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The process q —+ 3~ is known to violate a simple prediction of partial conservation of axial-vector current.
In many models, q —+ 3m proceeds through a fermion loop with electromagnetic corrections. The 6rst radi. -
ative corrections to fermion loops give rise to divergent double-loop integrals with forms like J'd rd kj
Pr' —m'g'fir —k)' —m'g'. As with single linearly divergent integrsis, when s meaning is ascribed to them
it may not always be possible to shift the origin of integration without changing the value of these integrals.
Such integrals appear when one tries to check, in perturbation theory, Ward identities and low-energy
theorems which follow from the formal manipulation of the equations of motions. They can cause anomalies
similar to the one in the axial-vector-current two-photon vertex. We study some applications to the gvro.

vertex, to the process g ~ 3~, and to the corrections of order a' to x' ~ 2y. No anomalies which can be
related to q decay are discovered,

I. INTRODUCTION

I ~HE anomalous behavior of some matrix elements
of the divergence of the neutral axial-vector

current and the Dard identities in which they occur
have bccn, I'ccclvm. g R good deal of attention. It hRS

become apparent that, because of the singular behavior
of currents built out of fermion helds, the equations of
motion which foHow from the formal manipulations of
I.agrangian held theory cannot always be maintained
ill pcr turbatloIl theory.

Furthermore, this anomalous behavior is not just
a formal curiosity associated with the inhnities in the
perturbation expansion. It enables one to reconcile, at
least qualitatively, the observed rate of xo decay with
thc hypothesis of pRI'tlRlly conserved axlRl-vector

~ Work supported in part through funds provided by the U. S.
Atomic Energy Commission under Contract No. AT(30-1)2098,
Rnd ln pRx't bv The NRtlonal Sclcncc Foundation Rnd by the
Alfred P. Sloan Foundation.' The impossibiTity of maintaining gauge invariance and PCAC
ln pcrtux'ba, tlon thcox'y was rioted by J. S. Bell and R. Jackiw~
Nuovo Cimento 60A, 47 (1969).

'The puzzle of Ref. 1 was traced to a linearly divergent
Feynman graph, and a correction to PCAC proposed, by S. L.
Adler, Phys. Rev. 1VV, 2426 (1969).' The result of Ref. 2 was derived from a split-point de6nition
of the axial-vector current by C. R. Hagen, Phys. Rev. 1/'7, 2622
(1969). It had been obtained earlier in another context by J.
Schwinger, ibid. 82, 664 (1951).

4 The split-point method was discussed in detail by R. Jackiw
and K. Johnson, Phys. Rev. 182, 1459 (1969).

' S. L. Adler and %.A, Bardcen, Phys. Rev. 182, 1517 (1969).
This paper elaborates on Ref. 2. In Sec. VI we corroborate their
result that a matrix element of the anomalous correction to the
divergence of the axial-vector current is known to all orders.

6 S. L. Adler and D. G. Boulware, Phys. Rev. 184, 1"j40 (1969).
~ I. S. Gerstein and R. Jackiw, Phys. Rev. 181, 1955 (1969).

This work calculates one-loop contributions to Ward identities,
and this is dosely related to our paper.

s Sce also R. A. Brandt, Phys. Rev. 180, 1490 (1969); K. G.
Wilson, ibid. 181, 1909 (1969); W. A. Bardeen, ibid, 184, 1848
(1969);R. W. Brown, C. C. Shih, and B.L. Young, ibid. 186, 1491
(1969); C. W. Kim, W.- W. Rapko, and A. Sato, ibid. 187, 1966
(1969); W. Bardeen, in Proceedings of the Trieste Conference on
RcDolmalizatlon Theory, 1969 (ullpubllshcd).
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current (PCAC). ' ' The large 7rs —+ 27 rate had seemed
to be a glaring failure of current algebra and PCAC, '

Another possible failure is the discrepancy between
thc nonzclo value of thc Dalltz-plot extrapolation to
zero xo four-momentum in q

—+ x+m ~' and. the zero
prediction of the "naive" theory. '0" Our principal
purpose here is to investigate the matrix elements which
contribute to q ~3m Rnd similar processes, to see
whether or not they too have an anomalous behavior
in terms of the predictions of the formal equations. %c
show' that there do indeed exist forxnally divergent
terms in the perturbation expressions for the axial-
vcctoI' Ward identity, which arc anomalous ln thc
sense that they cannot be absorbed into renormalization
c6ects. They Rll have the form of eight-dimensional
lntcglRls, Rnd would bc zcI'o lf arbitrary shifts lIl thc
origin of integration —legal for convergent integrals-
were permissible. Thus their existence, as with anom-
alies previously studied, depends on the possibility
of performing formal manipulations on singular
cxprcsslons.

In the model we study here, careful calculation shows
that such an anomalous term is really absent in the

g ~ 3%' amphtudc) glvcn to lowest order by a foUI'-

vertex fermion loop, although this result seems to de-
pend on a detail of the renormalization prescription.
In a more interesting version, we study q ~ xo, which
has a three-vertex fermion loop. (o is a scalar meson,
and the subsequent decay 0 —+2m relates this calcula-
tion to the physical ri —+ 3' process. ) The loop integra-
tion is more singular, and the value of the anomalous
term depends upon the method used to give meaning
to a divergent integral. As might be expected, electro-
magnetic gauge invariance a]so depends on the value of

'D. G. Sutherland, Nucl. Phys. 82, 433 (1967). Sutherland's
proof is incomplete, but the result is correct.

'o D. G. Sutherland, Phys. Letters 23, 384 (1966).
"For a discussion, see S. L, Adler and R. F. Dashen, CNrrerlf

Algebras (Benjamin, New York, 1968), p. 137.
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I'IG. i.. Lowest-order graphs for x'0 decay, aM1 the
re, ted axial-vector, two-photon vertex'.

d4~ s-""'+'" *W'+~ 'j(2v
I A(~) I &.

k»k»CI'& ~&"SF{(kl+ks)').

Physical pion decay is obtained from F(m, '). Equation
(].1) Implies (the argument is not completely trivia&)

'2 J. Steinberger, Phys. Rev. 'N, 1180 4,'1949).
g M. GeH-Mann and M. &vy, Nuovo Cimento 16, 705 I'1960).

the same integral, and requiring gauge invariance
assigns it exactly the value needed to satisfy the formal
axla, l-vector Ward ldcntlty.

