elastic absorption is different from the
physics of quantum-number exchange.

Gribov and collaborators?®:? derived the absorption
model from diagrams. We compare their derivation
with ours. For their discussion of Ny, they write the
equation of Fig. 31. They argue in a general fashion that
A1 has no new singularities or complexity from the
presence of the 8;%i. Therefore the discontinuity of 4:
can be calculated as for ordinary amplitudes by cutting
the diagram and replacing the lower amplitude by its
complex conjugate. They also give a proof for elastic
scattering that A>1. Our approach differs from theirs
in that we have attempted to present a specific model
for the two-Reggeon diagram that is based on our

F1G. 29. Graphs in the Reggeon perturbation
theory of Gribov and Migdal.

27] Pum, glm and M. Ross, Phys. Rev. Letters 21, 1778 (1968).
V. N. Gribov and A. A. Migdal, Yadern. Fiz. 8 1002, 1213
(1968) [Sov1et] Nucl. Phys. 8, 583 703 (1969)7].

(1299613) . Kaidalov and B. M. Karnakov Phys. Letters 29B, 372
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(a)
I'16. 30. Graphs that have P
not been included in the deri-
vation of the absorption model.
These graphs have amplitudes P P
A; that have large subenergies. P
(b)
P
P

(c)

physical understanding of compositeness and multiple
scattering, and to derive the absorption formula from
that model.

Kaidalov and Karnakov® have considered the effect
of the form factors on the convergence of the s; integral
for N at infinity.

Ter-Martirosyan® has derived the two-Reggeon cut
from the AFS diagram by using form factors for the
internal Reggeons that are evaluated on the mass
shell. The Rothe cancellation mechanism is removed,
and the contribution from the “elementary” propaga-
tors evaluated near the mass shell gives the expected
form of the cut.

He also considers higher-order cuts (Fig. 32) and
derives the eikonal formula of Arnold. How do his
results affect ours? In a phenomenological absorption
model, one needs to consider only the pP cut. All elastic
multiple scatterings are grouped into a single P term
which is parametrized and fit by experiment [Fig.
33(a) and 33(b)]. The PPp cut [Fig. 33(c)]is found to
be small. Any cut involving Pp and a non-Pomeranchon
[Fig. 33(d)] is small because the branch point is well
below the p pole.

_ V. ASSUMPTIONS, CONCLUSIONS, AND
FUTURE AREAS OF WORK
Assumptions

(a) Physical particles are composite objects, and
when regarded as Reggeons they have definite signature.

_~

= -+ + o oo

T16. 31. Equation Gribov and Migdal use to relate Ny
to direct-channel physical states.

30 K. A. ter-Martirosyan, Yadern. Fiz. 10, 1047 (1969); 10, 1262
(1969) [Soviet J. Nucl. Phys 10, 600 (1970), 10, 715 (1970)]
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F16. 32. s-channel iterations of the Pomeranchon
that give the eikonal.

(b) Multiple scattering of composite systems can be
treated in a Glauber scatterer-spectator approach. (c)
The leading behavior of a Feynman amplitude is given
by the Gribov finite-mass conditions; the second-order
term is down by a factor of 1/s from the leading
behavior.

Conclusions

The amplitude for the diagram of Fig. 13, where 4
are low-energy amplitudes relative to s, is given by
the absorption formula

A(s,) < +i / dK sortorighin@rts N N,

dK
o« —i/—M1<S,t1)M2(S,i2)+' .
N

Future Areas of Work

(a) What is the effect of /-channel iterations? (b)
What is the relation between the absorption-model
approach and the bootstrap approach? (See Ref. 31.)
(c) Is\>1?
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T16. 33. Cuts generated by the p. Diagrams (a) and (b) are used in
the absorption model; (c) and (d) have small contributions.

31 1., Caneschi, Phys. Rev. Letters 23, 254 (1969).
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APPENDIX A: CUTS WITH VENEZIANO
AMPLITUDES

An essential condition for the AFS diagram not to
have a cut is the presence of the form factors. What
happens when the Reggeons are represented as Vene-
ziano amplitudes with no form factors? The amplitude
of Fig. 3 becomes

"sdadBdK
A(s,l) =/————R

([]({2

($,t1)R(s,l2) (A1)

where d; and d, are given by Eq. (23¢) and fy=afBs+K?,
bo=(a+1t/s)(B—1t/s)s+(Q—K)% There are now no
form factors and hence no Gribov finite-mass condition,
but the integral (A1) can be evaluated directly.?*:32:33
We obtain the dominant contribution to (A1) from the
region of integration O(m?/s) <B<1 by evaluating the
pole in & at d;=0,
a=m?*/s+ (m*—K?)/(1—-B)s .

The B integrations can be done to give

(A2)

A(s) = / dK s¢ED+el@0U-1[Ins4-i0(i)]. (A3)

The first term in the brackets comes from O (m?/s)<g
<e and corresponds to dp going off the mass shell (e
is a small finite number). The second term comes from
B~0(m?/s) when d» is on the mass shell, and corre-
sponds to the usual AFS cut term. The asymptotic
behavior of (A3) is then

A(s,8) — s%®O[1440(1/Ins) ], (A4)

where

Je()=2¢()—1.

