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Direct- and Cross-Duality Amplitudes

M. O. TAHA*

Sf' ramare, Trieste, Italy
(Received 2 June 1970)

General considerations based on analyticity and asymptotic behavior lead us to construct two crossing-
symmetric model amplitudes for equal-mass spinless scattering, interpolating imposed asymptotic forms
at low and high energy, One, the direct-duality amplitude, is a generalized Veneziano model. In the other,
Regge-cut exchange is dual to the direct-channel resonances while Regge-pole exchange is dual to t e
direct-channel cut.

I. INTRODUCTION
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'X this paper we consider the construction of ampli-
~ ~ tudes possessing narrow resonances and cuts, and
satisfying crossing symmetry and asymptotic behavior.
We start from general assumptions on the asymptotic
behavior of the scattering amplitude —for an equal-mass
spinless process —at both low and high energies. At low
energy, we consider contributions to the imaginary
part of the amplitude from the elastic unitarity cut—a
square-root branch point —and. from the lowest-lying
resonance (narrow and spinless). It is assumed that
there are no bound-state poles. A high energy, contri-
butions from the leading Regge pole and the leading
Regge cut are considered. These asymptotic forms are
then transformed into corresponding limiting behavior
for the Laplace transform of the imaginary part of the
amplitude. Model expressions for the Laplace transform
interpolating these asymptotics then give model integral
representations for the scattering amplitude.

We find that two simple constructions satisfying
crossing and the imposed asymptotic behavior readily
present themselves. In the erst the amplitude consists
of the sum of two terms; one interpolates the low-energy
resonance behavior and the high-energy Regge-pole
behavior, while the other connects the Regge-cut
asymptotic form to that of the unitarity cut. This
amplitude therefore possesses the usual property of
duality' and introduces a definite term for the associated

cuts. ' We call this construction a "direct-duality
model. " In the second construction the asymptotic
forms at low and high energy are linked crosswise:
Regge pole to low-energy cut and Regge cut to low-

energy resonance. We call the resulting amplitude a
"cross-duality mo¹1." Figure 1 illustrates these
connections.

The complete scattering amplitude M(s, t,u) is as-
sumed to satisfy the unsubtracted Mandelstam repre-
sentation

M (s,t,u) =A (s,t)+3 (u, t)+3 (s,u), (1.1)

where 3 (s,t) is the double-dispersive integral over the
st spectral function. The direct-duality amplitude is
given by

A(s t) =C1 y &'& '(1—y) 1'&—'dy

1 a, (t) 1(1 y)
-—ac(a&——1

dy, (1.2)
~ (1-1.b(1-y) 7)"'

where C1 and C, are arbitrary constants, n(t) is the
leading Regge trajectory, and n, (t) is the branch point
of the leading Regge cut. Both n(t) and n. (t) are real.

first term in (1.2) is of course, the Veneziano

amplitude. ' The second term has square-root branc
points in s and t, and behaves like a Regge cut (with

a square-root branch point) asymptotically. It can be
transformed into integral forms explicitly exhibiting
these cuts Lsee Eqs. (3.10)—(3.13)7. Except for a
slight difference in the integrand of the second term in

(1.2), this amplitude has also been recently suggested

by Matveev, Stoyanov, and Tavkhelidze. 4

The cross-duality amplitude is given by

1 - (t& 1(1ay) ——a(a&—1

A (s,t) =D — dy+(s ~ t), (1.3)
(1—Iny) '"

Hegge-pole

exchange

Hegge- cut

exchange
where D is an arbitrary constant. In the physical region

FIG. 1. Illustration of direct duality (I) and cross duality (II).
* On leave of absence from Department of Physics, University

of Khartoum, Sudan.
'R. Dolen, D. Horn, and C. Schmid, Phys. Rev. 166, 1768

1o68)

3

'These may be called "duality-preserving cuts" in the sense
that Regge cuts are dual to unitarity cuts. An exotic channel
will, however, still have these cuts in contrast to the duality-

reserving cuts of V. Barger and R. J. N. Phillips, Phys. Letters

' G. Veneziano, Nuovo Cimento 57'A, 1395 (1968).
4V. A. Matveev, D. T. Stoyanov, and A. X. Tavkhelidze,

Phys. Letters 323, 61 (1970).
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n(&') =b(t —fa),

~, (t) =o(&,'—&,),
(1 5)

(1.6)

where &!=&!a is the lowest resonance, t=tp (=4m') is
the lowest normal threshold, and a and b are arbitrary
constants. Equation (1.5) says that the lowest reson-
ance lies on the leading Regge-pole trajectory. Equation
(1.6) similarly asserts that the lowest branch point lies
on the trajectory of the leading Regge branch point.
Under the assumption that (1.6) holds for a m.ir cut
generated by double Regge p-pole exchange, one obtains

Both amplitudes give the following form for the dis-
continuity across the Regge cut in the neighborhood of
the branch point:

Ln, (/) —ng"'
n=n, (&') .

