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The process n — 37 is known to violate a simple prediction of partial conservation of axial-vector current.
In many models, n — 3r proceeds through a fermion loop with electromagnetic corrections. The first radi-
ative corrections to fermion loops give rise to divergent double-loop integrals with forms like Sd%d*%/
[r2—m? 7 (r—k)2—m?]2. As with single linearly divergent integrals, when a meaning is ascribed to them
it may not always be possible to shift the origin of integration without changing the value of these integrals.
Such integrals appear when one tries to check, in perturbation theory, Ward identities and low-energy
theorems which follow from the formal manipulation of the equations of motions. They can cause anomalies
similar to the one in the axial-vector-current two-photon vertex. We study some applications to the nmwo
vertex, to the process n — 3w, and to the corrections of order a2 to 7 — 2. No anomalies which can be

related to # decay are discovered.

I. INTRODUCTION

HE anomalous behavior of some matrix elements
of the divergence of the neutral axial-vector
current and the Ward identities in which they occur
have been receiving a good deal of attention.'™® It has
become apparent that, because of the singular behavior
of currents built out of fermion fields, the equations of
motion which follow from the formal manipulations of
Lagrangian field theory cannot always be maintained
in perturbation theory.

Furthermore, this anomalous behavior is not just
a formal curiosity associated with the infinities in the
perturbation expansion. It enables one to reconcile, at
least qualitatively, the observed rate of #° decay with
the hypothesis of partially conserved axial-vector

* Work supported in part through funds provided by the U. S.
Atomic Energy Commission under Contract No. AT (30-1)2098,
and in part by The National Science Foundation and by the
Alfred P. Sloan Foundation.
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current (PCAC).2¢ The large 7° — 2v rate had seemed
to be a glaring failure of current algebra and PCAC.®

Another possible failure is the discrepancy between
the nonzero value of the Dalitz-plot extrapolation to
zero 7° four-momentum in y — 77 w% and the zero
prediction of the “naive” theory.'®!' Our principal
purpose here is to investigate the matrix elements which
contribute to n— 3w and similar processes, to see
whether or not they too have an anomalous behavior
in terms of the predictions of the formal equations. We
show that there do indeed exist formally divergent
terms in the perturbation expressions for the axial-
vector Ward identity, which are “anomalous” in the
sense that they cannot be absorbed into renormalization
effects. They all have the form of eight-dimensional
integrals, and would be zero if arbitrary shifts in the
origin of integration—legal for convergent integrals—
were permissible. Thus their existence, as with anom-
alies previously studied, depends on the possibility
of performing formal manipulations on singular
expressions.

In the model we study here, careful calculation shows
that such an anomalous term is really absent in the
n— 3 amplitude, given to lowest order by a four-
vertex fermion loop, although this result seems to de-
pend on a detail of the renormalization prescription.
In a more interesting version, we study n — o, which
has a three-vertex fermion loop. (¢ is a scalar meson,
and the subsequent decay ¢ — 2x relates this calcula-
tion to the physical n — 3 process.) The loop integra-
tion is more singular, and the value of the anomalous
term depends upon the method used to give meaning
to a divergent integral. As might be expected, electro-
magnetic gauge invariance also depends on the value of

9D. G. Sutherland, Nucl. Phys. B2, 433 (1967). Sutherland’s
proof is incomplete, but the result is correct.

1D, G. Sutherland, Phys. Letters 23, 384 (1966).

11 For a discussion, see S. L. Adler and R. F. Dashen, Current
Algebras (Benjamin, New York, 1968), p. 137.
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Fic. 1. Lowest-order graphs for #° decay, and the
related axial-vector, two-photon vertex.

the same integral, and requiring gauge invariance
assigns it exactly the value needed to satisfy the formal
axial-vector Ward identity.

Our principal result is therefore that we can find no
anomalies to explain the observed rate of 7 decay (with-
out violating electromagnetic gauge invariance). It is
not clear whether their absence is accidental to the
process we study.

Before coming to the question of % decay it is in-
structive to review briefly the status of #° decay. The
history of the anomaly related to # decay is this: Let
k1 and k5 be the momenta of the final photons, and ¢®
and €® their polarization vectors. The most general
kinematically allowed form of the amplitude is
€pypraphiPhorre Ve MBF, Many years ago, Steinberger!?
computed F in Born approximation from the graphs of
Fig. 1 and obtained F=(a/7)(g/m), where m is the
proton mass and g is the 7V coupling constant. At the
time neither g nor the #° decay rate were well known,
but recent measurements show that Steinberger’s
formula gives the right order of magnitude.? One must
assume that the PCAC formula,

aﬂf5,3”: mw2F7¢3(x) ) (11)

where 75,3* is the neutral isovector axial-vector current
and ¢3 is the 70 field, is exact in the presence of electro-
magnetism even to order a. This assumption goes
slightly beyond the original PCAC, which applied to
strong interactions alone. However, it is easy to see that
in the ¢ model,’® for example, where Eq. (1.1) holds as
an equation of motion in the absence of electromag-
netism, as a formal equation of the theory Eq. (1.1)
still holds when photons are added with minimal
coupling.

To apply PCAC, one considers the off-mass-shell
amplitude

/ a4 ik 2(2y | o(0) ).

