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Scaling, Fixed Poles, and Electroproduction Sum Rules*
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Bjorken's scale invariance is imposed on the general form of the Deser-Gilbert-Sudarshan (DGS) repre-
sentation for forward current-hadron scattering amplitudes to deduce features of the scaling limit, the Regge
limit, and the asymptotic limit for fixed total mass of the produced hadrons. Two sum rules are derived,
whose validity essentially asserts that the residue of the J=0 fixed pole in the virtual Compton amplitude
is independent of the mass carried by the currents. One of these relations tests for the presence of operator
Schwinger terms, and the other relates an integral over the total photoproduction cross section to an integral
over a scale function observed in electroproduction. The significance of these ideas for the calculation of
electromagnetic mass differences is also discussed.

I. INTRODUCTION

ITH the assumption of asymptotic scaling, as
suggested by Bjorken' for electroproduction and

neutrino cross sections, and as partially corroborated
by the data, ' we derive sum rules which involve electron
and photon total cross sections. Although it will not be
easy to test these relations experimentally, a check of
their validity would illuminate interesting theoretical
features of current-hadron amplitudes; for example,
(1) the existence of operator Schwinger terms; (2) the
argument (to be developed in this paper) that fixed-
pole residues have a polynomial dependence' on the
squared momentum, q', carried by the current; (3)
the possibility of expressing electromagnetic mass
differences in terms of the electroproduction data,
even in the presence of Axed poles and subtraction'
terms in the Cottingham formula. '

The sum rules given here have been presented'
previously, but with a very brief discussion of their
theoretical origin. This paper provides a full discussion
of the assumptions and reasoning which underlie their
derivation.

The primary mathematical tool for our study is the
DGS" representation, which has proven itself useful' '
for investigating asymptotic features of current-hadron
forward amplitudes. The D GS representation is a
version of the Jost-Lehmann-Dyson (JLD) represen-
tation of causal commutators, restricted to the forward
direction, which incorporates the familiar requirements

8'= —2~ 'ImT,

which follow from the scaling hypothesis'

W —+ F(pp) (0(co(1).
B

(1 2)

(1.3)

Here pi—=q'/2v, and the limit denoted by 8 indicates
that q' and v are going to infinity with a fixed value
of co.

In Sec. II it is shown that (1.3) a,nd the validity of
the DGS representation given in (2.1) imply that

(1) W also scales in the region of timelike q', where
—1&co(.0, and the value of this limit, except for a
sign, is given by the same F as in (1.3),

W ~ F(p)) = —F(—p)) (—l(pp(0) . (1.4)

of causality. Although it has not been derived on as
general grounds as the JLD representation, it has been
shown by Nakanishi7 to hold in every order of pertur-
bation theory.

As a prototype of the two appropriately defined (in
Sec. V) invariant. functions which describe the forward
Compton amplitude, we consider in Secs. II—IV an
amplitude T, even under crossing symmetry,

T(q', -v) =T(q', v),

where q is the momentum of current, p is the momentum
of hadron, and v= —

q p=qppp —g p, and. discuss
general features of W,
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This antisymmetry of F reflects the symmetry of T
in Eq. (1.1), and F wouM be even in pp for an amplitude
odd under crossing.

(2) In the "extreme" timelike region where q'( —2v,

or equivalently ~( —1, W decreases "rapidly" in the
8 limit,

W~0 (p&( —1).

(3) The most general form for T consistent with the
scaling hypothesis (1.3) allows for an exotic behavior
of 8' in the limit, which we shall call the 5 limit, where
v goes to infinity with a fixed hadronic mass, i.e.,
2v —q' 6xed. There can be terms in lV which grow

536



SCALING, F I XE 0 POLES, AN 0 ELECTROP RO DUCT ION ~ ~ ~ 537

polynomially in v,

W —& P v"G„(2v —q')+lim P(or),
8 or ~1

(1.6)

then it follows from scaling that
(4) as or ~ 0, the scale function F(co) in (1.3) has a

Regge form similar to (1.7), such that we can d.efine

(1 8)
a)O

where F(co) vanishes as or —+0. Any of the f could,
however, be zero.

(5) As q' —+ +~, the Regge residues in (1.7) become
simply related to the f~ in (1.8),

(1 9)

(6) Although there may be no term in (1.7) for
which n=n(0) =0 for spacelike q', a term of this kind
could develop for timelike q'. However, there would be
no fo corresponding to such a pole, and the Co would
vanish in the limit described, by (1.9). This phenomenon
is essentially a Axed pole"" at 0.=0 which occurs in
both the real and imaginary parts of T for q'&0, but
only in ReT for q &0. As discussed in Sec. IV, it is

"H. D. I. Abarbanel, M. Goldberger, and S. B. Treiman,
Phys. Rev. Letters 22, 500 (1969); R. A. Brandt, ibid. 22, 1149
(1969); H. Harari, ibid. 22, 1078 (1969); R. A. Brandt, Phys.
Rev. D 1, 2808 (1970).

"See, e.g. , J. B. Bronzan, I. S. Gerstein, B. W. Lee, and F. E.
Low, Phys. Rev. 157, 1448 (1967), and references therein.