I'(n, (t) +1)Ln, (t) +-', g
(1.8)

Away from the branch point the discontinuities are
different, but they both contain the exponential factor
e & '&'& &. The expression (1.8) satisfies the general

' D. Sivers and J. Yellin, LRL Report No. 19418, 1970
(unpublished).' C. Schmid, CERN Report No. TH. 1128, 1969 (unpublished);
R. Oehme, Nucl. Phys. 316, 161 (1970).' R. Jengo, Phys. Letters 283, 606 (1969); see also R. Oehme
(Ref. 6).

of s-channel scattering (s)4'', t(0), the first terni
in (1.3) may be written as

a .(&)
(1.4)

~=oQ S —N

where the coe%cients g (t) are polynomials of order n
in t. This term behaves like a Regge cut as s~~.
The second term in (1.3) has a cut for s)4m' and be-
haves like a Regge pole as s —+~. It is thus clear that
(1.3) provides an analytically plausible description of
the scattering amplitude and may be viewed as an
s-channel or a jt-channel dispersion relation. This model
is therefore manifestly different from an interference
model in which sums of s resonances and 3 resonances—
convergent for all values of s and t—are added'" or one
in which the amplitude completely consists of resonances
plus Regge poles. ' It could, however, be similar to
constructions called by Jengo "generalized interference
models, "whose validity as representations of the scat-
tering amplitude is proved' under rather general
conditions.

The amplitudes in (1.2) and (1.3) appear to be quite
different. They, in fact, have some striking similarities.
Both possess the general structure: (s resonances)

+ (s cut) for s)4m', t(0. In both amplitudes a square-
root branch point in the energy plane is accompanied
by a square-root branch point in the Regge plane. Our
method of construction imposes, in both cases, the
equations

result of Bronzan and Jones' that the discontinuity of
the partial-wave amplitude across the Regge cut is
singular at the branch point and vanishes there.

Although the two models (1.2) and (1.3) are es-
sentially asymptotically equivalent, the scale factor
1/sp in the high-energy term (s/sp) &o is not the same
in both; it is 1/b in the direct-duality model and 1/a
in the cross-duality model. It would have been dificult
to detect this difference experimentally if it were to
appear only asymptotically. This particular difference,
however, is maintained in the couplings of the reson-
ances which are given in terms of n for (1.2) and in
terms of n, for (1.3). It is therefore a measurable
difference exemplified in the ratio of the couplings,
or widths, of adjacent resonances.

In the intermediate energy region the two models are,
of course, quite different. This clearly follows from the
fact that we do not impose any requirements besides
crossing symmetry and asymptotic behavior. Dif-
ferences in the intermediate energies are expected to be
eliminated when unitarity is imposed. It is not in fact
guaranteed that unitarity may be imposed while either
form of duality is rigidly maintained. One observes
that the duality, direct or crossed, that appears in these
amplitudes is dictated by simplicity of construction.
The two forms of duality presented give two very
simple ways for satisfying crossing symmetry. It may
well turn out that when crossing is imposed in such a
special way, unitarity is always broken.

A notable difference between the models (1.2) and
(1.3) is the relative coupling of the pole and cut terms;
it is arbitrary in (1.2) and fixed in (1.3).[Iin this respect,
the cross-duality model is in line with models that gen-
erate Regge cuts by exchanging Regge poles, ' where a
single strength parameter determines the coupling of
both the pole and cut terms. "

The ~sr amplitude in the cross-duality model has now
been constructed and is being studied by Mahanta and
the present author. " It appears that simple construc-
tions of the I=2 amplitude are possible which satisfy
either (1.6), i.e.,

or the condition
n. (4m ') =0,

n. (4m ') =1.