Its general form is
€pypnaplr”thoP1e D ae DR ((ky+k2)?) .

Physical pion decay is obtained from F(m.?). Equation
(1.1) implies (the argument is not completely trivial)

12 J, Steinberger, Phys. Rev. 76, 1180 (1949).
13 M. Gell-Mann and M. Lévy, Nuovo Cimento 16, 705 (1960).
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that F(0)=0. The argument can be generalized to the
w0y vertex where the photons are also off the mass
shell. The amplitude is then proportional to

| T e (¥) Jom(@)bs(%) 1] ) -
Using Eq. (1.1) and the identity
(| T em? (9) fem*(2) Dugs,a*(@) 11)

i)
= (| T[Jem? () Jem?2(2) j5,5*(x) ]| ), (1.2)
oxH

one learns that F is o times a presumably smooth func-
tion which vanishes when £14-%2=0.

The identity (1.2) follows provided that the equal-
time commutation relations

[75.5°(x), Jom?() J6(x°—y") =0,

which follow from formal manipulation of the currents
in simple models, are indeed true. An error of order e
or a in either (1.3) or (1.1) would invalidate the general
result, which is that F(0) is zero to order o and therefore
provided that F is indeed a smooth function, that the
7m0 decay rate should be much smaller than observed.
[Clearly, violations of (1.3) and (1.1) cannot be
independent. ]

Bell and Jackiw! were the first to point out that Eq.
(1.1) cannot be maintained in perturbation theory
except at the expense of electromagnetic gauge in-
variance. The contradiction can be traced to the
singular behavior of the term in 75,5#(x) which is bilinear
in the fermion field.®* In graphical language, it is
sufficient to consider the triangle graphs of Fig. 1, with
the pseudoscalar vertex replaced by v*ys. The graphs
are then linearly divergent, and contribute a violation
of (1.1) of the form

/ 1) — fr-Hat )],

(1.3)

(1.4)

Such a difference would be zero if the integral were con-
vergent or even logarithmically divergent; but in this
case it is ambiguous. Thus neither gauge invariance nor
PCAC is satisfied automatically. If expression (1.4)
is assigned the value required by gauge invariance, the
triangle graph has a fixed value which can be described

by2—4
a#j5,3“: mrzFﬂ¢3+ (a//47r) fuquF”VFaﬂ (1.5)

instead of (1.1).

Can Eq. (1.5) be used to explain the electromagnetic
decay n — 3x? It follows from (1.1) that this amplitude
vanishes when a final #° has zero 4-momentum, a result
which seems clearly violated by experiment.!! The ob-
served # width of about 2.6X10=2 MeV is clearly of
order o? and the decay distribution shows no tendency
to vanish at zero 4-momentum of the #°® Therefore,
experimentally one knows that there must be a correc-
tion to Eq. (1.1) of order a.

The correction (1.5) will not do the job, however,
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due to its tensor structure. This can easily be seen by
reducing out the final 7° and using Eq. (1.5). The ampli-
tude # — 3x is proportional to

/d4x exp[ —ipno-x )2 +m.2)[(27] 8ujs,s4(x)
— (a/Am) € apF ™ (x)F*F(x) | ) ].  (1.6)

At pr=0, the first term vanishes as usual. To
evaluate the second term, insert a complete set of states
between the two F’s. Only states with one photon can
contribute to order «, but these give zero due to the
antisymmetric symbol.

In the next three sections we study the #n% vertex,
having in mind a model field theory like the SU(3)
version of the ¢ model™ (although we compute only
the spinor loops; meson loops are always more conver-
gent). What we actually evaluate is the lowest non-
vanishing order of the matrix element

(1 TC75,54) () 7a(2)]1) (1.7

and its divergence, which in a theory with PCAC should
be proportional to the nw% vertex. It is easy to see that
the off-mass-shell vertex is proportional, at p,=0, to
the commutators of 75,5%(x) with fem®, and with 7, and
4n, the sources of the n and o.

We call the equation satisfied by the matrix elements
of 8,75,3#(x) the axial-vector Ward identity. The
identity seems to be violated by an eight-dimensional
integral of the form

/ A d k[ f(r,k)— flr—Fk, —F)].

Fom,?

(1.8)

The variable 7 is the fermion loop momentum, while
k is the momentum of an internal photon. The integrals
are convergent if the » integration is done first for fixed
k, and logarithmically divergent in % for fixed 7. For
single four-dimensional integrals, convergence or
logarithmic divergence is a sufficient condition to permit
the variable shifts necessary to prove that (1.8) is zero.
However, the integrals of the form (1.8) which occur
are not unconditionally convergent or even logarithmi-
cally divergent in eight-dimensional space. They have
denominators of the general form [(r—k)2—m?2] which,
even after performing the Wick rotation on #° and £°,
do not get large in every direction.

We find that if one introduces Lorentz-invariant cut-
offs or regulators to make the integrals finite, the value
of the anomalous term depends on the cutoff in a
complicated way. Gauge invariance, however, requires
that an integral identical to the one occurring in the
anomalous term be zero. Therefore, if the ambiguous
integral has a unique meaning whenever it occurs, we
conclude that it must be zero. Obviously, this result is
not quite as clean as the analogous 7° — 2y anomaly.