APPENDIX B: ALTERNATIVE PROOF OF REAL
ANALYTICITY FOR 4,

(AS)

One can also investigate real analyticity of the 4;
amplitudes directly using Sudakov variables. Consider
Eq. (11). We see that if 0<B:<1, we can evaluate the
a; integration directly by closing the 4 contour in the
lower half-plane and picking up the residues from d1,ds.
Writing d;(4) as the value of d; at the pole of d;, and
writing D;(7) =1d:(4), we obtain

'81 1+1(1 ‘BI)M
1(51,t,t1,t2)“//dK/ (],81
ds(1)

x[ !
D,(1)D,(1) 02(3)04(3)}’

3 Veneziano amplitudes in vertex diagrams have been evaluated
by I. S. Gerstein, Kurt Gottfried, and Kerson Huang, Phys. Rev.
Letters 24, 294 (1970)

3 The same technique is used for the vertex diagram. Clifford
Risk, Phys. Rev. D 2, 387 (1970).

(B1)




3 COMPOSITENESS,

where

da(l) = ""aﬂ1+ (Kl"-'K)Z‘—Kl? 5
D5(1) = —[m2—B1(1—By) (m*+a—1) ]
+(1-B) K248 (K:1+Q—K)?,
Dy (3) = —[m?—B1(1—P1) (m*—a) ]+p:1K
+(1-81) (K1—K)*?,
Dy(1) = —[m*—B:1(1—B1) (m*+a—1) [+ (1—L1) K+*
+6:1(K1+Q—K)?,
Dy(3)=—[m>—B1(1—B1) (m*—1) ]
FB1(K1—K+Q)*+ (1—1) (K1—K)* .

We immediately see that at the end points of integra-
tion—pB1=0, 1—the terms D;(j) are strictly negative
and cannot vanish. The term d3(1) can vanish, but its
residue is zero [i.e., d3(1) is a factor of the terms in the

(B2)
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brackets]. Hence we conclude that the terms B1%:
and (1—pB1)% do not introduce any new singularities.
Finally, we observe that A4; is certainly a real
quantity when the D;(j)’s are negative for all 8:
between 0 and 1. This occurs when the terms in brackets
of Eq. (B2) are positive. Since the maximum value of

B1(1—By) is %, this condition is satisfied for

dm2>m*+ta—it, m*—a, mi—t.

This is equivalent to the region
s1<dm?*+-K?, —3m?*<t<0,

which overlaps with the region D, of Fig. 8.

This method can also be applied to the amplitude 4,
of Fig. 17, but it becomes very tedious. The Feynman
parameter method is considerably easier.

siHt> —2m2+K?
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We examine the consequences of the hypothesis that, for some range of energies, the second-order terms in
the perturbation expansion of the Fermi theory are small but non-negligible corrections to the first-order
terms, and responsible for reactions which violate first-order selection rules. We compute matrix elements
through second order in the weak coupling constant G and introduce subtraction constants which are neces-
sary to render the matrix elements finite to this order. From this point of view we consider a number of
weak-interaction problems, including the experimental parameters of u decay, the universality of the u-decay
coupling constant and the Fermi -decay coupling constant, K3 decays, and AS=AQ and AS=2 semi-

leptonic decays.

I. INTRODUCTION

HE phenomenological vector and axial-vector
current-current description of weak interactions

gives a good account! of a large number of experimental
data. Nevertheless, it has been realized for some time
that the phenomenological current-current matrix
elements cannot be exact, because they lead to cross
sections for leptonic reactions which violate the
unitarity limit at very high energy. This suggests that
the phenomenological current-current matrix elements
are the first-order terms in a perturbation expansion of
the .S matrix. If this perturbation expansion is derived
from a current-current interaction Lagrangian, it is
not renormalizable in the conventional perturbation-
theoretic sense. Thus one cannot predict whether higher-
order effects are large or small (there is no small
dimensionless coupling constant). The approach of

* Supported in part by the U. S. Atomic Energy Commission
under Contract No. AT-30-1-3829.

1 See, for example, the detailed description in R. E. Marshak,
Riazuddin, and C. P. Ryan, Theory of Weak Inieractions in
Particle Physics (Wiley-Interscience, New York, 1969).

this paper is based on the empirical observation that
the lowest-order current-current matrix elements do
give a good account of a large number of experimental
data, so the higher-order effects are small at the energies
presently accessible experimentally. This observed
weakness of higher-order effects may occur term by
term in a perturbation expansion, or it may only come
out of a summation of all orders or some other non-
perturbative approach. In this paper we explore the
consequences of the former possibility. We offer no
solution to the fundamental problem of divergences in
a nonrenormalizable theory. We compute matrix
elements through second order in the weak coupling
constant G and introduce subtraction constants which
are necessary to render the matrix elements finite to
this order. We parametrize divergent integrals by
undetermined subtraction constants in subtracted
dispersion relations. We are able to show that some of
these subtraction constants are ‘“universal” (i.e., appear
in the same way in more than one process) ; some others
we guess, on more or less plausible grounds, to be