(1.9)

(1.10)

Equation (1.9), as remarked above, is consistent with
a leading pp cut, while (1.10) corresponds to an ampli-
tude with a leading PP cut. The slope of the Pomer-
anchuk trajectory is not predicted by (1.10), so that
such an amplitude is also consistent with a trajectory
of normal slope and nearly unit intercept. ' "

A term with the general structure of (1.3), i.e., of the
form f(n(s),n. (t))+f(&i(t),u. (s)) has previously been

' J. B. Bronzan and C. E. Jones, Phys. Rev. 160, 1494 (1967).' For a review, see J. D. Jackson, Rev. Mod. Phys. 42, 12 {1970).
'o See, e.g., S. Frautsci and B. Margolis, Nuovo Cimento

56A, 1115 (1968)."P. Mahanta and M. O. Taha (unpublished)."J.S. Ball and G. Marchesini, Phys. Rev. 188, 2508 (1969).
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considered by Pinsky" as a unitarity correction to the
Veneziano amplitude. In our work, the cut correction
to Veneziano is given by the second term of (1.2),
while (1.3) provides an alternative representation of the
full amplitude.

We finally remark that several interesting questions
remain to be studied, particularly in connection with
the cross-duality model: the daughter and J-plane
structure, E-point generalizations, and the form of the
x7r amplitude. In both models one would like to intro-
duce complex trajectories, complex Regge branch
points, and resonances on the second sheet. The status
of the Pomeranchuk singularity is also obscure in both
amplitudes. We hope that the introduction of the cross-
duality model enriches the context in which these
questions are discussed.

cV(s,t,u) =A (s,t)+A (u,t)+A (s,u), (2.1)

1 " " p(s', t')
A (s,t) = — ds'dt', —(2.2)„(s'—s)(t' —t)

where so to 4m', s+——tju——=4m', and p(s, t) =p(t, s). We
shall work with the amplitude A(s, t) which is sym-
metric in s and t and possesses right-hand cuts (and
resonance poles) in these variables.

Let F(s,x) be the inverse Laplace transform of
A (s, t) with respec—t to t, so that

c+sX

II. ANALYTICITY AND ASYMPTOTIC
BEHAVIOR

Let M(s, t,u) be the scattering amplitude for a two-
particle —+ two-particle process in which the external
particles are spinless and of equal mass m. Assume that
there are no bound-state poles and that the amplitude
satisfies the Mandelstam representation with no sub-
traction terms, i.e.,

and (2.5) may then be written as

RIld

A(s, t) = e"'f(s,x,a)dx, Ret(to (2.6)

f(s,x,a) =a e "D—(s,t)dt, x&0 (2.7)

]cr (a)

Regge pole: P(s)-
I'(n+1)

it(s)t~~~~i

(t~~), (2.9a)

Regge cut: (t "), (2 9b)
I'(n, +1)(lnt) &

lowest resonance: A 8(t t~)—(t = tri), (2.9c)

B(s)
elastic cut: (t —to) '~' (t = t,) . (2.9d)

r(-;)

Equation (2.7) then determines the following cor-
responding behavior for f(s,x,a):

P(s)
Regge pole: ——x ~~(')+'j

gn(s)
(x~+0), (2.10a)

fp

where

D(s,t) = (1/2mi)h&(s, t) . (2.8)

We now proceed to use Eq. (2.7) to determine the
behavior of f(s,x,a) corresponding to certain asymp-
totic forms assumed for D(s, t). For this purpose we
shall use Abelian theorems on Laplace transforms. '4

In particular, we consider, for large t, contributions to
D(s, t) from a Regge pole u(s) and a Regge cut with
branch point at n, (s). For small t (Ret)~to) we take
the contributions from the neighborhood of the two-
particle square-root branch point at the threshold t= to
and from the neighborhood of the lowest (zero-spin)
resonance at t=ta. For these contributions to D(s,t),
we take the following forms:

F(s,x) =lim-
27I 1

A (s,t) is then given by

e "A(s,t)dt, e-(to. (2.3)
it (s)x—t~c(ai+&1

Regge cut: — —— (x~+0) (2 1pb)a"'& (—lnx) &

lowest resonance: A ae "e, tit) t, (x—& oo ), (2.1pc)
A(s, t) = e*'F(s,x)dx, Ret(to. (2 4)

oo

F(s,x) =-
27l Z tlo

e—'D, (s,t) dt, x)0 (2.5)

where D, (s,t) is the discontinuity of A (s,t) across the
t cut. Introduce the function f(s,x,a) =aF(s,ax), where
a is an arbitrary positive constant. Equations (2.4)

'~ S. Pinsky, Phys. Rev. Letters 22, 677 (1969).