In Sec. V we study the process 7 — 37° without an
intermediate o. The most divergent contribution comes

14 See Ref. 11, p. 24.
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from the fermion box graph. Again, there seem to be
terms left over, with eight-dimensional integrals in
them, which are not predicted by the axial-vector Ward
identity. The “normal” terms, however, are also of this
form, and their explicit expressions depend on the
way the internal photon momentum is allowed to run
around the fermion loop. After some algebraic manipula-
tion it can be seen that the photon momentum does
not go the same way in the normal terms on both sides.
Correcting this “error” turns out to cancel exactly the
extra terms that should not be there, independently of
the cutoff procedure, so that the naive axial-vector
Ward identity is unambiguously satisfied.

There is a problem associated with % — 37 when we
check gauge invariance of the internal photon. The
amplitude is not manifestly gauge invariant but de-
pends on an integral of the form of (1.8) being zero.
Again the integral depends on the cutoff procedure.
However, the integral is of the same type as the integral
that was required to be zero in 5 — or.

Our techniques are immediately applicable to the a2
corrections to 7% — 2y. Here we find that besides the
a? terms from (1.5) there is an additional correction to
F of the form (1.8) but that this integral is zero by
symmetric integration independently of the method of
cutoff. This integral in the more difficult massless
fermion case has been studied by Adler and Sen.?®
Unlike n — 3w, we find no problem with internal gauge
invariance, so there is no new a2 anomaly in 70— 2.

Finally, although we seem to have shown that the
axial-vector Ward identities hold up in perturbation
theory in spinor electrodynamics, there is a formal
question about the applicability of our calculations to
to the SU(3) “‘o model” or any similar theory. Without
electromagnetism, the ¢ model breaks chiral invariance
in a well-defined way and has SU(3) symmetry. (It is
presumably renormalizable, although the proof depends
on the symmetry expressed by the axial-vector Ward
identity.) Now we add photons in a minimal way. Be-
fore there was no 7-3r vertex. Now, this vertex can be
computed in terms of the old (bare) coupling constants
and turns out to be one of our divergent eight-dimen-
sional integrals. The usual renormalization approach is
to add a counter term of the form \¢,¢.% to the La-
grangian. But this is not a counterterm to anything
which was in the theory to start with. The 5 — 3r
vertex is of order ¢2, but may be essentially uncalculable
from the theory if one takes this approach. The situa-
tion is similar to the impossibility of computing the
four-pion vertex \¢* in v; theory in terms of the #N
coupling constant.6

15 K. Johnson (private communication).

16 The idea that » decay proceeds by an effective direct 5-3x
interaction term, rather than by an anomalous term in the PCAC
equation, appears frequently. See, e.g., K. Wilson, Phys. Rev. 179,
1499 (1969); R. Brandt and G. Preparata (unpublished); N.
Cabibbo and L. Maiani, in Evolution in Particle Physics, edited by
M. Conversi (Academic, New York, to be published) ; R. Brandt,

M. Goldhaber, G. Preparata, and C. Orzalesi, Phys. Rev. Letters
24, 1517 (1970).
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In short, it might be that to assert PCAC to all orders
in a just does not make sense in models, and that trying
to compute an anomalous contribution to the »-37
vertex from the Fenyman graphs of these models is

simply not right.

II. yme VERTEX

We begin with a study of the nwo vertex and the
Ward identity satisfied by the axial-vector current.
Since we expect any anomalous behavior to come from
closed fermion loops, it is not necessary to complicate
the problem with the full paraphernalia of the o model,
or with SU(3) matrices. It is sufficient to calculate the
three-point vertex function of the sources of the g, 79
and ¢ in spinor electrodynamics.

Therefore we introduce a fermion doublet with field
¥, and define the usual isovector and isoscalar currents

Jji* =y,
Jr=5ry,
Jsi*=s0rtvstab,

Jst=30vrysb,

(2.1)

as well as the analogous scalar and pseudoscalar
densities

j=wr, =, 2.2)
Js=3Wystal, Js= 3. '
The isovector axial current is generated by
= —ie(Gr)ysd, &=—iGreys. (2.3)

The Lagrange density is the usual kinetic and mass
terms, plus the electromagnetic interaction

Lem= —€Ayjem, (2.4)

where

e =Py QY =2Q 7+ js*. (2.5)

Here @ is the average charge of the doublet. The part

of the Lagrangian which is not invariant under the
transformation (2.3) is (# is the fermion bare mass)

—2mj—eA yfom® (2.6)

and the “naive” divergence of js:* is
SL

ufsit = — =2mjs;—eeziAusit.
€;

(2.7

The neutral current satisfies
Oufs,3"=2mys,3, (2.8)
while the charged currents satisfy
(8,Fied,) fset=2mjsy . (2.9)

We want to study the vertex

Fs= 2m/d4xd4yd4z e iPn zgtive Ygtive o

X Tss() () s()1])  (2.10)

AND TEPLITZ 3

and its relationship to

F= / d*wd*yd*z e~ P g tire vgtive

]
X gx—#ﬂ TTjss(®) i) iss@]]). (2.11)

To get (2.10) from (2.11), the 9/9x* must be brought
inside the time ordering. One term is (2.10), and in
addition there are the equal-time commutators. The
result can be written