"For brevity, throughout this paper we refer to asymptotic
behavior of the type v, sm an integer, as a fixed pole, even though
it may merely signify a moving pole whose trajectory passes
through an integer at t =0.

where the G (s) decrease faster than s™for large z
and do not contribute to scaling. Lif the G were
O(s ), W would be singular at a&+1 in the scale limit. ]
Of course, one normally expects the "form factors"
at fixed hadronic mass to decrease with v (or q'), and
thus it is natural to presume that the G and the limit
&(1) in (1.6) are zero. However, there are amusing
theoretical implications if the G do not vanish. In
particular, the relations in Ref. 1, which express certain
equal-time commutators as integrals over the scale
functions of electroproduction, wouM acquire additional
contributions involving the G . Also, for similar reasons,
the sum rules discussed in this paper would require
modification from their forms given in Ref. 6.

Features of the Regge (R) limit (v ~~, q' fixed) of
the electroproduction cross sections and their relation-
ships with the asymptotic behavior in the 8 limit have
been discussed by various authors. " In Sec. III we
study these questions and show that if 5' has the
asymptotic form in the R limit

(1 7)
a&0

essential for the derivation of our sum rules that
ImT is free of 6xed poles at 0, =0 for all values of q'.

In Sec. IV we discuss a dispersion relation for
T(q', v) obtained by dispersing in q' for fixed v. The
validity of this relation follows trivially from the DGS
representation (for the time-ordered product, not the
retarded commutator). In particular, it involves an
integral of S' over both timelike and spacelike q'.
For spacelike q', W refers to lepton-hadron cross
sections which can be measured experimentally. How-
ever, in the timelike region S' either refers to cross sec-
tions which are unmeasurable in practice for example,
e+e p —+ anything —or for q'( —v'/M' (M'= —p') to
processes for which q'=q' —qo'& —qo' and which there-
fore are unmeasurable in principle. Despite this situa-
tion, we deduce the following conclusions, provided
there is rzo termini (1.7) with n=n(0) =0":

(7) Any part of the dispersion integral contribution
to ReT—that is, excluding the possible contribution of
subtraction terms —which is constant in v in the E
limit (i.e., a J'=0 fixed. pole) can be expressed as an
integral over spacelike q' only, where the integrand is
determined by the asymptotic form of measurable
cross sections.

(8) If the G in (1.6) are zero, the residue of this
fixed pole at J=O in ReT is independent of q'; if the
possible contributions of the G and of subtraction
terms are allowed, the residue is a polynomial in q'.
The sum rule in (5.12) epitomizes points (7) and (8).

The assumption stated above that there is no term
in the Regge limit of W which is constant in v Li.e.,

'3The most general form of the DGS representation for the
amplitude is

T=P(q' )+ 2 2 (q')" d dP
h „(o,P)

m=o n-0 o 1 q +2pv+o. —ze

and differs from (2.1) to the extent that weight functions h ~ with
n&0 are present. The results obtained in Secs. II—IV and stated in
Sec. I are obtained from the restricted form (2.1). The question
may thus arise as to the generality of our conclusions. However,
note that since q'=(q~+2Pv+cr) —(2Pv+o), the general form
given above can be rewritten as in (2.1) if the weight functions
A decrease suQiciently rapidly as o ~~ for the resulting
integrals over o to converge. Thus, if weight functions h „with
n,)0 are required, they must essentially go for large o as o. ~ with
P&1. However, it can be verified that the presence of weight
functions with n&0 and an asymptotic behavior in o charac-
terized by P(1 would lead to violation of the basic scaling
assumption (1.3); they thus need not be considered further. For
P=1 it is possible to satisfy (1.3) and to violate (1.4). However,
for this contradiction to our conclusions to obtain, it is necessary
that in the Regge asymptotic limit (v —+ ~, q2 fixed) W has a part
constant in v, As mentioned prior to conclusion (7) in Sec. I, and
as discussed in Sec. IV, even in the absence of necessary sub-
tractions in q in the DGS representation for T t i,e., even when
(2,1) is validj an essential assumption for the derivation of our
sum rules (5.12) and (5.14) and the conclusions listed as (7) and
(8) is that W has no fixed pole at n =0 Li.e., no term in (1.7) with
n=0). Thus, except for the technical necessity of imposing the
no-fixed-pole assumption earlier in the hierarchy of assumptions
and conclusions presented in Sec. I, the results which would be
obtained from the general DGS form given at the beinning of this
footnote would agree with those obtained from (2.1), as derived
in this paper. Henceforth, in this paper, only the form (2.1) will
be considered.
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no term in (1.7) with n=0] is essentiaV' to the con-
clusions listed as (7) and (8). .lt appears that this
assumption is particular]y powerful technically, and it
would be fortunate if we could construct a convincing
physical argument for its validity. However, except to
say that this assumption appears plausible to us, and
to mention that it is certainly related to (although not
equivalent to) the often stated notion that there are
no fixed poles in purely hadronic (or semihadronic,
e.g. , photoproduction') processes, we must leave this
question to the tastes of our readers.

Our second sum rule, Eq. (5.14), is valid if there are
no operator Schwinger terms in the forward current-
hadron amplitude. Any such terms which are present
necessitate subtractions in the fixed-v dispersion rela-
tions for the amplitude Tr, (defined in Sec. V) and
contribute quadratic divergences to electromagnetic
mass differences.