Our pllnclpal lcsult, ls thcxcfolc that wc can 6Dd Do
anomalies to explain the observed rate of g decay (with-
ollt vlolatlllg clcc'tlollla, gIlctlc gauge 1IlvaI'1RIlcc}. It ls
not clear whether their absence is a,ccidental to the
process we study.

Before coming to the question of g decay it is in-
structivc to review briefly 'the status of mo decay. Thc
history of the anomaly related to vr decay is this: I et
k1 and k2 be the momenta of the 6nal photons, and c('}
and e&" their polarization vectors. The most general
kinematically allowed form of the amplitude is
c „pk~&'k2»e&'&~a{')&F. Many years ago, Steinberger"
computed Ii in Born approximation from the graphs of
Fig. 1 and obtained F=(n/Ir)(g/rrI), where rm is the
proton mass and g is the m.Ã coupling constant. At the
time neither g nor the x' decay ra.te were well known,
but recent measurements show that Steinber ger's
formula gives the right order of magnitude. ' One must
assume that the PCAC formula,

a„f5,3&= rrI. 'F„ys(x),

where j5,3I' is the neutral isovector axial-vector current
and pa is the x.o Geld, is exact in the presence of electro-
magnetism even to order n. This assumption goes
slightly bcyoDd thc ollglIlal PCAC, which appllcd to
strong interactions alone. However, it is easy to see that
in the 0. model, "for example, where Eq. (1.1) holds as
an equation of motion in the absence of electromag-
netisrn, as a formal equation of the theory Eq. (1.1)
still holds when photons are added with minimal

coupllDg.
To apply PCAC, one considers the oR-mass-shell

amplitude

Lj~,a'(*),j-'(Y)j~(z' —y') =o (1.3)

which follow from formal manipulation of the currents
in simple models, are indeed true. An error of order e
or n in either (1.3) or (1.1) would invalidate the general
1csult, which ls tllat F(0) ls zclo to oldcl. G and tllclcforc
provided that Ii is indeed a smooth function, that the
x' decay rate should be much smaHer than observed.
LClearly, violations of (1.3) and (1.1) cannot be
independent. ]

Bell and Jackiw' were the first to point out that Eq.
(1.1) cannot be maintained in perturbation theory
except at the expense of electromagnetic gauge in-
variance. The contradiction can be traced to the
singular behavior of the term in j 1 3"(x) which is bilinear
in the fermion 6eld. '' In graphical language, it is
sufhcient to consider the triangle graphs of Fig. j., with
the pseudoscalar vertex replaced by y&y~. The graphs
are then linearly divergent, and contribute a violation
of (1.1}of the form

d'ref(r) f(r+k +k—)j. (1 4)

Such a difference would be zero if the integral were con-
vclgcnt or cvcD logarlthmlcally divergent) but 1D this
case it is ambiguous. Thus neither gauge invariance nor
PCAC is satisGed automatically. If expression (1.4)
is assigned the value required by gauge invariance, the
triangle graph has a Axed value which can be described
by2—4

B„j5,1"=rn IF~$1+(n/47r)e„, SF""Fms (1 5)

instead of (1.1).
Can Eq. (1.5) be used to explain the electromagnetic

decay g ~ 3Ir7 It follows from (1.1) that this amplitude
vanishes when a 6nal x has zero 4-momentum, a result
which seems clearly violated. by experiment. "The ob-
served. q width of about 2.6&10 ' MCV is clearly of
order 0,' and the decay distribution shows no tendency
to vanish at zero 4-momentum of the mo. Therefore,
experimentally one knows that there must bc a correc-
tion to Eq. (1.1) of order n.

Tllc col rectloll (1.5) wlH 110't do tllc job, llowcvcl

that F(0)=0. The argument can be generalized to the
~oyy vertex where the photons are also oR the mass
shell. The amplitude is then proportional to

~(l &Lj.-"(y)j-"(z)43(*)jl).
Using Eq. (1.1) and the identity

8
=—(I T'I:j-"'(x)j-"(s)j . "(~)jl), (1 2)

Bx"

one learns that F is e times a presumably smooth func-
tion which vanishes when ki+k2=0.

The identity (1.2) follows provided that the equal-
time commutation relations
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d4rd4k[f(r, k) f(r 0, —k)]—. — (1.8)

The variable r is the fermion loop momentum, while
k is the momentum of an internal photon. The intcgrals
are convergent if the r integration is done 6rst for 6xed
k, and logarithmically divergent in t| for 6xed r. For
single four-dimensional integrals, convergence or
logal lthmic divergence ls R sufficicnt condition to pcHllit
the variable shifts necessary to prove that (1.8) is zero.
However, the integrals of the form (1.8) which occur
are not unconditionally convergent or even logarithmi-
cally divergent in eight-dimensional. space. They have
denominators of the general form

I (r —k)' —rII'j which,
even after performing the Wick rotation on ro and ko,
do not get large in every direction.

Ke find that if one introduces Lorentz-invariant cut-
ORS or regulators to make the integrals finite, the value
of the anomalous term depends on the cutoff in a
complicated way. Gauge invariance, however, requires
that an integral identical to the one occurring in the
anomalous term be zero. Therefore, if the ambiguous
integral has a unique meaning whenever it occurs, we
conclude that it must be zero. Obviously, this result is
not quite as clean as the analogous x' —+ 2p anomaly.

In Sec. V we study the process q
—+3~' without an

intermediate 0. The most divergent contribution comes
'4 See Ref. 11,p. 24.

duc to its tcnsol structure. This cRD cRslly bc sccD by
reducing out the 6nal Irs and using Eq. (1.5).The ampli-
tude q —+ 3x is proportional to

d4x expL —iP.'x]( '+rrr. ')
I (24r

I rl„js,s (x)Fm~
—(n/4w)e„„.&ps"(x)P e(z)

I q)j. (1.6)

At p,o=0, the 6rst term vanishes as usual. To
evaluate the second term, insert a complete set of states
between the two I"'s. Only states with one photon can
contribute to order o,, but these give zero due to the
Rntisymmetric symbol.