F:F5+F1+F2, (2.12)

where
d*xd*yd*z e 2give vginT-

X{| Tss# () j()7s(x)1])  (2.13)
from (2.11), F5 is given by (2.10), and

F= —ip,m/

F1+Fz=/d4xd4yd4z €~ P1 2piPo YpiPm T

X T =y [is,8'(x), () 17s(2)
X 8(a"—2)[ 75,5 (%),55() i) . (2.14)

The naive values for the two commutators are

3(x"—y)[75:°(x), 1 (v) = i8a(x—) jss(y),  (2.15)
8(x®—2")[755°(%), 75(2) J= —1ba(x—2) ja(2) , (2.16)
so that
Fi=i / dixdts e-ipregieton) v
X TLiss() 511D, (2.17)
Fy= —i/d"yd“z ¢i(pr—pm)-2¢ivey
XATLi ) ds)]) . (2.18)

We shall call (2.12) the axial-vector Ward identity.
It ought to be true in every order of perturbation theory.
In zeroth order, each term vanishes because of isospin
conservation, but it is useful to write down the formal
expressions. The graphs are displayed in Fig. 2. The
commutator terms correspond to bubbles which look
like off-diagonal terms in a mass matrix. The algebraic
expressions are obtained by replacing the currents in
the expressions for F, F;, F1, and F; by their noninter-
acting values [s(r)=[y-r—m] "]

F=—3i84(py—pr—"15)

x/d"r Tr{s(r)vss(r—pn)v: prysres(r—po)

+s(r)s(r+po)v - paysrss@+po)vsy, (2.19)
F1=%i64(pn—pw——p,)/d4r
XTr{s(r)vss(r+pn)ysrs}, (2.20)
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Fy=5i84(po—ps—po) / d'r Tr{s()s(r+-po)ra) . (221)

F5 can be obtained from (2.19) by replacing v-p» by
—2m.

An alternative derivation of (2.12) is instructive. Let
us abandon pure spinor electrodynamics and include
in our theory canonical ¢ and 7 fields (denoted o, ),
whose coupling to the y field is described by an inter-
action Lagrangian

£r="2g(jo-+ jon). (2.22)

(The equality of the three coupling constants is not
necessary for what follows.)

Now the divergence equation (2.6) becomes replaced

by

6,,j5¢”= ij,r,:;—2gdj5i+2g7]j,;—6€3q_'kA#j5k”. (223)

Let us compute the function

/ d*xdtydty e=iPn zgipe - vgirT:=

i}
X = T[n(2)jss*(@)e(y) 1), (2.24)
dxH

which is —ip,# multiplied by the 5 and o propagators,
times the o-n axial-vector vertex function. The deriva-
tive can be brought inside the T product, since the
current commutes with the canonical » and ¢ field
operators. Expression (2.24) is proportional to (2.11);
the proportionality constant is g? times the ¢ and
n bare propagators. Now inserting the right-hand side
of (2.23) for 9.7s* into (2.24), only the first three
terms contribute, and give, except for the same over-all
factor, the three terms on the right-hand side of the
axial-vector Ward identity (2.12).7

The point to notice is that the divergence of a current
and the commutator of its time component with other
densities cannot be independent.® An anomaly in (2.23)
must be associated with an anomaly in the commutators
(2.15) and (2.16), since either can be used to compute a
correction in the identity (2.12). The relationship should
not be surprising, since to calculate the divergence one
computed d£/8¢;, and the variation of each piece of L
depends on its commutator with the current’s time
component.

We need to calculate each term in (2.12) up to order
¢2, which means to treat the currents as free currents
and do perturbation theory twice with £e¢m. In the first
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F16. 2. Zeroth-order graphs for the axial-vector
Ward identity for the nro vertex.

method we must compute

i)
%(l T[755*(%) 5 () 75(2) Jem*(%1) FemP (202)
X Ao(w1)Ap(x2) ]| ),

which will involve the commutator

3(x®—y")[755°(%), fem*()]. (2.26)

The fact that there are no extra terms in the naive
Ward identity (2.12) can be ascribed, on the one hand,
to the absence of a term in e on the right-hand side of
Eq. (2.23) for =3, or, on the other hand, to the vanish-
ing of the commutator (2.26).

(2.25)

III. EVALUATION OF ne= VERTEX TO ORDER «

In this section we compute F, F;, F;, and F, to order
e?, in order to check whether the axial-vector Ward
identity (2.12) holds in perturbation theory. All the
quantities are unrenormalized. The zeroth-order terms
(2.18)-(2.21) vanish only because the charge-space
factor is Trrs=0. The terms to order e? all have a
common charge-space factor Trr;Q2=2Q. For conveni-
ence we take 2Q to be 1, as for a nucleon doublet, and
ignore this factor from now on.

