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D. Matrix E1ements of I"~

From the known action of I"~ on P,
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one easily verifies that Lcompare (A12)]

r=0, 1,...

'Ag+X g
X (r —1 —~ —~')

1+&X' ax~ aZ'~

i~ V'= Pq'- (q'- k)'7/qq',

i'' V = [q" (—q+k)']/qq',

V'V =+2(k+q —q')'/qq',

X9 +1= f(q+q')' —k'7/2qq',

(A15)

(A16)

(A17)

(A18)

E. Kinematics for Bremsstrahlung

From (2.3), (4.3), and (4.4) we find, with k=p —p',

8 8
+ p""4' .

(BX" BV"
(A14)

» = (i/q) (happ+ p'p —l' p'), (A19)

bV=(2/q)(upp+s 0+-,'e p pie p'). (A20)
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Pole dominance in the complex angular momentum plane is used in order to estimate deviations from a
perturbative scheme based on the Gell-Mann —Oakes —Renner model of chiral symmetry breaking. It is
seen that the deviation can be very large, leading to a mass pattern which corresponds to almost-conserved
SU(2) )&SU(2), even when the Hamiltonian originally deviates considerably from this limit.

I. INTRODUCTION

ARIOUS authors have recently emphasized the
fact that the successful application of partial

conservation of axial-vector current (PCAC) and
current algebra reflects an approximate chiral SU(3)
XSU(3) symmetry. ' ' The axial-vector part of the
symmetry is realized via the Goldstone boson mechan-
ism and yields low-energy theorems for massless mesons.

A particularly attractive model for the breaking of
SU(3) XSU(3) is that of Gell-Mann, Oakes, and
Renner (GOR). ' In this model, the energy density has
the following form:

happ(x) =
gpp (x)—pLup (x)+cup (x)],

where epp(x) is SU(3)XSU(3) symmetric and up and
up belong to a, (3,3*)+(3*,3) representation of SU(3)
XSU(3). Specifically, this means that up and up belong

' R. Dashen, Phys. Rev. 183, 1245 (1969).
'R. Dashen and M, %einstein, Phys. Rev. 183, 1261 {1969).
3 M. Gell-Mann, Phys. Rev. 125, 1067 (1962); Physics 1, 63

(1964).
4 Y. Nambu, Phys. Rev. I etters 4, 380 (1960).' M. Gell-Mann, R. J. Oakes, and B. Renner, Phys. Rev. 175,

2195 (1968).

to two nonets I, and v, which satisfy

LF;,u;(x) 7 = if,;pug(x), LF,',u;(x)] = id;, ppp
—(x),

(2)
LF;,v;(x)]=if,; (pp)p, x[F, ,p, (x)]=id,,kuk(x),

where F; (F,'), i = 1, . . . , 8, are the vector (axial-vector)
generators of SU(3)XSU(3) and we use generalized
d;;I, for j, k =0, . . . , 8.

Comparing with the general form allowed by the
requirement of octet breaking of SU(3), the model (1)
consists of (i) neglect of possible (1,8)+(8,1) contribu-
tions, and (ii) the requirement that up and up belong
to the same (3,3*)+(3*,3) representation. (i) and (ii)
are suggested by a quark model where the only chiral

symmetry breaking occurs via the quark masses. 4

Originally c was believed to be small, ' of the order of
the ratio of baryon mass differences to baryon masses
corresponding to the breaking chain 5U(3) XSU(3) —~

SU(3) ~ SU(2). Later on, the success of soft-pion
theorems led to the adoption of Nambu's suggestion'
that the small pion mass (rather than the large nucleon
mass') is the correct measure for chiral SU(2) XSU(2)

'This is consistent with the recent calculations of approxi-
mately 170-MeV contribution to baryon masses by the SU(3)
/SU(3)-breaking Hamiltonian; see J. K. Kim and F. von Hippel,
Phys. Rev. Letters 22, 740 (1969).
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P;,, (~) =(P;I I;(o)
I

f',) =~(~)~,,+P(l)d,;.,

t= (P,—Pp)'
(3)

(b) PCAC, i.e., smooth extrapolation of the above
matrix elements to I'; =0 for x, k, and g mesons.

As a consequence they find not only that

(c)
m~ m~

V2 — —1.25,
mrs'+-', m. '

symmetry breaking. Indeed the more recent determina-
tion~ yields c close to —K2, which is the SU(2) XSU(2)
limit corresponding to zero X and 6' quark masses and
conserved F,l", Ii,51" for i =1, 2, 3.