In the next three sections we study the gm'0- vertex,
having in mind a model 6eM theory like the SU(3)
version of the o model" (although we compute only
the spinor loops; meson loops are always more conver-
gent). What we actually evaluate is the lowest non-
vanishing order of the matrix element

(I &Lj, "(*)j.(y)j.( )3I) (1 7)

and its divergence, which in a theory with PCAC should
be proportional to the qxoo vertex. It is easy to see that
the off-mass-shell vertex is proportional, at p.4=0, to
'tile coIIIIIlll'tatols of js s (s) wltll j ", and wl'tll j and

j„, the sources of the p and 0.
We call the equation satis6ed by the matrix elements

of B„j&,s&(z) the axial-vector Ward identity. The
identity seems to be violated by an eight-dimensional
integral of the form

from the fermion box graph. Again, there seem to be
terms left over, with eight-dimensional integrals in
them, which are not predicted. by the axial-vector Ward
identity. The "normal" terms, however, are also of this
form, and their explicit expressions depend on the
way the internal photon momentum is allowed to run
around the fermion loop. Af ter some algebraic manipula-
tion it, can be seen that the photon momentum does
not go the same way in the normal terms on both sides.
Correcting this "error" turns out to cancel exactly the
extra terms that should not be there, independently of
the cutoff procedure, so that the naive axial-vector
Ward identity is unambiguously satisfied.

There is R problem associated with q —+ 3m when we
check gauge invariance of the internal photon. The
amplitude is not manifestly gauge invariant but de-
pends on an integral of the form of (1.8) being zero.
Again the integral depends on the cutoff procedure.
However, the integral is of the same type as the integral
tl1at wRs rcqulI'cd to bc zcI'o 1D q ~ ox.

Our techniques are immediately applicable to the n'
corrections to ~0 —+ 2y. Here we 6nd that besides the
n' terms from (1.5) there is an additional correction to
F of the form (1.8) but that this integral is zero by
symmetric integration independently of the method of
cutoff. This integral in the more dificult massless
fermion case has been studied by Adler and Sen."
Unllkc g ~ 3% wc 6Ild no problem witl1 lntclnRl gauge
invariance, so there is no ncw o.' anomaly in mo —+ 2y.

Finally, although we seem to have shown that the
axial-vector Ward identities hoM up in perturbation
theory in spinor electrodynamics, there is a formal
question about the applicability of our calculations to
to the SU(3) "o model" or any similar theory. Without
electromagnetism, the 0- model breaks chiral invariance
in a well-de6ned way and has SU(3) symmetry. (It is
presumably renormalizable, although the proof depends
on the symmetry expressed by the axial-vector Ward
identity. ) Now we add photons in a minimal way. Be-
fore there vras no g-3x vertex. Now, this vertex can be
computed in terms of the old (bare) coupling constants
and turns out to be one of our divergent eight-dimen-
sional 1DtcgI'Rls. Thc usuRl I'cDOI'ITlallzatloD RpploRch. ls
to add a counter term of the form )p„@ ' to the La-
grangian. But this is not a counterterm to anything
which was in the theory to start with. The &~3~
vertex is of order e', but may be essentially uncalculable
from the theory if one takes this approach. The situa-
tion is similar to the impossibility of computing the
four-pion vertex X&4 in ps theory in terms of the Ir/
coupling constRnt.
"K. Johnson (private communication).
"The idea that q decay proceeds by an effective direct q-3x

interaction term, rather than by an anomalous term in the PCAC
equation, appears frequently. See, e.g. , K. Wilson, Phys. Rev. 179,
1499 (1969); R. Brandt and G. Preparata (unpublished); N.
Cabibbo and L. Maiani, in Bool@tjon jm I'grtjqte Phys@ s, edited by
M. Conversi (Academic, New York, to be published); R. Brandt,
M. Goldhaber, G. Preparata, and Q, Orgalesi, Phys. Rev. Letters
24, &Stf (1970).
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In short, it might be that to assert PCAC to all orders
in n just does not make sense in models, and that trying
to compute an anomalous contribution to the q-3m.

vertex from the Fenyman graphs of these models is
simply not right.

II. gee VERTEX

and its relationship to

d4Xd4yd4S' e '&~'e+'~'~e+'~

8
X - (I T[j"3"(x)j(y)y»(s)]l) (2»)

Bx"

To get (2.10) from (2.11), the 8jr7x& must be brought
inside the time ordering. One term is (2.10), and in
addition there are the equal-time commutators. The
result can be written

(2.12)F=.F5+FR+F2
where

F= —ip p d xd4yd ze '"~'e'"'"e'" "
&&&12'[j»~(x)j(y)j,(s)]I) (2.13)

from (2.11), F& is given by (2.10), andj"= -'4'V"r'4',

j"=24vv,
j5'"= 24'V"y5r'4'

j5"= 247"754' i

(2 1) Fi+F,= d'xd'yd's e '&~'e'—&'&e'&'*

&(l T(~(x' —y')L j", '(x),j(y)]j (s)

X&(x'—s') [j:, '(x),j (s)]j(y)) I ) . (2.14)

The naive values for the two commutators are

as well as the analogous scalar and pseudoscala, r
densities

We begin with a study of the pro. vertex and the
Ward identity satisfied by the axial-vector current.
Since we expect any anomalous behavior to come from
closed fermion loops, it is not necessary to complicate
the problem with the full paraphernalia of the 0. model,
or with SU(3) matrices. It is sufficient to calculate the
three-point vertex function of the sources of the g, ~',
and 0. in spinor electrodynamics.