In the Appendix we illustrate the general discussion
of Secs. II—IV by appealing to two simple models.
The first, a "parton" model, ' satisfies all our assump-
tions and conclusions in an extreme form; the second,
the Born approximation with form factors, satisfies
neither.

II. GENERAL FORM OF S"

In this section we develop the general form of tV
defined in (1.1) and (1.2) which follows from the
assumptions of scaling and the validity of the DGS
representation and deduce from it the conclusions
listed under (1)—(3) in Sec. I.

The DGS representation" for T(q', v) is' '

T(q', v) =P(q', v)

integra. te (2.3) over P; the limits of the resulting
integral over o- are determined by the requirement that
the 8 function can actually vanish. Thus, (2.3) is
evaluated as'"

W(q', v)= —Q v" '
an=0

2v (1—(u) 0
d~ h 0, —(g ——,(2.4)

2v

where the lower limit of the o- integration in (2.4) is

(—1&co& 1) (2.5a,)

dohii(o, —co) =0 (0&a)&1) (2.6)

and thus, if we define

h~(~,p) = &.g~(~—,p),
we can write

(2.7)

tT 0

h~z e, —e ——= —
give f7&

—v ——
2v (/0 2v

+(& ) 'g .y(, ———,(2 &)
2v

where g,ir p= Bg~/i7P, and where

g~(0,P) =g-(",P) =0 (2.9)

= 2v (—1 —cu) (cu & —1) . (2.5b)

We now consider the general form of I~V in the region
0&a&&1, as given by (2.4) and (2.5a), and. impose the
scaling hypothesis (1.3). If M in (2.4) is greater than

unity, it is clear that (1.2) requires the integral over

hqq in (2.4) to vanish in the 8 limit. That is,

m=o

I.(,p)
dP-

+2pv+0 i E

(2.1) By substituting (2.8) into (2.4), we obtain for 0&co& 1

W(q', v) = —v~ 'glair(2v —q', —1)

where, because of (1.1),

h (, P) =(-1)"Ii (-,P), (2 2)
where

31—1
vm —i

2i (1—oi)

do h„, 0, —(u ——, 2.10
2v

and. where P(q', v) is an arbitrary, real polynomial in
q2 and v, which we retain for generality, but which will

play a relatively minor role in the subsequent dis-

cussion. The imaginary part of T comes only from the
ie in the d—enominator of (2.1). Thus, W defined in

(1.2) is

I'V= —2 g v do

dpi'

(O,p)8(q2+2pv+0). (2.3)

The lower limit of 0 in the 0. integration in (2.1), (2.3),
and subsequent formulas, is purely formal; for the
forward Compton amplitude h vanishes for 0&0.(P),
where 0.(P)&0 for —1&P&1.We use the 6 function to

"See, e.g. , J. D. Bjorken and E. A. Paschos, Phys. Rev. 185,
1975 (1969).

(0 &m & M —2) (2.11a.)

=h +—,'g,~,p (m=M —1). (2.11b)

If M —1&1, it follows from (1.3) and (2.10) that the

integral over h~ i' in (2.10) also must vanish in the 8
limit. We could then proceed by analogy with the steps
leading from (2.4) to (2.10), define a g~ i in terms of

~' lt may be puzzling how the Born pole proportional to B(co—1)
is included in (2.4). To understand this feature is one of the
reasons for considering the second example in the Appendix.
The conclusion from this study is that the Born pole is contained
in (2.4) by having an /z singular at the point 0 =0, P = + 1, and it
follows from this singular behavior that many of the steps leading
to (2.13) are illegitimate when 2p~q'=0. However, all our efforts
are directed toward understanding the asymptotic form of lP,
where the elastic form factors have dragged the Born pole into
insignihcance. Therefore, we will consider 2v~q' to always differ
from zero by a 6nite amount and henceforth ignore this point.
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h~ 1', make the decomposition of h,~ 1' analogous to
(2.8), and obtain W for 0&a~& 1 in the form

W= —v
—'g,ir(2v —q', —1)—v" 'g~ i(2v —q', —1)

where

M—2

V
—1

m=O

h "=h '

2v (1—(u)

d0 hm 0~ Gg
~

2.12
2V

(0&m&M —3) (2.12')

IF = Q v"G„(2v —q')
m=1

1

vm —i
m=O

2v (1—(u)

dOAm 0) CO ) 2 13
2v

where ho is the same as ho in (2.1), and hi differs from
hl to the extent that M& 2 in (2.1).However, from the
way in which (2.13) is obtained, it is evident from
(2.2) that

h (o., —P)=(—1) h (o.,P), (2.14)

and thus the form of W in (2.13) written for an arbi-
trary value of M' (1&M&~) in (2.1) differs only by
the presence of the first term on the right-hand side
of (2.13) from the form of IF that is obtained from the
choice M = 1 in (2.1).