F has six terms, corresponding to the six graphs in
Fig. 3, and six more from graphs in which the fermion
line runs around the other way. The two sets are equal
by charge-conjugation invariance. We write

F= éa—:154(p7r+P6_Pn)/d47'd4k D“,(k)F’”’(T,k), (31)
™

where D,,(k) is the photon propagator and

Fw=Tr{s(r)yss(r—pa)v- pryss(r—po)v*s(r—po—k)v's(r—p,)
+5(N)vss(r—pa)vs(r—pa—k)y's(o—pu)y - pavss(r—po)
+s(yis(r—k)ys(r)yss(r—pa)v - pyss(r—po)
() s(r—R)yss(r—pr—k)y's(r—po)y- payss(r—po)
Fs()vss(r—pa)vis(r—pa—Fk)y- puyvss(r—po—k)y's(r—p,)
Fs()vss(r—pa)v- pryss(r—p)vis(r—p.—k)s(r—k)y’} . (3.2)
7 1f Eq. (2.23) is used instead of (2.8) in working out the axial-vector Ward identity from (2.11), there will be two additional terms

in (2.12), coming from the extra terms 2¢(yjs—ojss) in the divergence. Therefore, there is not a one-to-one correspondence between
the terms obtained from the two methods. The new terms are of higher order in g and do not enter into our lowest-order calculation.
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Similarly, to this order
a
Fs= 8——364(pr+p,—pn)/d4rd4k D, (k)Fs(r,k), (3.3)
T

where F:# can be obtained from F* by replacing v p«
with —2m. Finally, /1 and F, come from the three
graphs in Fig. 4.

(01
F1,2= ;54(?,,-—*—?6—?1,)/‘(141’(1416 D,w(k)F1,2“"(1’,k) , (34)
™

where

Fy o =Tr{s()Ts(r—pn,e)v*s(r—pn.o—k)y's(r—pn.)T
+s()ves(r—k)y's(r)Ts(r—py,) T+s(r)yv*
Xs(r—k)Ts(r—py,e—k)y's(r—pn,o)T'},

where I' is y5 in F1#* and 1 in Fy*.
To evaluate F*, we use the algebraic identity

—y - pwys=2mys+s (p—po)ystyssTH(p) (3.6)

in each term of Eq. (3.2) to obtain a decomposition of
Fw and therefore of F [s(p) is the propagator
(v-p—m)~']. The six 2my; terms simply give Fs#. Of
the remaining 12 terms, six are Fy*+Fy*. Thus we
obtain

(3.5)

Fw=F g Fywt Fyrt- A, (3.7)

where A# (the anomaly) is the remaining six terms in
the decomposition of F# using (3.6):

Ar=Tr{s(r)vss(r—pn)vsy*s(r—po—k)y's(r—p cr)
+5(#)yss(r—pa)vis(r—pa—k)yyss(r—p
+S(r)v“S(f—k)v.—sS(r—Pn—k)v”VsS(f—Pa)
+5(r)yss(r—pa)viyss(r—po—k)y’s(r—po)
+s()vss(r—pavts(r—p,— )stS(V—m)

+5()yss(r—pa)ysvis(r—po.—k)s(r—k)y} . (3.8)

DICUS,
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If A»=0, then (3.7) implies (2.12) and there is no
anomaly. In expression (3.8) the first term cancels the
fourth, and the second term cancels the fifth, leaving

Aw="Tr{s(r)y*s(r—k)vss(r—py—k)y"vss(r—ps)
+5()yss(r—pa)vsyts(r—po—k)s(r—k)v'},

which is not obviously zero. From the cyclic property of
the trace and the symmetry of D,,, the second term of
(3.9) can be slightly rewritten; the anomaly, which is
an integral over D,,A*, is proportional to

(3.9)

A= / d*rd*k D, (k)

XTr{s(r)v*s(r—k)vss(r—pa—k)yvss(r—ps)
—s(r—k)y*s(r)vss(r—pa)y*yss(r—p.—k)} . (3.10)
This would be zero if one could make, in the second
term, the changes in the integration variables £ — —&,
r—r—k.

Each term in the integral (3.10) is convergent in 7»
for fixed k, and logarithmically divergent in % for fixed
7. In single integrals like

/ d*k

[(k—p)*—m* ]
the origin in %2 may be shifted without changing the
integral’s value, independently of the cutoff method
used to define it. However, we shall see that the analo-
gous remark is apparently not true for integrals of the
form of each term in (3.10); the value of A depends on
the cutoff procedure and on the order of doing the inte-
grations.

To simplify the algebra, let us evaluate 4 at the point
where it might contribute to a low-energy theorem,
namely, p,=p,=p or p.=0. First, we evaluate 4 in the
Feynman gauge, D,,(k)=—g,. We return to the
question of gauge invariance in Sec. IV. Then

(3.11)

2 k4+-20r—k) k—Fk-p

a‘k
A =16m? f dr—

B =)=k —m T —p— k) —mt L —p)?

At p=0, one may easily do the 7 integration first and
get, by the Feynman parameter method,

\ 4k z(l—-z)(Zz—l)
A A /5

Fie. 3. Graphs for radiative corrections to F.

. (3.12)

as one must, since 4 is convergent in 7 for fixed k.
However, let us instead do the % integration first, as
suggested by the renormalization prescription of com-
puting all radiative corrections to propagators and
vertices, and then inserting these into skeleton graphs.
(We do not discuss the renormalizability of the axial-
vector vertex here.) Then, again at p=0,

d4
A=32m?
m f il

18 This is sufficiently general, since 4 (ps,p,)—4(0,0) is con-
vergent in either » or £, and so is zero because shifting the origins
is now legal. The same is true of the analogous choice made just
before Eq. (5.10).