Therefore we introduce a fermion doublet with field

P, and define the usual isovector and isoscalar currents

i 5'=ki4ysrA j5=kiVVA

The isovector axial current is generated by

(2.2)
~(x' —y')L j»'(*),j(y)]= i~4(x —y) j»(y), (2 13)

b(xo —so)[j&30(x),j;(s)]= i84(x —s) j3(s—), (2.16)

"(kr~)»P ~
~|P= 'P(2r') "» (2 3) so that

The I agrange density is the usual kinetic and mass
terms, plus the electromagneti. c interaction d4~d4~ e ' 'e."& +&' &

em ~~ p jem (2 4) &&(I &I j53(y)j5(s)]l), (2 17)
where

v= gyl Qp= 2' I+~'av F = —i d4yd4S e'(» "e'&'&
2.5j

—2mj—eel „jem"

and the "naive" divergence of j&;& is

(2.6)

sl.
8,j&;&=—=2mj 5; ees;&A„j»". —(2.7)

The neutral current satishes

Bqj5,3"=2m j5,3,

while the charged currents satisfy

(2 g)

Here Q is the average charge of the doublet. The part
of the I agrangian which is not invariant under the
transformation (2.3) is (m is the fermion bare mass)

&& &I T[j(y)js(s)] I) (2 18)

We shall call (2.12) the axial-vector Ward identity.
It ought to be true in every order of perturbation theory.
In zeroth order, each term vanishes because of isospin
conservation, but it is useful to write down the formal
expressions. The graphs are displayed in Fig. 2. The
commutator terms correspond to bubbles which look
like oR-diagonal terms in a mass matrix. The algebraic
expressions are obtained by replacing the currents in
the expressions for F, F5, F~, and F2 by their noninter-
acting values [s(r) = [7 r —m] ']:
F= .i~ (p. p- p.)----

(B„aieA„)j&~I'= 2m j5~.

We want to study the vertex

(2.9)
d'r Tr(s(r)y&s(r p, )y p y&ras(r p,)— —

+s(r)s(r+p )y p yrr~s(r+p„)y5)f, (2.19)

F =2m d4xd4yd4s e '»'e+'&'"e+'I"~
6

)(,( ~
T[J53(x)j(y) j„(s)]~ ) (2.10)

Fi =~&~4(P. P- P)——

(() "(+.).- ), ( o)
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F,=-', ib4(p„—p.—p,) d'r Tr{s(r)s(r+p.)r, ) . (2.21)

F& can be obtained from (2.19) by replacing y p by—2'.
An alternative derivation of (2.12) is instructive. Let

us abandon pure spinor electrodynamics and include
in our theory canonical 0. and g fields (denoted 0, q),
whose coupling to the P field is described by an inter-
action Lagrangian

~jl ~5 3/

P5T3

Xp, X5 3,
/

F

p

&r= 2g(j ~+j 5n) (2.22)

(The equality of the three coupling constants is not
necessary for what follows. )

Now the divergence equation (2.6) becomes replaced
by

4l„j&,"=2nsj 5, 2goj —5+2gpj, e43,&A—„j5&1'. (2.23)

Let us compute the function

d'xd4yd4s e '»'e'&'&e'&'

(ITLn()j "( ) (x)7l) (224)
Bx"

which is —ip & multiplied by the q and o- propagators,
times the o.-q axial-vector vertex function. The deriva-
tive can be brought inside the T product, since the
current commutes with the canonical q and o. field
operators. Expression (2.24) is proportional to (2.11);
the proportionality constant is g' times the o. and

g bare propagators. Now inserting the right-hand side
of (2.23) for B„j»& into (2.24), only the first three
terms contribute, and give, except for the same over-all
factor, the three terms o+ the right-hand side of the
axial-vector Ward identity (2.12)."

The point to notice is that the divergence of a current
and the commutator of its time component with other
densities cannot be independent. ' An anomaly in (2.23)
must be associated with an anomaly in the commutators
(2.15) and (2.16), since either can be used to compute a
correction in the identity (2.12).The relationship should
not be surprising, since to calculate the divergence one
computed bZ/be;, and the variation of each piece of 1.
depends on its commutator with the current's time
component.

We need to calculate each term in (2.12) up to order
e', which means to treat the currents as free currents
and do perturbation theory twice with 2, . In the first

FIG. 2. Zeroth-order graphs for the axial-vector
Ward identity for the g~o. vertex.

method we must compute

Bx"
&&A.(xi)Ae(x,)7i), (2.25)

which will involve the commutator

b(~' —X')Lj»'(~),j- b')7 (2 26)

The fact that there are no extra terms in the naive
Ward identity (2.12) can be ascribed, on the one hand,
to the absence of a term in e on the right-hand side of
Eq. (2.23) for i=3, or, on the other hand, to the vanish-
ing of the commutator (2.26).

III. EVALUATION OF go~ VERTEX TO ORDER e

In this section we compute P, P5, P~, and P~ to order
e', in order to check whether the axial-vector Ward
identity (2.12) holds in perturbation theory. All the
quantities are unrenormalized. The zeroth-order terms
(2.18)—(2.21) vanish only because the charge-space
factor is Trina

——0. The terms to order e' all have a
common charge-space factor Trr4Q'=2Q. For conveni-
ence we take 2Q to be 1, as for a nucleon doublet, and
ignore this factor from now on.

F has six terms, corresponding to the six graphs in
Fig. 3, and six more from graphs in which the fermion
line runs around the other way. The two sets are equal
by charge-conjugation invariance. We write

F= b4(p. +p, p„) d4rd4k D,„(—k)F""(r,k), (3.1)
Sm'

where D„„(k) is the photon propagator and

Fl""=Tr{s(r)y;s(r p„)y p y4s(r —p,)y"s(r p, —k)y"s(r p—,)— —
+s(r)74s(r p„)V s(r p„k)Y"s—(op„)V p—75s—(r p.).— —
+s(r)y~s(r k)y"s(r)yqs(r p~)y p y—5s(r p,)——
+s(r)y"s(r —k)y5s(r —p„k)y"s(r p„)y p y4s(r p,)— — —
+s(~)y5s(r p„)yI's(r p, k)p p.y4s(—r p. k)—y "s(r—p—.)— —

+s(r)y5s(r P„)y P y4s(r P)y"s(r P —k)s(r —k)y"4S. (3—.2)— —
'~ If Eq. (2.23} is used instead of (2.8) in working out the axial-vector Ward identity from (2.11), there will be two additional terms

in (2.12), coming from the extra terms 2g(p j5—0 j») in the divergence. Therefore, there is not a one-to-one correspondence between
the terms obtained from the two methods. The new terms are of higher order in g and do not enter into our lowest-order calculation.
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Similarly, to this order

Fs= 5—4(p +p, p,)—d4rd'k D„„(k)ps""(r,k), (3.3)
8~'

where F4&' can be obtained from F""by replacing v. p
with —2m. I'inally, F~ and F2 come from the three
graphs in I ig. 4.