How can we understand the scale limit in (1.3) from
the form of W in (2.13)? Since 2v —q'=2v(1 —oi), the
only way the G in (2.13) could contribute to F(co)
would be if F (oi) contained. terms behaving like (co—1)
which are singular as co —+ 1. We will ignore this un-
realistic possibility and require each G (x) to decrease
faster than x ' as x —+. What about the term
involving the integral over ho =ho in (2.13)? Because of
the explicit factor of v ', this term could contribute to
the scale limit only if ho(a, P) went to a constant for
large o; but then the contribution of ho to (2.1) would
be logarithmically divergent. Ke are left, therefore,
with F(a&) coming only from the integral over hi in
(2.13), and by comparing (1.3) and (2.13) we obtain
for 0(a)(1

F(oi)— dO' hl(a co), (2 15)

where we have used (2.14) to effect a sign change.
Let us now ask ourselves what couM prohibit the

validity of all the steps leading from (2.1) to (2.13)
and (2.15) for —1&co&0, provided they are valid for
0&co&1. Because of (2.5a), (2.2), and (2.14), the
answer is nothing, except possibly the occurrence of
singularities in the h (o.,P) at P=0 which would con-

=h '+-,'g~ i,o (m=M —2). (2.12")

Clearly, we could continue in this manner and obtain
W for 0&co&1 in the canonical form (X=M 1)—

W= 2 v-LG-(2v —q') —(—1)"G-(—2v —q') j
1

vm —i
m=o

2v (1—eo)

v(—I—ar)

d0 Am Op 6) ~

2v

The mathematical validity of the steps leading to this
result follows from the validity of the steps leading to
(2.13), which in turn is a consequence of the assumption
of scaling in the region 0&~&1. Since the G do not
contribute to the 8 limit of (2.13), they do not con-
tribute to the 8 limit of (2.16). But both the lower and
upper limit of the o integrations in (2.16) approach
infinity in the 8 limit for —1&co.Thus, since ho ——ho(a, P)
and. ohi(o. ,P) must be less than O(a. ') for large a in
order that (2.1) and (2.15) exist, it: follows that Eq.
(1.5) must be satisfied.

The general form of W given in (2.13) allows the
possibility that the G and the limit F(1) are not zero.
If the G did not vanish, in contrast to our theoretical
prejudices and to the indications of the electroproduc-
tion data, it would require modifications in the relations
of Ref. 1 which express certain equal-time commutators
as integrals over the scale functions of electroproduction.
In eRect, the relations of Ref. 1 are obtained by im-
posing the scaling hypothesis similar to (1.3) on the

tribute in the 8 limit of (2.13) for —1&co&0 but not
for 0(co&1. Of course, these singularities must not
lead to divergences in (2.1) nor can they violate (2.14).
Thus, one might try a term in hi of the form hi(a)5'(P).
However, it is easy to check that a term of this kind
would lead to an asymptotic behavior of W ~y2 in the
R limit, which is sufficiently unrealistic not to require
compjicating our discussion by including its possible
presence. Higher-order derivatives of b(P) in hi would,
of course, give even more violent growth of 8' and can
be ignored. What about a term like ho(a)8(P) in ho?
This possibility will be discussed again in Secs. III
and IV, but at present let us simply observe that for
such a term to contribute in the J3 limit of (2.13), it
would be necessary for ho(o.) to approach a constant
for large a; but then (2.1) would diverge logarithmically.
We conclude, therefore, that (2.13) and (2.15) are as
valid in —1&co(0 as they are in 0(co(1, as stated
under (1) in Sec. I. The fact that F(—o~)= F(o&)—
follows immediately from (2.15) and (2.14).

The general form of W in the S limit (obtained by
letting v go to infinity with a fixed value of 2v —q') is
given in Eq. (1.6). This form clearly follows from (2.13)
and the preceding discussion.

I et us consider the assertion listed under (2) in
Sec. I. For co& —1 the lower limit on the integral in
(2.4) is given by (2.5b). If we repeat the steps leading
from (2.4) to (2.13), but take into account this crucial
change in the lower limit of the 0- integration, we obtain
foI co& —1
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C= lim (q')'"
rI2-+00

W(q', v)

general commutator relations' of the form

(2.17)

Under these circumstances, the Ca(q') in (3.2) is equal
to zero for q')0, whereas because of the e(q'+o) in the
integrand, for q' timelike Cp becomes

and of intercha, nging the orders of performing the limit
and the integration over v. In the notation of (1.3), the
commutator in (2.17) would then be replaced by

1

C~ —22n d~ ~2n—1P(~) (2.18)

However, it is easy to verify that if the G in (2.13)
are not equal to zero, the limit in (2.17) cannot be
taken inside the integral, and the commutator differs
from the expression in (2.18) by integrals over the G .

III. REGGE LIMIT OF S'

In this section we discuss the implications of requiring
the general form of W given in (2.13) to satisfy the
Regge asymptotic behavior illustrated. in Eq. (1.7).
In particular, we wish to deduce the assertions listed
under (4)—(6) in Sec. I.