The contour of integration in (2.3) may be transformed
into one around the t cut, giving (on neglecting the
contribution of the semicircle at infinity)

B(s)
elastic cut: —e~"Ox 'i' (x~-~). (2 10d)

gl/2

We remark here that (2.10a) and (2.10b) are valid for
values of s such that Ren (s) ~) 0 and Ren, (s))p
respectively. The integral representations which we
shall construct for the amplitudes will therefore initially
be valid in this domain and are given elsewhere by
analytic continuation. We also note that at the asymp-
totic limit x —+ +0 either (2.10a) or (2.10b) dominates,
depending upon whether the leading singularity in

"D. V. Widder, The I.aplace Transform (Princeton U. P.,
Princeton, N. J., 1946).
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D(s, t) comes from the pole or the cut, i.e., on whether

Ren(s))Ren, (s) or otherwise. In the limit x~~ the
elastic cut always dominates, so that (2.10c) and (2.10d)
are additive with the resonance limit as a correction
term to the cut contribution. Our assumption is that
lp&4,'&3» where t» is the next threshold branch point.

We now eRect a change of variable from x to y =a

Equation (2.6) becomes

A(s, t) = y
" 'g(s, y,a)dy, Ret&tp (2.11)

where g(s,y,a) =f(s, —lny, a). Near x=0, y=1 —x so

that in the forms (2.10a) and (2.10b) it is possible to
make the substitution y = 1—x. The contributions (2.10)
then, respectively, take the following forms for g (s,y, a):

where Ai(s, t) interpolates the asymptotic forms of the
leading Regge pole and of the lowest resonance, while

A2(s, t) similarly links the Regge and threshold. cuts.
This is an extension of the Veneziano model in which
exchanged Regge poles are dual to direct resonances,
whereas exchanged Regge cuts are dual to direct-
channel threshold cuts. This duality we shall hereafter
refer to as "direct duality. " If one uses the second
combination, these links are crossed, and one obtains
an amplitude in which Regge poles dualize unitarity
cuts while Regge cuts dualize direct-channel resonances.
We shall not call this property "interference" but shall
refer to it as "cross duality. " The two cases will now
be treated consecutively.

A. Direct-Duality

P(s)
(f y)

—[a(s)+1[
ga(a)

t)(s)
(1 y)

—[ac(s)+1[
gcrc (~)

(y —& 1, y& 1), (2.12a)

7 2 ) (3 2)

It is immediately clear that in the direct-duality
combination of the terms in (2.12) one needs to impose
the condition

X[—ln(1 —y)) & (y~ 1, y&1), (2.12b)

(y —+ +0), (2.12c)Aayag

B(s)
y at

P (lny)
—3 / 2 (y p +0). (2.12d)

The formalism we have developed so far does not make
any extraneous assumptions. Our next step is to con-
struct a crossing-symmetric amplitude A (s,t) that
satisfies (2.11) and (2.12). Such a construction will

not in general satisfy even two-particle unitarity. It
will, however, have cuts in both the Mandelstam and
the Regge planes and will possess the expected asymp-
totic behavior. In addition, our method of construct-
ing the amplitudes we obtain will impose restrictions on
the parameters, namely, linearity of n(s) and n, (s) and
their relation to tg and tp. Such restrictions cannot be
claimed as proved relations, since this is not an exact
construction and uniqueness is not established. They
give, however, strong hints for the type of connection
one should be looking for among the parameters of the
exact amplitude.

III. AMPLITUDES

A (s,t) =Ai(s, t)+A2(s, t), (3.1)

It is now our intention to write down a function g
satisfying (2.12) from which the amplitude is given by
(2.11).We are not able to find a single function —i.e.,
one that is not naturally split as a sum of two terms—
satisfying the conditions (2.12). A function consisting
of the sum of two terms may, however, easily be con-
structed in two ways that readily suggest themselves.
One may use either the combination (a,c)+(b,d) of the
terms in (2.12) or the combination (a,d)+(b, c). In
the first case the amplitude is written as

which we do. Further, we make use of the arbitrariness
of the positive constant a in (2.11) and (2.12) so as to
construct the amplitude for this model as the sum (3.1)
with

Ai(s, t)= 1(,y)y '" "' '(1—y) " ' y, (33)

n(t)=b(t —t ),
n. (t) =a(t-t,).