(3.14)
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where
P dtk 2r-k—k?
v)= —_———
B [(k—r)—m]

d*k
i fo

B ~/ (k2 —m?)?

1 1
x<(k2-—m2)2 B [(k—r)2—m2]2>
d*h
k2 [(k—r)2—m?]>

r-k

(3.15)

The divergent constant is isolated in the first term in
(3.15). The second term is unambiguously zero. The
third term is finite and may be computed by standard
techniques. Thus

d*k
—f(f)=/m

! dz
+2i7r2<1+(1'2—m2) / —-———>
o [72(1—3) —m?]

/‘ d*k
- (F2—m2)?

72

To define the divergent term, and the now-divergent
r integration, cutoffs must be introduced. First let us
define them by rotating the %° and #° contours in the
usual way to get Euclidean metrics, and then integrate
the magnitudes of the two four-vectors up to the
cutoffs:

/ a4k f(B*R,) — 2ir / Bk f(—k?),  (3.17)

/d“r flrtr) — Ziﬂ/ ridr f(—7%). (3.18)

0

v

We use this prescription only for divergent integrals,
and keep only terms which do not vanish as A, M —0.

Then

/ M D(A) (3.19)
(k2 —m?)? ’
and
dYr
/ - — D(M), (3.20)
(72 _m2)2

where

D(x)=1wYIn(x2/m?) —1]. (3.21)

Both cutoffs are taken as constants; e.g., A is not a
function of ». Therefore, the cutoff double integration,
though finite for finite A and M, is not obviously zero
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under the substitutions £ — —k, » — r—*k. In fact,

A=32m[D(M)D(A)+2iw?D(M)+D"], (3.22)
where!?
d*r m?
D' =22 / In
(7’2“‘7%2)7'2 m?_rZ
Mo x3dx m2
= —4grt n:
0 (x2+m2)x2 x2+m2
=gt In2(M2/m?). (3.23)

As A,M —w, A — unless A is a particular function
of M. For example, if A=M, A= —32x*m? If A? is
asymptotically proportional to M?2exp[1/InM?], 4 is
finite, and can be made exactly zero by choosing
A2= M2 exp[In(M?2/m?) —1]7

This result does not depend on the cutoff procedure
(3.17) and (3.18). If instead the divergent integrals are

defined by
A2
d*k f(k d*k k),
[k s [are—s

[ars0— [ d4r££;f<r> ,

the functions D and D’ are the same for large A and M
(see the Appendix).

We conclude, therefore, that without further restric-
tions on the definition of 4, 4 is not in general zero, and
is in fact generally infinite.

Finally, one might think that the correct way to de-
fine these integrals is to cut off the & integration alone,®
and do it first; we show in the Appendix that 4 is still
ambiguous and not generally zero even with this
procedure.

(3.24)

(3.25)

IV. GAUGE INVARIANCE IN nmo VERTEX

We argue next that F, F;, Fi, and F, ought to be
gauge invariant, and therefore that the anomaly 4,
defined by (3.10), must be gauge invariant also. The
quantities F and Fjs are off-shell matrix elements of
neutral densities, and Fy and F, are electromagnetic
contributions to combinations of mass shifts and mixing
angles. To the extent that all these quantities are ob-
servable, they should be gauge invariant.

Now 4 has the remarkable property that, if the same
cutoff method is used in the gauge-independent and

I'16. 4. Graphs for radiative corrections to F; and F,.

1 Here #2 means 7¢*—r?%, while x is a real variable, obtained from
()12 by rotating the 7o contour. The extra terms present inn —
w+tr~x® are convergent and therefore unlikely to have anomalous
behavior,
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Fi16. 5. Zeroth-order graph for n — 3, and
new-type second-order graphs.

gauge-dependent terms, 4 must be zero if it is gauge
independent. Let us see how this comes about. It will be
sufficient to discuss covariant gauges,

Dy(k)= (—gutakuk,/k?) k> (4.1)
and to restrict @ to be a constant. Then A= A+ ad,,

where
d*k
A= ——/d‘*r;A”u (4.2)
and
a*k kyk,
A2=fd4r-— Ar, (4.3)
k2 k?

Gauge invariance requires 4,=0. Let us first examine
the relationship between 4; and 4, at p,=p,=0. Then
A#* must be a sum of scalar functions of  and # multi-
plied by tensors g, r#, k*k?, r*k*, and k*7*, respectively.
It is easy to see from (3.10) with p,=p,=0 that only the
g* term occurs. Therefore,

Ak, = (A by k) A

and 4= —44,; both pieces vanish simultaneously.

The argument can be extended to p, p,#0. For
simplicity let us take p,=p,=p. It follows from (3.10)
that the only additional tensors which occur are pro-
portional to p* or p*, i.e., there are no terms in r#,
r#k?, k*r*, or k*k?. Now A has the form

Av=gw[As(p, 7, 7—k)—As(p, r—Fk, 7)]
+[:BW(P) 7, "_k)‘_B'"(P, 7—k7 7’)], (45)

where the tensors occurring in B# are p#r, r4p*, k*p’,
and p#k’. The tensor B* is sufficiently convergent that

(4.4)

d*k
f LB, 77— D = Blp, =y 1)]

d*k Bk
- / B9, 1,71

_B#V(]j, 7'-k: 7')]:0)

(4.6)

i.e, only the term in g# is so divergent that it contributes
to the anomaly; arguing as above, Ai;= —44, stil],
and gauge invariance implies 4 =0. The proof of (4.6)
is easy, although not trivially immediate. The point is
that dimensionally a coefficient of p* must be more con-
vergent than a coefficient of g#. The argument can also
be extended to p,#p,, and is therefore general.