GOR assumed the following:
(a) Matrix elements of the scalar densities between

states of the pseudoscalar octet sa, tisfy SU(3) relations:

the Hamiltonian in Eq. (1) arises from second-order
current)(current effects, is given in the Appendix.

II. DETERMINATION OF c FROM MASSES
OF PSEUDOSCALAR MESONS

We would like first to prove the formula

m'= —b(&) I
t(NO+CN. ) I g 9')) (7)

for covariantly normalized pseudoscalar meson states
I j(P)),

(j(~)
I
~ 9"))= (2~)'2&0~'(P —P')4.

We can write the Hamiltonian H= J'd'x 800(x) as
H=Hs+eH8, where Hs= J'd xL80p —cup( )x] and EHg
= —ecJ'd'x Ns(x). First-order perturbation theory gives
in general

but also that
(ol v, lE;) =A8g E=Es+hE (i( P) I

H
I
i( P))

=Co+C1F'+C2L4 F I(1+1)] (9)

Z—g ~ (6)

(d) The vacuum is approximately SU(3) invariant
Lin particular, (ol uqlo) =0), so that the SU(3) part of
the symmetry is realized "linearly"].

To justify their approximations, GOR note the
absence of nearby poles in F,;&(/) due to lack of low-

lying 0+ states. This suggests a smooth t behavior and
no significant distortions from the SU(3) limit. As will
be seen in Sec. II, the picture presented by GOR is
essentially a perturbative expansion around the SU(3)
XSU(3) symmetry limit.

As emphasized by GOR, it is only correct to say
that (a)—(d) are mutually consistent when we have (1).

It seems quite diKcult (and certainly beyond the
limited scope of the present paper) to construct alterna-
tive consistent nonperturbative models of chiral sym-
metry breaking' which incorporates the strong-interac-
tion corrections to (a)—(d) above. Our main purpose is
to investigate possible "selective dynamical enhance-
ment" of matrix elements (P'l»(x) —&2ug(x)

I
P) Lthis

involves giving up assumption (a)], so that even for
c relatively far from —V2, i.e., large SU(2)XSU(2)
violation in the "bare Hamiltonian, " a small 7r-meson
mass results. The mechanism for that selective enhance-
ment is the pole-dominance scheme in the complex
angular momentum plane. '

An alternative "derivation" of this dominance
scheme, in the case the SU(3) XSU(3) breaking part of

E=E+~E=(j(-P)IH I j(-P)), (1o)

where now

E+5E= IPI yhE= (IPI'+m')'~'
= IPI+m'i2IPI+ ",

which, upon going back to sharp .normalized states
and the Hamiltonian density, yields Eq. (7):

mj'=2 I PI &E——2 IP
I (j( P) I ~(Ho+~HS) I j(-P))

= —21P
I

d'x d'&' d'&"x*(P )x(P")

where
I i( P)) denotes a wave-packet state normalized

to one, corresponding to an eigenstate of the SU(3)-
symmetric part of the Hamiltonian Hq, and hence it
belongs to a specific SU(3) representation.

In the limit P —+ 0, Eq. (9) reduces to the well-known
Gell-Mann —Okubo (GMO) mass formula, in which case,
as the above argument suggests, linear masses should
in general appear. A notable exception, as emphasized
in Ref. 2, is the case of 0 mesons. Here 0E~E, and
there are difficulties with the limit P —+0, However,
in this case —e(Ho+cH8) with Ho= J'd'x»(x) can be
considered as a perturbation to H =j'd'x 000(x) which
de6nes the zero-mass free meson states. We have then
again, by analogy with relation (9),

' Several variations of the GOR model have been discussed in
the literature. In particular, the possibility of additional spon-
taneous breaking of SU(3) and its possible connection with a
"0+ kappa Goldstone boson" were considered by S. Glashow and
S. steinberg, Phys. Rev. Letters 20, 224 (1968); see also P. R.
Auvil and N. G. Desphande, Phys. Rev. 183, 1463 (1969).
Attempts to relax the need for E-meson PCAC in deriving c were
done by J. Ellis, Nucl. Phys. B13, 153 (1969); L. Gombero6 and
Z. Grossman, Nuovo Cimento (to be published),