Fi, 2
—— — fi4(p~+p, p„) —d'rd'k D„„(k)F4,&"(r,k), (3.4)

8m'

FPv —p Pv+ p Pv+ p Pv+ A Pv (3.7)

where A"" (the anomaly) is the remaining six terms in
the decomposition of F""using (3.6):
A"'=- Tr(s(r)v»(r p„)v&v"s(r p,—k)v"s(r p—,)— —

+s(r)v»(r p„)v s(r—p„k)v—"v»(—r p.)—
+s(r)v s(r k)v»(r p—„k)v"v—»(r —p.)—
+s(r)v»(r p„)v'»s(r p, —k)v"s(r p—,)— —
+s(r)v»(r p„)v s(r p—„k)v4v"s—(r p—.)—
+s(r)V»(r P.)V4V"s(r —P. k)s(r k—)V")— (3 8—)

where

Fi,~'"= Tr(s(r) I's(r P. .)v"—(r P. . k—)v"s(r—P. .) I'—
+s(r)v"s(r —k)v"s(r) Is(r p„,.)I'+s(—r)v

)&s(r —k) I's(r —P„,,—k)v"s(r —P„,,)I'), (3.5)

where F is y5 in Fj.&" and 1 in F21"".

To evaluate F&", we use the algebraic identity

V'P V4=—2mV4+s '(P P)V'+V—» '(P) (36)

in each term of Eq. (3.2) to obtain a, decomposition of
F'" and therefore of F [s(p) is the propagator
(v p —m) 'J. The six 2mv4 terms simply give F&"". Of
the remaining 12 terms, six are F~I""+F2I"'. Thus we
obta, in

A. = d'rd'k D„„(k)

&&Tr(s(r)v's(r k)v»—(r p„k—)v"v—»(r p,)—
—s(r —k)v s(r)v»(r —p„)v'v»(r —p.—k)}.(3.10)

This would be zero if one could make, in the second
term, the changes in the integration variables k ~ —k,
r —+r —k.

Each term in the integral (3.10) is convergent in r
for fixed k, and logarithmica, lly divergent in k for 6xed
r. In single integrals like

d4k

L(k —p)' —m']'
(3 11)

the origin in k ma, y be shifted without changing the
integral's value, independently of the cutoff method
used to define it. However, we shall see that the analo-
gous remark is apparently not true for integrals of the
form of each term in (3.10); the value of A depends on
the cutoff procedure and on the order of doing the inte-
grations.

To simplify the algebra, let us evaluate A at the point
where it might contribute to a low-energy theorem,
namely, p„=p, =p or p =0. First, we evaluate A in the
Feynman gauge, D„„(k)= —g„„. We return to the
question of gauge invariance in Sec. IV. Then

If A&"=0, then (3.7) implies (2.12) and there is no
a,nomaly. In expression (3.8) the first term cancels the
fourth, and the second term cancels the 6fth, leaving

A""=Tr fs(r) v"s(r k)—v»(r P„—k)—v"v»(r P,—)
+s(r)V»(r p„)—V4Vi"s(r p, —k)s—(r k)V—"), (3.9)

which is not obviously zero. From the cyclic property of
the trace and the symmetry of D„„, the second term of
(3.9) can be slightly rewritten; the anomaly, which is
an integral over D„„AI"', is proportional to

d4k 2r k+2(r —k) k —k p
A =16m2 d4r

k' (r' —m') [(r—k)' —m'T(r —p —k)' —m']L(r —p)' —m']
(3.12)

A =32m2
d4k ' z(1 —z) (2s —1)

dz — =0, (3.13)
k' 0 z(1 —z) k' —m'

At p=0, one may easily do the r integration first and
get, by the Feynman parameter method,

as one must, since A is convergent in r for 6xed k.
However, let us instead do the k integration first, as
suggested by the renormalization prescription of com-
puting all ra,diative corrections to propagators and
vertices, and then inserting these into sl.-eleton graphs.
(We do not discuss the renormalizability of the axial-
vector vertex here. ) Then, again at p=0,"

d4r

f(r),
2 —m2 2

(3.14)

FiG. 3. Graphs for radiative corrections to P.

'"This is sufficiently general, since A(P„P„)—A(0,0) is con-
vergent in either r or k, and so is zero because shifting the origins
is now legal. The same is true of the analogous choice made just
before Eq. (S.&0).
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d4k

G2 —— d'r Tr(s(r k) s(—r p, —k)—
k4

s(r)s—(r p, ) jf—. (4.15)

V. q~ 3~ AMPLITUDE

Fio. 6. Labeling of momenta for
graphs which enter Tl"".

i' —p
I

&v+p

P+P+P ~
p

In this section we study the analogous calculation for
the process of g —+ 3m, without an intermediate 0. meson.
In order to avoid having to consider photon-pion ver-
tices, we restrict our calculations to g —+ 3x' in a model
similar to the one considered in the previous sections;
again, we look for anomalies in the fermion loops; i.e.,
we wish to compute graphs like Fig. 5, and their lowest-
order radiative corrections. "

Analogously to the second method described in Sec.
II, we could obtain the relevant axial-vector Ward
identity by adding to the interaction Lagrangian (2.22)
a term of the form 2II,P;j&;, which would add an explicit
term 2gg;j to B„j5,i' in (2.23). However, it is just as
simple to use the commutator method of the first part
of Sec. II, so that the divergence is still given by Eq.
(2.8), and compute the four-point function for the
sources of the four mesons:

T; =2m d4zvd4xd4yd4s e'~""e'»'*e'~'~e '»'

&(I &Lj»(~)j 3(~)j 3(y)j (Z)] l), (5 1)

where p, , p, , and pi are the rnornenta of the three final
.OS

We need the relation between T& and T, defined by

T= —ip'~ dwd xd yd zz ' z~~ z ""e

X(ITLj "(~~)j (~)~ (y)j:(z)]l) (5.2)

The factor ip;„ is equivalent to—8/Bw' acting on the
vacuum-expectation value. Bringing this derivative
through the time ordering, we obtain

d4k
d'r D„(k)T"" (5.4)

The first term on the right, Tq, comes from B„j;3&(ia)
and is essentially the p~3~ amplitude. We have
arbitrarily chosen to write the PCAC equation for the
first pion (with momentum p;). Any anomalies in a
perturbation-theory evaluation of. (5.3) ought to carry
over into a more realistic field theory, e.g. , one with
PCAC, and could explain the p-decay puzzle.