(3.5)

(3 6)

Equation (3.5) gives the linearity of the leading tra-
jectory, defines the constant b as its slope, and shows
that R is the spin-zero resonance on this trajectory.
Equation (3.6) similarly gives a linear trajectory for the
leading branch point with the constant u as slope and
shows that the branch point passes throlgh zero at the

elastic threshotd Moreover, .comparison of (3.3) and
(3.4) with the asymptotic forms in (2.21) enables us to
write the contributions (2.9) to D(s, t) in terms of the
constants C» and C2 as

(t—&~), (3.7a)

(t-+~), (3.7b)

(t=t~), (3.7c)

C (bt) ('/I'( +1)
C2(at) '(')/I'(n, +1)(lnt)

(C,/b) b(t —ti,)=—C,b(n(t))

C2 C2
al/2(t t )1/p= [~ (t)]l/2 (t t ) (3 7d)

r(-;)
'

I'(-,')

1
y
—a(t—tp) —1(f y)

—ac(s)—1

A 2(s,t) = C&(s,y) dy, (3.4)
{1 —»[y(1 —y)j)"'

where a, b are arbitrary positive constants and Ci(s,y),
C2(s,y) are functions analytic in the neighborhood of
y=0 and y= 1, and which may also depend upon a and
b. The simplest way to impose crossing is to require
C» ——const, C2 ——const, so that
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1

(S t) (
—a(t, ) 1(—1 y)

—a(c)—lay 1/c

xI'(2) T(n. (t)+1)Ln.(t)+2]1 ac(t)—1(1 —y)-ac(c)—1

=C —dy, (3.9)
1—»Ey(1 —y)))"'

SUPP ClTlen Cplemented by Kqs. (3.5) and (3.6). In (3.8) one
d t l ecognlzes the Venezlano formu

extra additive term {3.9) extends this model to include
cuts ln R IQRnncx'armer that preserves the direct- ua ity
structure of the original amplitude. Using the identity

Kc now pl occcd to dlscUss thc cl oss-duRllty con-
struction.

B. Cross-Duality

As in (3.1), the amplitude is again expressed as the
sum of two terms

3.3) and (3.4) thus take the forms one obtains for the discon
'

yscontinuit of the partial-vrave
ltd a( «) o th

gc 1tc )t"dg= p(tt)tt ", Rett) 0, ReP) 0
A (s,t) = T1(s,t)+T2(s, t), (3.N)

this additional term may be expressed as an integral
over the beta, function:

where T, (T,) links exchanged Regge-pole (Regge-cut)
behavior with direct-channel threshold-cut (resonance)
behavior. Explicitly, we take

s,t) = — e—1X't'B(X—n, (t), t( —n, (s))dt(. (3.10)A2 s,tj=
I'4) o

By further changes of variaMC this integra, l may be
made to look either like a cut contribution on the
Regge plane,

1 —a(t—tc)—1 1 )
—a{s)—1

T1(s t) = D1(s,y) ——dy, (3.17)
(1—lny) ')'

1 —t)(c—c)t)—1(1 y)
—ac(c)—1

Tg(s, t) = D2(s,y)— ——dy. {3.1&)
y

() E1—in{1—y)) &

&c(&)

A 2(s,t) = En. (t) —n]"'
p(l) =

&&(,
-("«)- )8(—n, —n+n, (t) —n,.(s))dn, (3.11)

or like a right-hand unitarity integral

~ c

Crossing symmetry is then imposed by requiring

D1{s,y) =D1(s,y) =D, a const
=3

2»

n(t) =b(t —t)t), n. (t) =a(t —to),

(3.19)

C2u'~'
A2(s, t) = — (s'. —so)"'

I (-,')
'" 'c)J3(a(s' —t), a(s' —s))ds'. (3.12)

One may remark here that the presence of thc ex-

ponentla ampt' l d ping factors in these integrals is a welcome

since these factors emphasize the contributions
of the asymptotic regions at which t e repres
are a plausible approximation while they smoothly

damp distant contributions. In the limit ~s~
—+~,

Kq. (3.11) becomes

A(s, t) =T(s,t)+T(t,s), (3.20)