« '" "' "(j(P')
I ~(»+~~8) I j(P")&

Doing first the x integration and going to the limit of
an infinitely sharp wave packet, we obtain

mi —(j(P) I

—6(»+esp)
I j(P))= f (A+Bcd8;;) . (11)

In order to obtain, in the SU(2) XSU(2) limit
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(c= —V2), m '=0, we must have'

A = (Q-,')B.
Using the last relation, we have

m. '=e (+32)+—8,
V2

C

rex'=~ (Q-', ) —= 8,2'

(12)

and the sum goes over the nonet of tensor meson
trajectories. A simple motivation used in Ref. 1 for
Eq. (15) is the analog with the pole-dominated form
factor

(0I ~ (0) I~i)(~il~(P')&(P)&
)

where the sum goes over the 0+ particles. In the present
case LEq. (15)], 1/ui(t) plays the role of a propagator,
and Fi'(t), the Reggeon scalar coupling, is the analog of
(0 I N, (0) I

Ei). Furthermore, we assume that the coupling
of the Regge trajectories to the mesons, p, &&(t), and the
Reggeon scalar density couplings 1'&'(t), satisfy the
SU(3) relations"

with the 6rst two relations yielding the GOR result,
Eq. (4).'

The present derivation of Kq. (7) is actually quite
close to the original derivation of GOR which utilized
PCAC, namely,

(i(P ) I
'(uo+cus) I i(P))

—lim (i(P')
I
e(eo+cu8)

I i(P) )

= —2j,z(0 I
y', 5, e(u, +cu,)]Ii(P))

=2f,(OI B„F"Ii(P)) =m, '. (14)

The use of PCAC and the assumption that in the
symmetry limit we have eight massless Goldstone
bosons are essentially equivalent. The present deriva-
tion emphasized the essentially perturbative feature of
the GOR picture.

III. SELECTIVE ENHANCEMENT DUE TO
DOMINANCE IN COMPLEX ANGULAR

MOMENTUM PLANE

In this section we consider possible deviations of
(i(P')

I I;(0) I k(P)) from SU(3) predictions due to
different intercepts of the various nonet Regge trajec-
tories, reflecting t-channel dynamical effects.

Our starting point is the pole approximation in the
complex angular momentum plane, '

where

1'j(t)—( (P')
I (o) Ik(P))=E -7;.(~),

«(~)

i, =k1, . . . ,8, j=0, . . . ,8, t= (P' —P)',

(15)

8 Strictly speaking, we should write A =A p+8A &+, 8
=Bp+881+ ', where 5 =v2+c is the parameter which measures
the deviation from exact SU(2))&SU(2) symmetry, with Ap and
Bp the values for 8 =0 satisfying Ap ——(g-, )8p. In writing relation
(12), we have neglected 8 corrections and therefore assumed
8 (which we set out to determine) to be small, b(&1.

If we neglect mixing between q and y', the GMO mass formula
holds for the octet. In this approximation c can actually be any-
thing between —0.9 and —1.3, but if we a]low mixing, c is neces-
sarily fixed by the first two relations, Eq. (13), to be c——1.25.

y, ip(/) =a(t)bios, g+b(t)d;ii„

r, (t) =T(&)8;,.
(16a)

(16b)

=—(sin8La(/)+ (Q-,')b(t)]8,~+cos8 b(t) ds;i)
a~(&)

and

—(i(P')
I

—sin8u8(0)+cos8up(0) Ik(P))

-(cos8I a(/)+(Q —,')b(t)]b;I, —sin8 b(/) ds;i., ) .
a~ (&)

We will use the canonical "ideal" mixing angle
sin8=+ —'„cos8=+—', . This corresponds to the quark

"It has been suggested by N. Cabibbo, L. Horwitz, and Y.
Ne'eman, Phys. Letters 22, 336 (1968), that the residues at t =0
have a universality pattern and span an algebra. From this point
of view, it would seem quite natural to assume the SU(3) relations
for y;)I, (0).

"See, e.g. , P. D. B. Collins and E. J. Squires, Regge Poles in
Particle Physics, Springer Tracts in 3Eodern Physics (Springer
Verlag, Berlin, 1968), Vol. 45.