AND TEPLITZ 3

For completeness, we display the gauge-dependent
parts of the right-hand side of the axial-vector Ward
identity (2.12). Like A, the value of the individual
pieces depends on the method by which the divergent
integrals are defined. Quantities (like 4, above) pro-
portional to the gauge-dependent parts of F, Fs, Fi,
and F; may be defined as

\ d*k kyk,
G /d rk2 - Fr(prk), 4.7

\ d*k kk,

= R

Ga /d rkz 2 F5 (j),?’,k), (48)

Ak

= SRR ")
Gus f PR ). 69
Then

G=G51+G1+Got A, (4.10)

is an algebraic identity.

G ought to be zero, since it is the gauge-dependent
part of a more-or-less observable quantity. It can be
obtained from Eq. (3.2) by replacing v- p, with —2m
and contracting with %k#&”/k2. The resulting trace looks
formidable, but can be unraveled using the identities

s(p)v-ks(p—k)=s(p—k)—s(p)=s(p—k)y-ks(p) (4.11)

and
/ S&R)s(p)y-ks(p—Fk)y-ks(p)d*k

- / [5(p—B)—s(p) (B, (412)

The second identity (4.12) is not completely general
but depends on the validity of symmetric integration
in the k& variable. After some algebra, one obtains

d‘k
Gs= —-Zm/d‘*r—];— Tr{[s(r—Ek)yss(r—pn—k)vss(r—po)

—s(r)yss(r—pa)vss(r—po—Fk)]
+Ls()yss(r—pa—k)vss(r—po—Fk)
—5(r—k)yss(r—pn)yss(r—1ps) ]
+Ls(r—k)vss(r—pa)yss(r—po—Fk)
—$()vss(r—pa—k)yss(r—p,) 1} . (4.13)

Each term in brackets would vanish if the change of
variables r—k <> r were permissible. Thus, vector gauge
invariance is subject to the same ambiguity as the axial-
vector Ward identity. In particular, G will not be zero
under any of the cutoff procedures discussed above
except those which also give 4=0.

Similarly, the gauge-dependent parts of 1 and F, are

d*k
G1=/d4r—];4- Tr{s(r—k)yss(r—p,—Fk)vs
=s(r)yss(r—pa)vs}  (4.14)
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and

d*k
Gzz/d41’-;a: Tr{s(f'——k)S(?’—Pu“‘k)

—s(r)s(r—po)} -
V. n— 3= AMPLITUDE

(4.15)

In this section we study the analogous calculation for
the process of y — 3w, without an intermediate ¢ meson.
In order to avoid having to consider photon-pion ver-
tices, we restrict our calculations to 7 — 37° in a model
similar to the one considered in the previous sections;
again, we look for anomalies in the fermion loops; i.e.,
we wish to compute graphs like Fig. 5, and their lowest-
order radiative corrections.?

Analogously to the second method described in Sec.
II, we could obtain the relevant axial-vector Ward
identity by adding to the interaction Lagrangian (2.22)
a term of the form 2g¢;7s:;, which would add an explicit
term 2g¢;j to 9.7s* in (2.23). However, it is just as
simple to use the commutator method of the first part
of Sec. II, so that the divergence is still given by Eq.
(2.8), and compute the four-point function for the
sources of the four mesons:

Ts=2m / dhwd*xd*ydis eiri-veiri Teivk - yg—ivy 2

X T jsa(w) 7sa(x) 7s3(v) js(2) 1))

where p;, p;, and pi are the momenta of the three final
0%s.

We need the relation between T'5 and 7', defined by

(5.1)

T= —ipiu/d“wd“xd“yd“z iPi WgiPi 2gik-Ugipy 2

X TCjss(w) jss(®) 150 75(=) 1) (5.2)

The factor —ip;, is equivalent to d/dw* acting on the
vacuum-expectation value. Bringing this derivative
through the time ordering, we obtain

T=Ts+TW+T@. (5.3)
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I'16. 6. Labeling of momenta for r-p
graphs which enter T+, i i

P,] ’/ t’+pj+pk \Pk

The first term on the right, Ts, comes from 8, 75s*(w)
and is essentially the n— 3w amplitude. We have
arbitrarily chosen to write the PCAC equation for the
first pion (with momentum p;). Any anomalies in a
perturbation-theory evaluation of. (5.3) ought to carry
over into a more realistic field theory, e.g., one with
PCAC, and could explain the n-decay puzzle.