Let us begin by observing that since the G in (2.13)
do not contribute to the 8 limit of 8", they will also
not contribute to the E limit. Next we note that the
asymptotic form in (1.7) naturally arises from the
integral over hi in (2.13), if hi has parts which go like

. That is, if we write Le(P) =P/~P ~]

h, (-P) = 2 h. (-) IPI-- (P)+h (.,p), (3 1)
rx) 0

where hi(a, p) vanishes as p —+ 0, then the contribution
of hi to (2.13) leads to the asymptotic behavior in
(1.7) wit.h

e(q'+o)
C (q') =2" da. hi (a.)

lq'+ I

(3.2)

Note that the Pomeranchon, with 0,= I, can be ac-
commodated in (3.1), even though hi~P ' at the
origin. This singularity is harmless, because of the
presence of e(P), as one easily checks. Assuming for
the moment that there are no other contributions to
the C, and therefore that (3.2) is in fact correct,
assertions (4) and (5) of Sec. I follow immediately
from (2.15), (3.1), and (3.2). Clearly, if

Cp ———2 da. h, o(a) (q2(0) (3.5)

An identical phenomenon occurs if ha in (2.13) has a
part of the form ha'(a)8(P), since then C, picks up an
additional contribution proportional to ha'( —q').

The possibility of a term in (1.7) with n=0 which
can arise either from an hP satisfying (3.3) or from a
term in ho proportional to 8 (p) is the reason for assertion
(6) in Sec. I. Except for this latter occurrence, Eq. (3.2)
is correct.

ReT(q', v) —+-,'~ P v C.(q') cot-', xn
g a)p

+E &.(q') v'"+&(q') (4 1)
n=1

where C (q') is given in (1.7) and (3.2), and where

It(q') =P(q', 0)

IV. REGGE LIMIT OF ReT; FIXED POLES

A look at the R limit of the real part of the scattering
amplitude T will allow us to study the possible presence
of 6xed poles of the conventional kind, i.e., those that
occur in ReT but not in ImT. Ke are particularly
interested in a pole of this kind at J=O, which corre-
sponds to a term constant in p in the R limit of ReT.

It is evident from (2.1) that T contains poles at
integer values of J if the weight functions h have 5

functions or derivatives of 8 functions at p=0. Also,
as discussed in Sec. III for a pole at J=O, the same
phenomena arise if the h have parts proportional to
e(p) as p —&0; and as far as the asymptotic behavior
in the R limit is concerned, a term like 8(P) in h is
equivalent to one like e(P) in h~i, or to one like

P6(P) in h~n, etc. However, fixed Poles which arise in
this fashion are distinguished by the fact that they
occur in ImT, as well as in ReT—at least for timelike g'.

In this section we explicitly assume that there is no
fixed pole in S' at J=O, that is, that there is no term
in (1.7) with n=0, and show that

da hi (a) =0, (3.3)
+g 2—m d&(&+q2)tn —1G (a)+

dao—P(~) (4.2)

da hP(a) =0. (3 4)

the corresponding f in (1.8) is zero.
Suppose there is a term in (1.7) with an n=0 and

with Co given by (3.2). Suppose also that

The t are polynomials in q' which can be expressed in
terms of P(q', v) and the G, where P(q, v) is the
arbitrary polynomial in (2.1). G is the function in

(2.13) which governs any polynomial growth of W as
v is increased at fixed hadronic mass, and P is the
truncated scale function defined in (1.8). The relation
(4,2) will be exploited in Sec. V to derive sum rules
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involving the electron and photon total cross sections;
these sum rules actually test for the absence of P and the
G„, which amounts t by (4.2)] to saying that the fixed
pole at J=O has a residue independent of q'. For the
moment, however, let us simply note that assertions
(7) and (8) in Sec. I follow from (4.2), since the G
and F are determined completely by the asymptotic
form of 8' in the region of spacelike q', and since the
first two terms on the right-hand side of (4.2) are
polynomials in q'.

From (2.1) it is evident that T satis'fies a dispersion
relation in q' at Axed v with a discontinuity in q',
T(q2+ip, v) =T(q' ic, v)—equal to —2 ImT. Thus, from
(2.1) and (1.2) we can write

ReT(q2, v) =P(q', v)+-', P
2v dq~2

W(q",v), (4.3)

where P(q', v) is the same polynomial in q' and v that
occurs in (2.1).

We are interested in the limit of ReT as v goes to
inanity at 6xed q', and we wish to make use of the forms
for W given in (2.13) for —2v(q (2v and in (2.16)
for q'& —2v. The decompositions of 5" in these expres-
sions are invalid at the two points q2=&2v, as is
suggested by the fact that some kind of singularity must
occur for the expressions in (2.13) and (2.16) to ac-
commodate the Born-pole terms proportional to
8(q2&2v). The second model studied in the Appendix
is included primarily to lend understanding to this
feature and, as shown there, some of the h (o,P) in
(2.1) must have a singular behavior when 0=0 and
P=&1. These two points come into the expressions
in (2.13) and (2.16) only when q2=&2v.