Only the validity of Eqs. (16) at t =0 will be necessary
for our discussion. The assumption of factorized Regge
exchange with SU(3)-symmetric couplings and SU(3)
symmetry breaking occurring only in the different
intercepts a;(/) is usually made in Regge-pole analysis
of high-energy meson-baryon scattering, and seems to
be experimentally correct. "Our assumptions (16) are
justified or motivated by this, and will be further
discussed in the Appendix.

Substituting Eq. (10) in Eq. (15), we find

—(i(P) IN, (0) I k(P)) =b(t)d;, J/n;(/), j=1,. . . ,7. (17)

For j=0, 8 there are contributions from the mixed

j and f' trajectories,

I f)= cos8
I
f~)+sin8

I fo),

I
j')= —sin8lf&)+cos8lfo).

Equation (16b) implies that we have to consider also
the corresponding combinations of the I's
—(i(P')

I
cos8 ua(0)+sin8 u, (0) I k(P))
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composition f (1/v2) (%K+(7'6'), f' 4, and is
motivated by the need for the X quark selection rule
to suppress f' +r—rs., the GMO mass formula, and also

by exchange degeneracy and ideal mixing for the
vector nonet. Equation (7) then gives

v2+c
m, '= e —b(0),

&3nr(0)

V2+c
m~ =a- + — b(0),

243nr(0) (+6)nr(0)

(21)

so that we 6nally 6nd"

mrc' 1 1—&2c nr(0)= —+
m ' 2 2+v2c nr. (0)

(22)

In the limit nr (0) =nt (0) [=n&-(0) =nz, (0)],Eq. (22)
reduces to the original analysis of GOR [see Eq. (13)].
The eRect of pole dominance in the complex angular
momentum plane is then only to simultaneously
enhance all octetlike contributions to masses and to
weak and electromagnetic effects. Indeed this fact
motivated' the introduction of this Reggeized version

of the original tadpole mechanism. '
Assuming Eqs. (16), we have, when r=nt(0)/nt. (0)

&1, "selective-enhancement" contributions which in

the quark mnemonic (for nonet couplings) correspond
to the fact that XX quantum numbers are enhanced
relative to XX and (P6', leading to an effective Hamil-
tonian which is closer to the SU(2) XSU(2)-symmetric
limit. In estimating r, we use nr(0)=0 5&0 15, a.valu.e
consistent with high-energy fits [as well as the fits

n, (0), nz, (0) which should be equal to nr(0) by exchange
degeneracy and SU(3)], and with a linear exchange-
degenerate oi ftrajectory. " -There are no direct high-

energy determinations of nr (0). Assuming a linear f'
trajectory with the universal slope n'=0.9—1.0 GeV ', '5

' S. Okubo, Phys. Letters 5, 165 (1968); S, L. Glashow and
R. H. Socolow, Phys. Rev. Letters 15, 329 (1965).

~ We have not considered the q here, because the nonet scheme
for ip;[u;~p&l seems to bevalidonlyfor j, k=1 8 (inparticular,
the g is not ideally mixed).

S. Coleman and S. Glashow, Phys. Rev. 134, 8671 (1964).
"A slope e'=1j2(m, ~—nz, ')~0,9 is implied by the Adler

1—V2c
m = e (n(0)+b(0) [(Q-,') —42ds;;])

3nr. (0)

(v2+c)v2
+ — rt(0)+b(0) (g—,')+ —ds, , (20)

3nr(0) v2

In the nonet scheme" a(0) =0, which in addition to
ideal mixing is necessary in order to ensure yr, (0)=0.
Alternatively, u(0)~a(m ')~0 can be derived by using

Eq. (19) and going, with the aid of PCAC and the
algebra of Eq. (2), to P'=0 in (s (P')

I
Ns —~&Nslrr(P)).

Equation (20) therefore yields

we find nt (0)~0, while nt (0)=0.2 follows from a
linear exchange-degenerate rb f'-trajectory. "Thus r) 2

and large values for r are not excluded. In this case there
is no need for c to be close to —V2 in the "true" SU(3)
XSU(3) symmetry-breaking Hamiltonian. Particularly,

nr. (0) 0

ensures m '~0 for any c, as long as

(1—ac)/(2+v2c) )0.
It is amusing to note that combining (23) with some

results of simple dual models,

nr(0) —nr (0)—mf I SSf
Q

2(mrc-' mr—') 2(mrc' m—') (24)

and the condition" n, (m ')~nr(m ') =-'„gives

(25)

one of the key relations for the validity of Freund's
"mass quantum. ""