The term T'"' comes from the commutator (2.16),
and looks like a vertex, scalar isovector —+ 2m, rather
than a two-point function as in the previous case. T( '

is really two terms, coming from the commutator of
j(t(0(w) with j53(x) and j5&(y). This commutator is a
scalar, isoscalar density, so T' & is proportional to the
geo vertex already discussed. All of the terms violate
G parity, and so vanish without electromagnetic correc-
tions. We shall evaluate them to order e'.

The topologically distinct graphs in the vertex terms
consist of two distinct fermion traiangles, each with six
photon insertions, as before. The graphs contributing to
T and 15 have four-vertex fermion loops, each with ten
possible distinct photon insertions; there are six possible
permutations of the external momenta on the fermion
loops, for a total of 60 graphs. Of the ten photon in-
sertions, eight are propagator and vertex corrections;
the two others are the skeleton graphs of Fig. 5. These
graphs are the new feature of this amplitude.

It will be sufficient to compute the insertions to one
of the six permutations of the meson momenta. The
remaining ones follow from symmetry considerations.
We use the order indicated in Fig. 6, and omit the
charge-space factor, as before. The integral for T is
proportional to

2'= T~+T(n)+T(~) (5.3) where

T&"= Trfs(r)y&s(r —k)&"s(r)y—-;s(r)y(s(r+p, )y,s(r+p+pi)yes(r —p;)q p,y,
+s(r)y(s(r+p, )y's(r+p, k)y"s(r+p, )y5s(r—+p,+pi)ass(r p,)y p;y5-
+s(r)y, s(r+ p, )y,s(r+ p~+ p„)y~s(r+. p, +p„—k)y s(r+ p, +p,)y,s(r p, )y.p,y,
+s(r)y5s(r+ p, )y5s(r+ p+ pi)y~s(r p,)y"s(r p; k)—y"s(r p;)—y p—,y5-
+s(r)y"s(r k)y(s(r+ p, k)y"s(r+ p,—)y,s(r+p, +p—k)y;s(r p,)y p;y(—
+s(r)y, s(ry p, )p s(r+ p, k)y, s(r+ p, +p, k)p"s(—r+ p,+p,h, s(r p—,)y pn, —
+s(r)75s(r+ p,)y5s(r+ pal+pi)y"s(r+p+pi k)y(s(r p, k)7"s(r—p—,)v p—,v�-
5+(r)y5s(r+ p, )y;s(r+ p, +pi)y(s(r p~)y"s(r p—, k)y p,—yqs(r —k)y"—
+s(r)yI's(r k)75s(r+p, k)y5s(r—+p, +pa k)—y"s(r+p,+p&)y(s—(r p;)y p;y„—

+s(r)y5s(r+p, )y"s(r+p, k)yqs(r+p, +pi,—k)yqs(r p, k)y—"s(r p;)y p„y5). (5.—5)— —
The extra terms present in q ~ ~+~ 7t-0 are convergent and therefore unlikely to have anomalous behavior. Here r' means ro' —r,

while x is a variable, obtained from (r')'" by rotating the ro contour.
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The erst four terms are the propagator corrections. The next, four are the vertex corrections and the 6nal two
ale graphs like Fig. 5.

These terms can be unraveled using

s(r—p')—V p'V»(r) = 2rrlv. +7-»(r)+s(r p')—V5, (5.6)

which is just another form of (3.6). The 2rII75 term gives the contribution to Tr, on the right-hand side of (5.3)
appropriate to the chosen permutation of external momenta. The remaining terms should simply be proportional
to (one-sixth of) T&»+T& '.

Each of these vertex functions has six terms to this order, while there are 20 terms obtained by replacing
s(r —P;)7 —P;7»(r) by 75s(r)+s(r —P;)7I, in each of the ten terms in (5.5). Six of these 20 terms contribute to

T&», and are simply the radiative corrections to Fig. 7(a):

Tr{s(r+p )v"s(r+ p —I )7"s(r+p )v»(r+ p +p~)7»(r —p')
+s(r+ p, )7»(r+ p;+ pI )7&s(r+p,+pp k)7"s(r+—p,+pp) 7»(r —p~)

+s(r+p )7»(r+ p~+ pl)7»(r p')V"s—(r O' I )—V"s(r—p')—
+s(r+ p~)7 s(r+ p; k)7»(r+—p,+pl k)y"s(r+—p, + pl )7»(r p~)—
+s(r+ p )7»(r+ p +p~)7"s(r+p+ p~ I )7»(r—p' —&)7—"s(r—p')

+s(r+Pr)7"s(r+P &)7»(r+—P~+P~ &)7»(r—P' &)v—"s(r——P')} (5 7)

SllllllMly, six of 'tile 20 'tclIIls coI1'tl'lblltc 'to TI I, alld ale 'thc radlatlvc col'lcc'tlolls to Flg. 7(b):

Tr{s( )7"s( &)7"s(r)7—s(+P )7 (r+P +P )
+s(r)V»(r+ p')V"s(r+ p, I )7"s(r+—p )V»(r+ p+p.)
+s(r)7 s(r+p)7 s(r+p+p )7"s(r+p+p &)7"s(r+—p+p )
+s(r)7&s(r k)7»(r+p, —k)7"s(r+p;—)75s(r+ p, +pl)
+s(r)V»(r+ p, )V s(r+ p, &)7»(r+p, +p—l —&)7"s(r+p;+ pl)

+s(r)V"s(r &)7"s(r+p—I )7»(r+ p—+p~ &)7"s(r+p—+p~)} (5 g)

P P, +P;+ Pkp

5
}'+ -p

jp. +p,

(aI
aP +PI,

J

(b)
I'IG. 7. Labeling of momenta in commutator terms

occurring in Eq. (5.3). (a) T&»; (b)T&"&.

The necessary symmetry in p, and pl will not appear
until we add together the permutations of the external
legs.