Despite the technical complication associated with
the pOintS q2=&2v, We WiSh tO uSe the fOrmS Of t/t/" in
(2.13) and (2.16) to discuss the R limit of the integral
in (4.3). Suppose we eliminate from the range of inte-
gration in (4.3) the regions 2v —6&q"& 2v and —2v —6
(q'2&2v+6, where 5 is finite, but less than the gap
in q' between the pole at 2v and the beginning of the
inelastic continuum (i.e., 6&222,M+22222 ' for lepton
scattering oR a proton of mass M). Deletion of the first
of these two intervals only eliminates the contributiov
of the Born pole at q'2=2v from (4.3); and this modifi-
cation certainly does not affect the R limit of (4.3)
because the elastic form factors which accompany the
8(q"—2v) in W decrease very rapidly in v. Further,
since W(q2, v) =0 for 2v —6(q2&2v, it is clear from
(2.13) that G (0) =0 for 0&0 &0, and therefore from
(2.16) that elimination of the interval —2v —d, &q'2
& —2v+d from (4.3) only omits the contribution to
(4.3) from the pole at q'2 = —2v, plus possibly an integral
over this interval of a background part of 8' which is
bounded as v goes to in6nity. Because of the denomi-
nator of the integrand in (4.3), this background contri-
bution must vanish in the E. limit, as must also the

lim

—1—(a/2v) d I

W(pp', v),
—QO GO

(4 4)

where by looking at the second term on the right-hand
side of (2.16) and, if necessary, by considering the
discussion of Sec. II, it is clear that

(i) W(pi, v) - 0 (—~ (pi( —1—6/2v)
V ~QO

(ii) Wt —1—6/2v, v] - &const.

Thus, the limit in (4.4) is zero, and we can ignore this
part of (4.3) as v goes to infinity.

Consider next the contributions to (4.3) coming from
the first terms on the right-hand sides of (2.13) and
(2.16) which are applicable, respectively, to the intervals
—2v+A(q'2&2v —6 and q'2& —2v —A. Substituting
these parts of W into (4.3), one obtains

y cO ( 1)m
-' p v" d0G (0) —+ (4.3)

m=1 p —2v —0 —
q 2v+0'+q

and expanding this expression in powers of v ' gives
for the R limit of (4.3)

I'( 2 ) P( 2 )+g g 2p22tc—m

d0 G (0)(0+q2)m —1—2n

pip W'(pi', v), (4.6)
101'—q'/2v

where $222 —1] is either 222 —1 or 222 —2, whichever is
even; and W refers to the part of 8' contained in the
second sum on th.e right-hand side of (2.13)

1

W'(01 v) = —Q v™1

2v (1—ar)

d0A„0, —10——. (4.7)
0 2v

It should be clear that hp lli (4.7) will give no contri-
bution to (4.6) which survives in the E limit unless it

e6ect of the pole provided, of course, that the elastic
form factors decrease suf6ciently rapidly for large
timelike F. Thus, although we will not complicate the
presentation by explicitly including d in all of the
following equations, let us understand that we may
consider the integral in (4.3) to be truncs, ted in this
manner when it is convenient for the discussion.

Consider the contribution to (4.3) which comes from
the interval — &q"(—2v —6, and specihcally con-
sider the part of this contribution which comes from
the second sum on the right-hand side of (2.16). By a
change of variable to pp'=q'2/2v, this contribution to
(4.3) in the R limit is of the form
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and define, as i.n Sec. II,

lV+ ———2x ' ImT+,

IVY ———2m 'ImTg,

the t/t/'+ and Wz, scale in the 8 limit as

(5.6a)

(5.6b)

to be sufficiently implausible to warrant our writing
the sum rule as if they were absent. Thus, if for Tq

the first two terms on the right-hand side of (4.2) are
zero, we obtain by comparing (4.2), (5.7a), and (5.11)
(and setting Q'= 1)

W+ +F+—=F2/v&,
B

(5.7a) 1+
2' A

dv o.,(v) =
de—F~(~), (5.12)

Wz ~Fr, =Fp/2~ I'i. —
B

(5.7b)
where, by analogy with (1.8),

Consider the amplitude T+, defined in (5.5a), at
q'=0. From (5.3) and (5.6a) it follows that ImT+(O, v)
= —(4irn) 'va. ~(v). If we write for T+.(O, v) a dispersion
relation in v, subtracted at v=0 with the help of the
Thomson theorem, we obtain

v 2

T+(O,v) =Q' ——
27P A

"dv'a, (v')
)

v2 v2
(5.8)

where Q is the charge of the target hadron in units of e

(Q=+1 for the proton), and where vo ls the threshold
for photoproduction (equal to Mm +-,'m ').

We are interested in T+(O, v) as v goes to infinity.
If'we assume that ImT+(O, v) has the Regge a,symptotic
form typified by (1.7), we can define

~,(v) =~(v —vo)~. (v) —E C-(0)" ',
u)0

(5 9)

where o,, (v) vanishes faster than v
' ', provided there

is no part of ImT in the high-energy limit characteristic
of a, Regge pole with n=e(0) =0. If we substitute
(5.9) into (5.8) and let v go to infinity, we obtain

ReT+(O,v) —+ P C 'v +X~(0), (5.10)
n)0

with

IC~(0) =Q'+
27t CY

dv u, (v). (5.11)

Our objective is to relate E~(0) to a truncated
electroproduction scale function by using Eq. (4.2).
We can do this, since T+ is an example of the general
amplitude T discussed in Secs. II—IV. First, however,
note that P(q', 0), which occurs on the right-hand side
of (4.2), is evidently zero for the amplitude T+, this
follows from the general DGS form (2.1), since T+
defined in (5.5a) vanishes like v' as v —+ 0, except for
the Born terms. What about the contribution to IC~(0)
coming from the second term on the right-hand side
of (4.2)? As we have discussed in connection with Eq.
(2.13), if any of the G 's did not vanish for the ampli-
tude T+, it would imply that W+ (v'/q')W2 would
grow as v" (I& 1) as v increased with a fixed mass for
the produced hadronic system. Despite the fact that
the present electroproduction data may not un-
equivocally rule out the possibility of small terms of
this kind in the cross sections, we consider their presence

F2 e(1 ——co)F2 —Q f—2~a)'
0.)0

(5.13)

=0 (5.14)

for a c-number Schwinger term. The F2 is given in
(5.13), and Fi is related to Fi as in (1.8).