So far, we have considered diagonal matrix elements

(i(P) l
soli(P)). The general relations (17) and (19) are

inconsistent with all possible "PCAC constraints"
at I"=0 or I'=0, found by using smoothness and the
commutation relations of Eq. (2). Thus, PCAC for

&~INxlZ) and E-PCAC for (XI' IA& yields f /fz
z,n(m&)/nz""(m&'), but X-PCAC for (E I

u&
I
~r)

and rr-PCAC for (s.ll ls.) yields f„/frc=n&*'(m ')/
nf (m '). Assuming n&

——nz, and linear parallel trajec-
tories, consistency between these relations is achieved
only in the limit ns, =n&"' (and then incidentally
also fir= f ), i.e., the GOR limit with no "selective
enhancement. "

The above inconsistency is indeed expected; the
selective-enhancement mechanism results from "t-
channel dynamics" and the "t channel" is "contracted
out" in the soft-pion limit. Our conclusion that E-PCAC
must be severely violated (to about 40%)/is certainly
not ruled out by experiment.

One might also be tempted to use the explicit t

dependence of Eq. (17), with b(t)=b(0), to predict,
for example, ~30% variation over the region 0(t(mx'
of the matrix element

—(i/V2)[f+(t) (mx' m')+t—f (t)]
= (X(P) I

ci„V„xIrr (P'))
-(E(P)

I

Nx
I

s-(P')) 1/n (t).

While this value is consistent with the experimental
information, it is not clear that it can be trusted. In
particular, a nonexistent "ghost pole" at n(t)=0 is

condition o,, (m ) =-,' for the Veneziano-Lovelace x-7i- scattering.
C. Lovelace, Phys. Rev. Letters 28B, 264 (1968)."K. Kawarabayashi, S. Kitakado, and H. Yabuki, Phys.
Letters 28B, 432 (1969).

1' P. G. 0. Freund, Phys. Rev. Letters 23, 449 (1969).
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predicted by Eq. (17). We know that some kind of
extra "ghost-eliminating factor" must be present in
the residue p,;&(i), in Eq. (15), which would modify
the 5 dependence. The only requirement needed in our
earlier discussion is the specific demand that the
SU(3) relation, Eq. (16), would hold for the residue
at i=0 (including any ghost-eliminating factor).

IV. CONCLUSIONS AND REMARKS

In this paper we have considered a particular non-
perturbative deviation from SU(3))&SU(3) due to a
selective-enhancement mechanism. The enhancement is
related to hadron dynamics insofar as it determines the
various intercepts n, (0) of the Regge trajectories,
corresponding to different gq combinations. The
picture presented is incomplete, since we had to rely
on perturbative arguments in deriving Eq. (7)."

We note that if hadron bindings were such that for
all the leading trajectories n;(0) (0, then our results
hold as long as n, „(0))n x'( 0))n e( 0). In this case we
can have real 0+ particles 10+(a&), 0+(E*), 0+(4), etc.]
on the trajectories with ms+(to)(ms'(&*)(mo'(4). The
couplings of these particles are assumed to obey SU(3).
However the (attractive) potential due to 0+(&u,p) will

be much more effective in binding, due to its longer
range, than 0+(P). Thus, systems to which mainly the
Q couples (i.e., systems with more X's than u's) will

bind more weakly, reproducing again the same general
pattern of masses as above.

In the case cr,)0 (which is presumably the one
realized in nature), the p contribution is enhanced.
However, owing to the sign reversal of the enhancement
factor Ln(0)] ', it corresponds to more repulsion,
leading again, as we saw above, to more massive
"X-quark-containing" states.

Since the simple estimates presented in Sec. III
suggest a rather small nr (0), we cannot rule out the
possibility that ur (0)(0, and that the analog of the
ghost-eliminating factor presented in the p, ~, and E*
trajectories is absent. In this case, we have a low-lying

0+ / ) particle. Such a particle, if it exists, is not expected
to couple strongly, because then it could destroy the
above-mentioned pattern of masses. Indeed, since its
very appearance would be a manifest violation of
SU(3), its coupling should be rather small. Such a
particle would certainly not be the conjectured low-

energy ' o-.'"' Having a ~P composition, it will only
weakly affect low-energy 7r7r dynamics and even if
ms+(Q)) 2m it could be relatively narrow. "

'g An alternative assumption, yielding Eq. (7), is the dominance
scheme for Hpp as suggested in Ref. 1, together with the additional
hypothesis that Bpp the SU(3))&SU(3)-symmetric part, satisfies
(Oooo~i) =0, where i indicates the various nonet trajectories.