In both (5.7) and (5.8), the sixth term in the trace is
the vertex correction to the scalar vertex and, unlike
the other 6ve terms, does not have the standard form
of a vertex insertion; the loop momentum k runs around,
the long way instead of around the vertex. If the in-
'tcgl'Rls lllto wlllc11 (5.7) Rnd (5.8) alc to bc lllscl ted wcl'c

convergent, the result would be the same; but here we
must be more careful. The expected form can be ob-
tained in each case by the now-familiar substitutions
k —+—k, r~r —k.

Thus, the error" in T' ) is

Tr{s(r)71"s(r—k)75s(r+ p k)75s(r+ p +py,
—k)—

Xv"s(r+p, +pp) s(r &)7 s(r)7—»(r+—p~)

Xv»(r+P, +P~)7"s(r+P,+P~ ~~) } (5 9)

Since the difference (5.9) does not unambiguously
contribute zero to T( ', we must consider it as a con-
tribution to the anomaly, provided that the correct
way to dehne aH these corrections is indeed to let the
momentum k go around the short loop. This is an
arbitrary prescription without a complete renormaliza-
tion scheme, but let us tentatively adopt it and investi-
gate the consequences.

We evaluate (5.9) in the Feynman gauge, i.e., con-
tract with —g„„and set P;=P, =PI, =O." Then the
"error" in T& ) becomes

Tr {s(r 0)7"s(r)7:s(r)—7;,s(r)v„s(r k)—
—s(r)7&s(r —k)7»(r —k)7»(r —k)V,s(r) }

16III(k' —2r k)
(5.10)

L(r—u)2 —m'j2(r' —m')'

EquatiOn (5.M) haS the Same fOrm aS the IIIro.

anomaly, so we know it is not unambiguously zero.
Another anomalous contribution to the right-hand

side of (5.3) comes from the similar "error" in the last
term of (5.7). Replacing this term by the correct scalar
vertex correction in T(», we obtain the difference

Tr{s(r+p, )7&s(r+p, k)7»(r+ p, k)7»(r—p ,—k)— — .

&&V"s(r p') s(r+ p &)7"s(—r+ p —)V"—
&&s(r+p+ p~)7»(r p)v"s(r O' I )} —(5»)——
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Again, contracting with —g„„at p;= p, = p, =0, expression (5.11) becomes

—16m(k' —2r k)

[(r k)2 m2]2(r2 m2)2
(5.12)

as before.
There remain eight terms in the expansion of (5.5) still unaccounted for. Four of them cancel algebra, ically,

leaving an additional contribution to the anomaly

Tr(s(r k)y&s—(r+p; k)y"s—(r+p,)gas(r+ p,+pi)y~s(r p,)y5y-"
+s(r)y~s(r+p;)y"s(r+ p, k)y5s—(r+p+ p& k)y5s—(r p; —k)y"y—5

+s(r)mrs(r+ p;)75s(r+ p, +pi)v s(r+ p,+pi k)75s(—r p; k—)v""r—s

+s(r k)&5s(r—+p, k)ass(r—+p,+pi, k)p"s(r—+p+ p, )q,s(r p;—)p5y") . (5.13)

32m(k' 2r k)—

[(r—k) —m ]'(r —m )'
(5.14)

Thus, the apparent errors in the scalar vertex cor-
rections to T«' and T( ) cancel exactly the explicit
terms remaining from the expansion of s(r p,)p-
e p,yzs(r), and the anomaly is zero independently of the
cutoff procedure in the Feynman gauge.

Finally, let us check the gauge invariance of T5,
T~&~, and T~"&. Each is a physical quantity, and so
should be gauge invariant.

We use the general gauge (4.1) in Eq. (5.5), with

y p; replaced by 2m, and. in Eqs. (5.7) and (5.8), and,
as in Sec. IV, reduce the result using the identities
(4.11) and (4.12). In each term, the coefFicient of a
turns out to depend upon the integral

Because of the symmetry of D„„(k),p" and &" may be
interchanged in the second and fourth terms of (5.13).
Then it is easy to see that (5.13) would contribute zero
to the integral over r and k if k —+ —k, r —& r —k, were
permissible.

As before, we evaluate the trace in (5.13) with the
external momenta set to zero, and contract with —g„„.
The result is

were each ambiguous by a divergent integral of the
fol m

d4rd'k[f(r, k) f(r k, ——k)]—, (6 1)

e'"'-ki~kg. Tg(ki, kg)

d'k D,(k) d'xd'ye* "*e""+"'

to the quantity

e"~'~'ki~kq~T(ki, k2)

and another case, p ~ 3m, where only the gauge-
dependent part was ambiguous by a term like (6.1).
Finally we want to consider x' ~ 2y, here we will find
that there is no ambiguity of the form of (6.1).

In order n', the relevant axial-vector Ward identity
relates the physical amplitude

d4r
2r k —k'd4k

(m' r'+r k) — (5.15)
k4 (r' —m')'[(r —k)' —m']'

d'k D„„(k) d'xd'y e*"'e'&'~+"» &

for p, =p; = pi, = 0. But this integral is exactly the same
as the one occurring in expression (4.13) for Gs, evaluted
at p, =p„=0, and so is the same type as the integral
(3.12) for A. In particular, therefore, the same cutoff
methods which make A vanish make the integral (5.16)
zero also.

Thus, although there is no ambiguity in the p ~ 3m

amplitude, there is an ambiguity in the gauge-depen-
dent parts of T, T( ), and T«', which must be dered
to be zero.