1y-ac(t)—1(1 y)
—a(c)—1

T(s,t) =D — dy. {3.21)
(1—lny) 't'

l.Cc» we Cnd UP With thC Same ConditlonS RS before.
The basic diBcrences between this model and the pre-
vious onc alc» however» qUl. tc stI"lklng. Onc 61st Qotlccs
th t th is only one over-all multiplicative constantR Cl C

D. In fact» UQdcx' 5 ~ 3 CI'osslng» Tj ~ Tg so tha c
l' d A( t) consists of one term which is then

sylTlIQctI'ized:

«ac

A1(s,t)
I (-', )

En, {t) n]"'— Secondly, one observes that the Regge-pole contribu-
tion as ~t~

—+ ~ is of the form

« '""' 'E—n.(s)] p( —n)dn (3.13) D&(- ())L- .(t)).'), (3.22)

(xc(&) &+&
D(n, t)( s) dn- , —

2i Sinxn
(3.14)

If this is compared, in the nelghborhoo d of the branch

point n, ($j, to t e usuah l form of a Regge-cut contribu-

tion to the amplitude, namely,

where n, (t) is the branch point of the leading cut. This
th t 'thin this model, whenever one sees the

leading Regge pole, one also sees something o e
Re c cut. It a,iso says that the scaling factors

at high energy a,re diferent from those o t e irec-
duality model. The contributions (2.9) to D{s,t) now
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read
D(at) "

I'(n(s) +1)
(t~~ ), (3.23a)

where C (y) is a polynomial in y of order e, one obtains

of s-channel poles when t is below its thresho d:

g-(t)
(t~~), (3.23 )b T(st)=pD(bt) ~'~'~

r(no(s)+1)(lnt) "'
(Djb) S(t t&) =—DS(n(t)) (l = l„), (3.23c)

D D—a'l'(t —l,)'t'= —Ln, (t)]'l' (l =l,). (3.23d)
r(-;) r(-,')

(3.29)

e ~X'l'C (P, —n,.(t))dX, t&lo. (3.30)

The presence of a single over-all constant means that
the Regge cut is as strongly coupled as the Regge po e.
On comparing (3.23a) and (3.23b) one sees that the
dominance of pole over cut, or otherwise, is ess yentiall
determined by the slopes. This is in contrast with mo e
A

'
which C2«Ci gives a weakly coupled cut. One

may indee say, in summ
'

d d
'

ummary that in the cross-duai y
model, resonances, unitarity cuts, Regge poles, an

Regge cuts all stand or fall together.
The representation for T(s,t) in (3.21) may again

be expressed as an integral over theh beta function.
One obtains

D
T(s,t) =-

r(2) g„(t) ~ g (s)+2-
=& n(s) rt =o n(t) —I—&&B(X—n, (t), n(s))D. (—t& to) . (3.24)

The coefficients g„(t) are clearly polynomials of order

o t e egen ref h L dre coefIicients of the residues „—n
nsures theof the beta function B(—n(s), —n(t)) ensures e

same property for the residues g„(t)
We thus see that in the physical region of the s

the sum over all s resonances and behaves like a gg
1,t s has the elasticcut as s~~. The second term, t,s, as

cut in s and behaves like a Regge pole as s~~.
course only one of these asymptotic forms is dominant)

at high energy. For 3-channel scattering, en the two terms
are interchanged. One must, however, emphasize that

in the form

The representations which manifes y
~ ~

tl exhibit the cuts
in the energy and angular momentum planeanes at fixed
s are

Da»2
T(s,l) = —— (l' —t,) 't'

I'(2)

Xe "" "'B(a(t' l), —n(s))dl' (t&t~)—

and

ere(t)

(3.25)

0'c(t)D
T(s,t)

r($)—
Ln, (t) n]"'—

Xe ' &'& 'r( —n)L —n(S)]- dn, (3.27)

which, on comparison with (3.14), again produces
(3.15) in the proximity of the branch point.

Using the identity

- C.(y)
B(x,y) = Q —,x)0

n=O @+i'
(3.28)

Ln. (t) —n]"'

Xe ' "' 'B(—n, —n(s))dn. (3.26)

Taking ~s
~

~ ~, one obtains from (3.26)

since this is not convergent in either of the two regions
of scattering. This is in contrast with the typica in er-
ference mo e in w icd 1

' h' h the sum over s poles converges
for all t.' It may also be remarked that the amp itu e
does not consist of the sum (3.29) plus an entire func-
tion and that (3.29) does not possess Regge-pole be-
havior as s —+~.