"See, e.g., L. Brown and P. Singer, Phys. Rev. Letters 8, 460
(1962).

'p In the case no+(~) (2' it would be almost stable with only
the 2p decay mode, (like the 7Ip). Considerations of P-quark
conservation suggest that a favorable place to look for sgch a
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APPENDIX

The dominance scheme in the complex J plane for
matrix elements (i

~
N(0)

~ j), with u(x) a local operator,
was originally motivated by the N/D method. '

We discuss here an alternative approach which may
be relevant in the case when the SU(3) )&SU(3)-break-
ing Hamiltonian —e(ns+ctss) arises as a second-order
effect due to a more basic J„B„interaction" or several
such interactions. "In this case the perturbation expres-
sion for the ith meson mass would be

8m,' m =const P d4q Dn„„(q)cV„„'(q,qs), (A1)

where D~„„is the propagator for the 8 meson and M„,'
is the virtual forward Compton amplitude for the
scattering of 8 with momentum (q,q') = q on the meson
i with momentum I';.

An equation similar to (A1) is encountered in
calculations of electromagnetic mass diRerences. Its
analysis uses Cottingham's formula" and dispersion
relations in v (v =q p/m =qs for scattering off a massive
target in the target's rest frame) at fixed q'."

In the resulting integral for 6m, the asymptotic
region of "large q" is believed to be important and to
yield the tadpole part. Roughly speaking, we distinguish
two asymptotic regions, the "Regge region" and the
"Bjorken region. "

In the Regge region (v ~~, q'&const) the following
asymptotic expansion is believed to hold for the various
invariant amplitudes appearing in SIq„' ..

Im4'(q' v) =Z Vtn(s')n(s'i(&=0)V~~'~'(0)v""' " (A2)

where the residue was factored into the 88 Reggeon
and I';I', Reggeon couplings, and the sum extends over
the nonet of the leading tensor trajectories.

particle are decays of strange particles. Conceivably, it could be
"masked" by the dominant decay model involving 7I' Lsuch as
E+ —+ ~+7I.P, which may be particularly favorable because the main
process is weaker owing to the AI =-,' selection rule, which does not
aiiect E+ —+ s.++0+(p)g. It should be emphasized, however, that
there is no theoretical support for the existence of such a particle
except for the fact that ay (0)&0 is obtained with a linear f'
trajectory having the universal slope of 0.9—1.

"Such an interaction could be the fifth interaction suggested
by Y. Ne'eman, Phys. Rev. 134, 31355 (1964).

"A connection between the SU(3))&SU(3)-breaking Hamil-
tonian and second-order weak and electromagnetic effects was
conjectured by N. Cabibbo and L. Maiani, Phys. Rev. D 1, 707
(1970); and by R. Gatto, G. Sartori, and M. Tonin, Nuovo
Cimento Letters 1, 1 (1969). t A survey of their approach is con-
tained in R. Gatto, Revista Nuovo Cimento 1, 514 (1969).g For
convenience we will assume that the considered interaction is
mediated by a boson so that we can discuss a Compton-like
amplitude.

23 9/. N. Cottingham, Ann. Phys. {N. Y.) 25, 424 {1963).
"A clear exposition of the various steps involved is given by

M. Ehtzur and H. Harari, Ann. Phys. (N. Y.) 56, 81 (197()),
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The bmP, generated when (A2) is extrapolated over
the whole region v& v&h„,h,

"has the form'

3
(()rite )Regge tadpole p YlPiPi(0)

i 4~ni(0)

Sp,{q)
(„) Sp,(q ) Bp,(q)

+""~ +~ j
Pi Pi

+ ~ e ~ ~ ~

Pi

X dq'D'(q')ya(pt)R(pt) i(0), (A3)

where an invariant amplitude tq' with X=O was con-
sidered and D'(q') depends on DR„„.