Unfortunately, the sum rules in (5.12) and (5.14)
cannot easily be tested. with the existing electroproduc-
tion and photoproduction data. The left-hand side of
(5.12) is known to some extent from the work of
Damashek and Gilman, ' who have determined it to

'7 J. D, Bjorken, Phys. Rev. 148, 1467 (1966).
'8 M. Damashek and I'. J. Gilman, Phys. Rev. D 1, 1319 (1970).

If the G for T+ are eventually found to be nonzero,
the second term on the right-hand side of (4.2) can be
measured and inserted as an additional, positive contri-
bution to the right-hand side of (5.12).

The second sum rule is derived similarly, but for the
amplitude Tr, in (5.56). This amplitude, whose imagi-
nary part is proportional to or, from (5.2), vanishes at
q'=0 to insure that T,„ in (5.1) has no unwanted pole.
Thus, the limit in (4.1) and the ICr, (0) in (4.2) must
be zero for Tz(0, v).

We shall also assume for Tl. that the G in the second
term on the right-hand side of (4.2) are zero, recognizing
that the sum rule below can be modified appropriately
in the unlikely event that this assumption is wrong.

Consider the Fr, (0,0) occurring first on the right-hand
side of (4.2) for Tz(0, v). We note from (5.1) that if
either T~ or T2 has a part constant in qo in the limit

g o ~~, q fixed, then To; has a term behaving like

qo
' in this limit. But according to Sjorken, the

equal-time commutator of jo and j; would then con-
tribute to the connected matrix element in (5.1a),
implying that the Schwinger term was a q number
(i.e., an operator). From the DGS representation for
an amplitude T in (2.1), it is evident that the poly-
nomial P must vanish if there is no part of T constant
in qo in the above limit. Thus, if the Schwinger term
is a c number, these polynomials must be zero for the
amplitudes Ti, T2, and (v'/q')T2 and hence also for
Tz defined in (5.5b). The first two terms on the right-
hand side of (4.2) are then zero for T~., and from
(5.7b) the expression in (4.2) becomes
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lie somewhere in the range between 0.12 and I.59,
with a preferred value near unity —which amusingly
is what it is in the absence of strong interactions.
However, essentially nothing can be said about the
numerical value of the right-hand side of (5.12). The
integral is very sensitive to the choice of the f2~ in
(5.13), whose determination depends upon accurate
measurements of the scale function F2 near co=0.
At presently available energies, small values of co

tend to come associated with small q' (q'&1 GeV'),
and it is doubtful that the scale limit has been reached.
Further, in the region of small co the errors introduced
from the radiative corrections tend to become ampli6ed.
Note, however, that if or/or is shown experimentally
to be zero in the scale limit, then the sum rule in (5.14)
is satisfied.

The sum rule in (5.14) is the same as the relation in

Eq. (19a) of Ref. 9, if the cross sections occurring in
the latter are re-expressed in terms of the scale functions
of (5.4). There is an essential difference in the deriva-
tion, however, since in Ref. 9 it was assumed that Tl.
had no 6xed pole at J=0 for any q', whereas here we
have simply imposed the necessary absence of a 6xed
pole in Tr, at q'=0. But from (4.2), with the vanishing
of the I'I. and the G, it is evident that any fixed pole
residue is constant in q', so that its vanishing at q'=0
implies its vanishing everywhere.

The sum rule in (5.14) has also been obtained by
other authors" under the assumptions that the leading
Regge trajectories (those with n) 0) do not contribute
to t/I/L, and that TL, sat, isles an unsubtracted. dispersion
relation in v (or, equivalently, that ReTr, has no fixed
pole at J=O). If these leading trajectories are absent
in Tz, , the truncation of the Fr, typified by (1.8) is
unnecessary, and the integrand of (5.14) becomes
Fq/2' Fi, whi—ch is non-negative. The sum rule in

(5.14) would then imply that Fi (2~) 'F& o——r, equiv-
alently (for finite Fi), that oz/err van. ished in the 8
limit. The algebra-of-fields model, where F~=O" and
the Schwinger term is a c number, "would then require
that both Fj and I'"2 are zero, in clear contradiction to
what is observed.