We finally remark that in the cross-duality model
(3.20) and (3.21) it appears that one may introduce an
imaginary part in the trajectory function n(s), keeping

polynomia s in o.,'
1

'
&~3~&The dynamical significance of

r notcomp ex po es1 1 but real branch points is, however, no
f theclear to me. This question and the structure o e

daughters in the model require further investigation.

IV. CONDITION n, (to) =0

In this section we briefly discuss the condition

n (4m') =0, (4.1)

under the assumption that the Regge cut is generated by
the exchange of two linear Regge trajectories. If the
pole trajectories are

n, (t)=n, (0)+n t, i=1, 2
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(4 3)n.(t) =ni(0)+us(0) —1+
ni +n2

then the branch point u, (t) of the generated cut satisfies Equations (4.10)—(4.12) then give

A1 Q2 B(s)=a't'g(to), (4.13)

(4.14)

The condition (4.1) then implies that

ui(0)+no(0) = 1 —4m'
ni +uo

(4.4)

This last equation is condition (4.1).
If, besides (4.7), we also had

a(t) =b(t —ta)+n(tg),

If the mass m is assumed small, this equation gives

- (o)+-.(o)=1, (4.5)

which clearly excludes a cut generated by double
Pomeranchuk exchange (PP cut). If the leading cut is a
PE cut, where R is another trajectory, then na(0)=0.
This trajectory E cannot, however, be the leading tra-
jectory of the system, since the leading trajectory passes
through zero at the (mass)' of the lowest resonance
which is above threshold.

Now the scattering process we have been discussing
is an idealized one in which the particles and resonance
do not possess any substantial structure. The signi6-
cance of condition (4.1), if any, lies therefore not in its
particular form for this process but in its general. in-

dication of "quantization rules" of this type to be looked
for on more general grounds. In both the direct- and
cross-duahty models discussed, the condition (4.1) was
imposed as a consistency requirement enabling the
amplitudes to satisfy crossing symmetry in the special
way imposed as well as the asymptotic forms of Eqs.
(2.12). To see how this condition emerges, take the
cross-duality amplitude (3.16)—(3.18) with y =—', . Cross-
1ng 1s imposed by I'cqu1I'1ng

n, (4m ') =0 (4.16)

u. (4m ')=1 (4.17)

is satisfied. One notes that (4.16) is weH satisfied by a

pp cut, in which case it gives

up(0) =
2 mo np

a condition equivalent to"
(4.18)

we would have similarly concluded from (4.9) and
(2.12) that

n(t&) =O (4»)
as a consistency condition on the low-energy reson-
ance and Regge-pole behavior. T'hus condition (4.1)
appears as a restriction that guarantees the consistency
of our assumptions on the energy-plane and Regge-
plane cuts. Whether such conditions are required in

general, i.e., when. crossing 1s not ncccssallly lInposcd
in a special way, is not clear.

The cross-duaHty amplitude for ~x scattering is
presently being investigated by Mahanta and the
present author. " It appears that constructions of the
I=2 mx amplitude are possible in which either

Ti(s, t) =To(t,s). (4 6) Qp Pter =2 o (4.19)

I.et n. (t) be given by

n, (t) =a(t to)+P, - (4 7)

where P is an arbitrary constant. By a change of vari-
able on (3.18), Eq. (4.6) then becomes ni (0) =1 .m' ~'n—, (4.2o)

Condition (4.17), on the other hand, is well satisfied

by a I'P cut, i.e., by the assumption that the leading
cut is generated by double Pomeranchuk exchange. It
then gives

so that the Pomeranchuk trajectory is given by

ui (t)= l.+ni'(t —m„'). (4.21)

In particular, the condition corresponding to (4.19) is,
ln this case,

1 —e{t—&0)—1« ~—b(a—8Z)—1

Di(s,y)— ——— —(ty
(1—lny)'"

1 -o (o—oo )—i—S& 1 p, )
—o (oos ) i-—

D2(t, 1—y)
— — dy. (4.8)

(1—lny) '~'

Di(sii, 1) =lim D2(t, 1 —y),y~l
(4.9)