Let us compare now (A3) with Eqs. (15) and (16).
Assume, in order to compare with Eq. (7), that

m,'= (P,
~ P a N, (x)

~ P;), (A4)

where
8

a) g CoCPd&& i) ~

a, P=1

and the c arise from the decomposition of J„ into the
currents of the vector octet

8

Jo = Q Copv (A6)

Mpp'(q', v)
q fiXed; qp-+oo

(P, iK(0) iP,), (A7)

where, taking the particular simple case of second-
order weak interaction, "

,'i('. (x) =LQ, (t),D.t (x)j+H.c. (AS)

2~ According to duality this extrapolation will describe the
average resonance contributions also in the lower region."In a simple vector-dominance scheme

ma mp
q &~(q &~(0)—Qcacp d~pm~' —q' mp2 —gm

so that small deviations from the exact SU(3} limit, due to the
mass differences of the vector mesons )in addition to the major
symmetry breaking due to 1/m&(0)j, might be expected. Our
defjnition of the effective u;(x) includes this particular aspect of
SU(3) breaking."J.D. Bjorken, Phys. Rev. 148, 1467 (1966).

The nonet coupling of the currents into the scalar
densities which was assumed in Eqs. (A4) and (A5)
(by extending d,;p to nonets) is motivated by the nonet
coupling of vector and tensor mesons (or trajectories),
by the quark counting implicit in the CHN model, "
and by the duality diagrams. Equation (A3) coincides
then with Eqs. (15) and (16) in the case in which we
identify the square bracket of Eq. (13)with P a,I'i'(0)."

The last stage is, however, not very profound since
the Regge region does not lead naturally to local u, (x).
These arise in the Bjorken region (q fixed, qp~~,
i.e., q' ~~, q'/y' —& 1). The application of the
Bjorken technique'~ together with current algebra
yields the following behavior for M„,'(q, v) (less its
Schwinger terms):

I'rG. 1. Diagrams for virtual brompton scattering which are
considered in the text. The solid line indicates the parton whose
"bare" current interacts with the B„boson. The broken line indi-
cates pseudoscalar-meson exchanges which simulate the hadronic
interactions of the parton.

Q, =J'd'x jP(x) and D, (x)=B„j,„(x) are the charge
and divergence of the Cabibbo current. In the frame-
work of the GOR model, R(x) of Eq. (AS) is readily
expressible in terms of the ti, (x). We believe that the
completely different theoretical approaches used in
the two cases of Bjorken and Regge tadpoles may
reAect to some extent out incomplete understanding.
Indeed, hopefully, the recent extensive theoretical work
on brompton scattering in the "scaling region" of
moderately large q' and v, but arbitrary tp =q'/v, could
close the gap between the point co~0, the Regge region,
and the Bjorken point co= ~.""

A picture which was found useful in describing the
scaling region is the "parton model. "According to this
picture, large q', v inelastic electron-hadron scattering
Lwhich is related via closure to the P„M»'(q', v) j
occurs as scattering from pointlike constituents of the
hadron. '" A heuristic field-theoretical realization of
such a statement" involves the summation of the
diagram of Fig. 1. The photon interacts here with the
bare parton as illustrated by the lack of hadronic
interaction, i.e., exchanges (of mesons in this case)
across the photon vertex.

@le note, however, that the same set of ladder
diagrams wa, s used (in a P' theory though) to motivate
Regge behavior. Ke therefore believe that independ-
ently of the q' carried by the photon, the Regge enhance-
ment will always be there since the diagram below the
broken line in Fig. 1 does depend on t and v only and
not on q'. The Bjorken tadpole is the mass counter-
term which is necessary in order to renormalize the
bare-parton self-energy diagram, which results from
the upper part of the diagram when the 8 loop is
closed. " Thus the Bjorken tadpole, or the effective
local K it leads to, should also be enhanced by the
1/a, (0) factors with no additional violation of 5U(3),
which is essentially our conjecture.

"A heuristic unifying approach based on a quark parton model
was suggested by H. Harari, Phys. Rev. Letters 24, 286 (1970}."The systematic discussion of light-cone singularities of current
commutators /see, e.g., Y. Frishman, Phys. Rev. Letters (to be
published)) could be a useful way to unify all these regions.

'0 This in particular implies no form factors in g' and the absence
of the attendant SU(3} breaking mentioned in Ref. 26.

"See S. D. Drell, D. J. Levy, and T. M. Yan, Phys. Rev.
Letters 22, 744 (1969); Phys. Rev. 18'7, 2159 (1969}."This is exhibited in a particularly clear way in Gatto (Ref. 22),