Sum rules similar to those which we have derived
in this section have been given recently by Leutwyler
and Stern. "

VI. CONCLUSIONS

6M'=
lg

g
2

and noting from (5.1) and (5.5b) that

T„„= 3TI,+2(M'+—u'/q') Tg, (6.2)

we can write a dispersion relation in. v for TI, and T2,
subtracting the one for Tl, at v=0. To determine the
subtraction constant, TL, (q',0), we write

Tr(q', i) =Tr(q', 0)-v'
dp'WI, (q', i ')

(6.3)
V V V

and note that if the fixed pole residue is independent
of q' its vanishing at q'=0 implies that

this follows is that the fixed pole occurs only in the real

part of the amplitude. The validity of this feature
implies that the residue is a polynomial in q', as indi-
cated specifically in Eq. (4.2).' The conclusion that the
polynomial is a constant then follows to the extent
that the erst two q'-dependent terms on the right-hand
side of (4.2) can be shown to be zero. We have argued
that these terms do not contribute for either T+ or Tl, ,
although —as we have discussed —the presence of any
contributions from the G can be determined directly
from the electroproduction data. Because of the feature
listed under (6) in Sec. I, it is not possible to rule out
the presence of a 7=0 fixed pole in the imaginary part
of the invariant Compton amplitudes simply by noting
that there is no term with 0.=0 in the Regge limit of the
photoproduction or electroproduction cross sections.
Experimental verification of this assumption must
await a check on sum rules like (5.12) and (5.14).

It is amusing to note that the q' independence of the
J=O Axed pole residues in the invariant Compton
amplitudes allow one to use a subtracted4 Cottingham
formula' and calculate the electromagnetic mass shifts

only in terms of electroproduction data. For example,

starting with

In addition to the specific points listed in Sec. I and
the two sum rules given in Eqs. (5.12) and (5.14), we

have seen under what conditions a 6xed-pole residue
at J=O in, for example, T+ or Tr, defined in (5.5) is
independent of q'. The essential condition from which

Tr.(q', 0) =—

where the truncated t/l/'L, ,

(&—WI. (q', v'),
V

(6.4)

' R. Jackiw, R. Van Royen, and G. West, Phys. Rev. D 2,
2473 (1970).

'0 C. Callan and D. J. Gross, Phys. Rev. Letters 22, 156(1969).
~ T. D. Lee, S. Weinberg, and B. Zumino, Phys. Rev. Letters

18, 1029 (1967).
"H. Leutwyler and J. Stern, Phys. Letters 31B,458 (1970).

WI. =Wr, —Q Cr. (q')v,
a)0

(6.5)

vanishes as v~~. Note that the sum rule in (5.14)
and the connection between the Regge residues and the
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asymptotic terms in the F(&o) for a&~ 0 given in (1.8)
and (1.9) imply from (6.4) that Tr, (q', 0) vanishes as

q
—+~. This condition eliminates the quadratic diver-

gence in the mass shift. The logarithmically divergent
part comes from the coefficient of g

' in the large q'
limit of the right-hand side of (6.4) and from integrals
over the scale functions FJ. and P2. Reliable esti-
mates of these contributions must await very accurate
measurements of the electroproduction cross sections.
However, a finite answer is consistent with the positive-
ness of the cross sections OL, and o~, whether or not 8'L,
has the leading Regge trajectories.

' dp(-q ppV(p)—+(v ~—v),
(q+pp)'-(pp)'

(A1)

which has the DGS representation in (2.1) with
hi ——P8(0)f(P) and h =0 for m41. This model has the
feature that it scales for all values of q'—that is, it
satisfies (1.3)—(1.5) as equalities. However, it is dificult
to incorporate the Regge behavior (1.7), since the
C (q') as given by (3.2) would diverge at q'=0 for n) 0.

APPENDIX

In this Appendix we give the DGS representation of
Eq. (2.1) for two simple models of T and illustrate
some of the features discussed more generally in the
text.

Parton Model

The parton model" pictures the hadron as composed
of elementary constituents, each of which carries a
fraction p of the hadron momentum p. Further, the
amplitude T is taken to be the sum of the amplitudes
for the free scattering (i.e., the Born approximation)
off the individual partons. Thus, if the momentum
distribution in p weighted with the square of the
current-parton charge is given by a function f(P), the
partonlike model of T would be of the form, for example,

Born Approximation with Form Factors

Here we take T tobe

&=»(q')L(q' —») ' —(q' —2~) 'j,
where the form factor (squared) F satisfies

dm'p(m')

q'+m'

(A2)

(A3)

By substituting (A3) into (A2) and using the Feynman
trick to write the product of the two denominators as
an integral, (A2) can be rewritten as

T=v dm'p(m') dP— —. (A4)
Eq'+2Pi'+m'(1 —IPI )1'

If we introduce an integration over 0. and integrate by
parts, we can manipulate (A4) into the DGS form in
(2.1) with

hi(~,P) =u'(~/1 —IPI)(1—IPI) "(P),
7i =0 (m~1),

(A5)

where the prime indicates a derivative. As discussed in
Sec. IV, the hi in (A5) is well behaved except when
0 =0 and P=&1. The singular behavior at this point
is necessary for the general form of W given in (2.13)
to accommodate the Born poles at q~=+2v. Further,
the fact that hi in (A5) behaves like e(P) for small P
implies that the expansion in (1.7) has a term with
o, =0. This kind of occurrence, which arises here from
the contribution to W from ImF in (A3), is explicitly
assumed not to exist in the derivations of Secs. IV
and V.

Although it is contrary to the spirit which motivated
our assumption as stated in the text, there is the
possibility that the 6xed pole at J=0 arises only from
the Born term as illustrated here. In that event, the
sum rule in Eq. (5.12) would be modified by having the
1 deleted from the left-hand side.