(6.3)

If the commutator (2.25) vanishes, then these two
expressions must be equal; this is what we want to
check by evaluating (6.3) in perturbation theory. We
calculate the order o," part of the graphs shown in Fig. 1
[where p now connects to y (ki+k2)] and choose the
momentum as shown there. Then

VI. ORDER-n' CONTRIBUTION TO AXIAL-VECTOR
WARD IDENTITY FOR m ~ 2y

Thus far we have studied one case, q —+o-x, where
the physical amplitude and the gauge-dependent part

e&'&'~'ki kg~T(k&)k2) = d4r d'k
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where

T»»1'"(r,k) = Tr(s(r)y&s(r k)y"s(r)y"$(r k 2)y (kq+k2)y4$(r+k&)p"
+$(r)y&s(r k)y—'s(r k&—k)y—"$(r k2)—y (kz+k2)y5$(r+kq)y '

+$(r)y~4$(r k2)+Is(r k2 k)r $(r k2)y' (kl+k2)y5$(r+kl)r»
+$(r)7&'$(r k~)y—I'$(r k2 —k)y —(kr+k~)ass(r+kr —k)y"$(r+ki)y"
+$(r)y»s(r k&)y—(k&+k&)y4$(r+k&)y&s(r+k& —k)y"s(r+kg)y»

+$(r)y"$(r k~—)y (kq+k2)y4$(r+kq)y"s(r+k4 —k)y»s(r —k)y"+(kqpq~ k2p2)). (6.5)

From the identity (5.6), the 2my4 term is precisely
the desired quantity (6.2), but again there is something
left over. The part left over, A»», must have the form

A&'-»(k& k4) = 4&'&'~'k&~k&.A(k f)k2)'(6.6)

and is given by

A»»(kq, k2) = d4r d'k D„,(k)

)&Tr(s(r)y~s(r —k) y»s(r —k~ —k)y"y4$(r+kq)y"'

+$(r)y~4$(r k2)y4yl"s(r+—k q k)y»s(r k)y-"—
+(kg, pg ~ kg, pg)) . (6.7)

Again this would be zero if we could let k ~ —k,
r ~ r —k in one of the terms.

If we now expand the propagators which depend on
k1or k2, using

$(r+k~) =s(r) —$(r)k~s(r)+higher order in k~, (6.8)

where s(r) = (r—444) ', then only the second. term con-
tributes. The 6rst term cannot have the form (6.6)
while the higher-order terms are convergent integrals
with the change of variable allowed. But if we put the
second term of (6.8) in (6.7), and introduce a Feynman
parameter to make the denominators functions of k'
and r' only, then the integral A»» is zero by symmetric
integration independently of how it is regulated. Thus
we find no ambiguity in the axial-vector Ward identity
for the 0(n') contribution to vr' —& 2y.

In addition, the perturbation-theory expansion of
(6.2), i.e., (6.5) with y (kq+k2) replaced by 2m, is
both externally and internally gauge invariant, as can
be shown by multiplying by k»„k», or setting D„„(k)
=k„k,(k', and using the identities (4.11) and (4.12).
Thus we find no ambiguity of the form (6.1) in ~0 ~ 2y.

requiring the internal loop momenta to appear in a
consistent way.

It is evident that there is no clean result of the sort
presented by Jackiw and Johnson4 and by Adler. '
Although our results suggest that PCAC should hold
to order e' for the vertices we have studied, in models
of the sort discussed, it is apparent that a serious study
of the renormalizability of the axial-vector vertex in
such theories is necessary to understand the nature of
the g-decay paradox. It would certainly be useful to
reexamine these questions using the split-point de-
finition of densities bilinear in fermion 6elds 4—al-
though perhaps the effect would be simply to translate
our results into another language.

We have also used our methods to compute the gauge-
dependent terms of the q

—+ 3~' vertex and other
quantities which appear in Kq. (5.3), as well as the
order o,' corrections to the anomaly responsible for
m'~2y. As for the gxa vertex, the gauge-dependent
terms of (5.3) are not individually unambiguously zero,
even though they are more or less observable quantities.
In contrast, the corrections to the axial-vector —2y
vertex are individually internally gauge invariant,
without any special definition of the cutoff procedure.
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APPENDIX

First we show that with the cutoR procedure defined

by (3.24) and (3.25), expression (3.22) is obtained for
A. It is necessary only to calculate D and D'. Instead
of (3.19), we have

VII. CONCLUSIONS

We have searched for an anomaly in the q~00- vertex
and in the q~ x z vertex, and found. ambiguous ex-
pressions whose most natural values are zero. In the
first case, we conclude that if all ambiguous integrals
are to be evaluated in the way which ensures electro-
magnetic gauge invariance, the "naive" axial-vector
Ward identity is satisfied. In the second case, we reached
the same conclusion under the assumption that di-
vergent integrals for certain graphs are to be dered by

(k2 —m') 2 k2+A2

We introduce the Feynman parameters as usual:

1 1

D(A) =2h.' d4k de dy xt'(1 —x—y)
0 0

+[k'—x4r4'+yA'] '

iver'

ln(A'/nz')—

(A1)

(A2)
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nt within agreeInenplus terIns which vanls a
(3.21); and similarly

D' =+2m'
'+""~' in)+in(1 —m'/M'$)

dg. A5
d'r

D' =+2iÃ2
(r' —m')

1 1

= —2m 4%2 dk dx

The y and s integrations are elementary:

(A4)

ds M'

T e secon
' M2 —+~. The first isThe second term is a constant as M —+~ .0 r'{1—s) —m' r'+M'

1+mm/M2 d ~2—(ln'&) d &
=s' ln', (A6)dy(1 —sy) '

0 0 0

in agreement w
0

with 3.23).' —m'~~'. (A3) Pinaliy, let us define A accor ing o eX[~{m'+M') —m ~

suggested at the end of Sec. II:
d'k h.' 1 1

A = d'r
O' O' —A' (r' —m') (k —r)' —m'2s.4&V' ' 1nx dxD'= ——

m'+M' 0 x+m'/(m'+M')
(A7)

r —k' —m2

imi s o in
' ' m' M' kee ing only and do the 0 integration first. From (A7),

1

A =24 d4rd4k do.

nd then over r, and making someIntegrating over, an e, - me
algebraic substitutions, one obtains from ~

1 1 1

A =+43' dx dy dk
0 0 0

(2s —1) 1

[xy(s' —s+1)—1j' h.'(1—y) +m'y

Substituting s —+ j.—s, one obtains A = —A and there-
fore apparent yl A=0. This is not correct, however,

since eth integral diverges near xy=x = 1. 8=0) Qr s= 1,
' t albTo dehne the integral, replace the s integra y

ds ~ 11m
c~0 ~'~0

Then A is in general a logarithmica y
'

gll diver ent func-
nd e' and. is zero only under the arbitrary rule

i ure to introduce~= e'. The divergence is due to our ai ure o
'

an r cutoff.