Both sides of this equation have cuts in t and poles in

s. Analytic comparison of the two sides gives

0&up'/np'& 1, (4.23)

replacing the usual statement ni (0)=1.If one imposes
the inequaHty

Di(s,O) =limy SDo(to, 1—y).
y~o

But Eqs. (2.12b) and (2.12d), respectively, require
This ylclds

(4.11)

(412)

D2(s, 1)= ot (s)/b

Di(s,o) =B(s)/a'".
0.98&oui (0) &1,

15 C LO&CI&CC Ph~S I &gge1'8 28+ 2g4 I 1968).

(4 10) then Eqs. (4.19) and (4.20) give

0&2(m,'/m. ' 1)$1 ni—(0)j&—1. (4.24)

(4.25)



DIRECT - A N D C I' 0 S S - D U A I. I T V A M I' I. I T U D E S 505

which is a remarkable limitation on the range of varia-
tion of n~(0) that also avoids the known analytic
difhculties connected with an identically unit intercept
for the Pomeranchuk trajectory. " '

The trajectory of the leading branch point in an
amplitude satisfying (4.16) is given by

t —4m '
~ (~) =5~ ("—4~ ') = . (4.26)

4(m '—m. ')

For the amplitude satisfying (4.17), the leading branch-

"G. E. Hite, Rev. Mod. Phys. 41, 669 (1969).
J. L. Gervais and F. J. Yndurain, Phys. Rev. Letters 20, 27

(1968).
' Y. Srivastava, Phys. Rev. Letters 19, 47 (1967).
' R. J. Rivers, Nuovo Cimento 58A, 100 (1968).

point trajectory is

a, ([)=-,'n~'(t —4m ')+1, (4.27)

where the slope is, in this case, undetermined since

we do not know any particles on the Pomeranchuk

trajectory.
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Method of Extending the Blankenbecler-Sugar-Logunov-Tavkhelidze
Approximation to the Bethe-Salyeter Etluation*t
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We propose a systematic method of obtaining accurate solutions to the Bethe-Salpeter (BS) equation,
starting with the Blankenbecler-Sugar-Logunov-Tavkhelidze (BSLT) equation as the lowest-order approxi-
mation. For the equal-mass scattering problem, where the difference between the BS and the BSLT ampli-
tudes is the most marked, the first-order correction we evaluate gives good agreement with the BSamplitude.
We have also applied the method to the unequal-mass scattering problem, when the mass ratio is the
pion-nucleon mass ratio. Here we find that the BSLT amplitude itself is a good approximation to the BS
amplitude.

I. INTRODUCTION
' 'N recent years, several authors have worked on the
~ - problem of obtaining solutions to the Bethe-Salpeter
(BS) equation' for low-energy scattering problems. '
However, it still requires a considerable amount of labor
and computer time to obtain accurate numerical solu-
tions to the BS equation, and it is desirable to find more
efficient methods.

A convenient relativistic approximation to the BS

* Part of this work has been included in the thesis submitted by
T. C. Chen to Brown University, in partial fulfillment of the re-
quirements of the Ph. D. degree.

f Work supported in part by the U. S. Atomic Energy Commis-
sion (Report No. NYO-2262TA-231).

'H. A. Bethe and E. Salpeter, Phys. Rev. 84, 1232 (1951);
M. Gell-Mann and F. E. Low, ibid. 84, 350 (1951).

~ C. Schwartz and C. Zemach, Phys, Rev. 141, 1454 (1966);
R. W. Haymaker, ibid. 165, 1790 (1968);K. Rothe, ibid. 1'TO, 1548
(1968).

equation was proposed by Blankenbecler and Sugar' and

by Logunov and Tavkhelidze4; we shall refer to their
equation as the Blankenbecler-Sugar-Logunov- Tavkhe-
lidze (BSLT) approximation or equation. The advs, n-

tage of the BSLT equation is that it reduces the
dimension of the integral equation to be solved. Instead
of the two-dimensional integral equation for the BS
partial-wave amplitude, one now deals with a one-

dimensional integral equation for the BSLT partial-
wave amplitude. This enables accurate numerical solu-

tions to be obtained with far greater ease.
However, on solving the BS and the BSLT equations

for the equal-mass scattering problem, one finds that
except for low energies and small interaction strengths,

3 R. Blankenbecler and R. Sugar, Phys. Rev. 142, 1051 (1966).
4A. A. Logunov and A. N. Tavkhelidze, Nuovo Cimento 29,

380 (1963).