The term T™ comes from the commutator (2.16),
and looks like a verfex, scalar isovector — 27 rather
than a two-point function as in the previous case. T'(™
is really two terms, coming from the commutator of
753%(w) with jss(x) and jss(y). This commutator is a
scalar, isoscalar density, so 7(™ is proportional to the
nmo vertex already discussed. All of the terms violate
G parity, and so vanish without electromagnetic correc-
tions. We shall evaluate them to order e2

The topologically distinct graphs in the vertex terms
consist of two distinct fermion traiangles, each with six
photon insertions, as before. The graphs contributing to
T and T’ have four-vertex fermion loops, each with ten
possible distinct photon insertions; there are six possible
permutations of the external momenta on the fermion
loops, for a total of 60 graphs. Of the ten photon in-
sertions, eight are propagator and vertex corrections;
the two others are the skeleton graphs of Fig. 5. These
graphs are the new feature of this amplitude.

It will be sufficient to compute the insertions to one
of the six permutations of the meson momenta. The
remaining ones follow from symmetry considerations.
We use the order indicated in Fig. 6, and omit the
charge-space factor, as before. The integral for T is
proportional to

ak
/ d4r—]e—2D“,(k)T“”, (5.4)

where

Tw= —=Tr{s(r)y*s(r—k)v's(r)yss()yss(r+p;)yss(r+pi+ pi)yss(r— pi)y - pivs
F5(r)yss(r+pi)vs(r+ pi—k)y's(r+ pi)vss(r+pit pr)yss(r—po)y- pevs
+5()vss(r+p)vss(r+pit pr)yis(r+ pitpr—k)y's(r+ pi+ pi)vss(r—p)y - pevs
F5()vss(r+pi)vss(r+ pitpi)vss(r—pvis(r — pi—k)y’s(r—pa)v- pivs
Fs@)yrs(r—k)vss(r+ pi—k)y's(r+ pi)yss(r+ pit pi)vss(r—piy- pivs
+5()vss(r+p) v s(r+ pi—k)vss(r+pit pr—k)y’s(r+pit pi)vss(r—pi)y - pivs
+5(N)vss(r+p)yss(r+ pitpi)vis(r+ pit pe—k)vss(r— pi—k)y’s(r—pi)y - povs
+5()vss(r+pi)yss(r+ pit pi)yss(r—povis(r—pi—k)y - pevss(r—Ek)y’
+s()yts(r—k)vss(r+pi—R)yss(r+ pi+ pr—k)Y’s(r+ pi+ pi)yss(r—piyy - pivs

F5()yss(rtp)vis(r+ pi—k)vss(r+ pitpr—k)yss(r—pi—R)v's(r—p)y- pivs} . (5.5)

* The extra terms present in 4 — x*r "0 are convergent and therefore unlikely to have anomalous behavior. Here 72 means re—72,
while x is a variable, obtained from (21”2 by rotating the 7o contour.
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The first four terms are the propagator corrections. The next four are the vertex corrections and the final two

are graphs like Fig. 3.
These terms can be unraveled using

—s$(r—pi)y- pivss(r)=2mys+yss(r)+s(r—po)ys,

(5.6)

which is just another form of (3.6). The 2my; term gives the contribution to 7’5 on the right-hand side of (5.3)
appropriate to the chosen permutation of external momenta. The remaining terms should simply be proportional

to (one-sixth.of) 7MW+ 7™,

Each of these vertex functions has six terms to this order, while there are 20 terms obtained by replacing
—s(r—pa)v- pivss(r) by vss(r)+s(r—pi)ys in each of the ten terms in (5.5). Six of these 20 terms contribute to
T®, and are simply the radiative corrections to Fig. 7(a):

Tr{s(r+ pi)vis(r+ pi—k)v's(r+ pi)yss(r+ pit+ pr)vss(r—pi)
Fs(r+pi)yss(r+ pit pr)vis(r+ pit pr—k)y's(r+ pit pr)vss(r—pa)
Fs(r+pvss(r+ pit pi)vss(r—pa)yis(r—pi—k)y's(r—pi)
Fs(r+p)vis(r+ pi—k)yss(r+ pit pu—k)y's(r+ pit pr)yss(r—ps)
Fs(r+pi)vss(r+ pitp)vis(r+pit pr—k)yss(r—pi—k)v's(r—ps)

Fs(r+p)vis(r+pi—k)vss(r+pitpr—k)vss(r—pi—k)y's(r—p)} .

(5.7)

Similarly, six of the 20 terms contribute to 7™, and are the radiative corrections to Fig. 7(b):

Tr{s(r)y s(r—k)v's(r)yss(r+ p;)vss(r-+ pit+pr)

+s)vss(r+p)vis(r+pi—k)v's(r+ p)vss(r+ pit pr)
Fs()vss(r+ pi)vss(r+pit po)vis(r+ pit pe—k)y's(r+ pit pr)
+s()yrs(r—k)yss(r+ pi—k)y's(r+ p)vss(r+ pit i)
+s()yss(r+pi) v s(r+ pi—k)vss(r+ pit+ pe—k)v's(r+pi+ pi)

+-s(r)vistr—R)yss(r-+pi—k)vss(r+pit+ pr—R)y's(r+pit+pi)} -

The necessary symmetry in p; and p; will not appear
until we add together the permutations of the external
legs.

In both (5.7) and (5.8), the sixth term in the trace is
the vertex correction to the scalar vertex and, unlike
the other five terms, does not have the standard form
of a vertex insertion; the loop momentum % runs around
the long way instead of around the vertex. If the in-
tegrals into which (5.7) and (5.8) are to be inserted were
convergent, the result would be the same; but here we
must be more careful. The expected form can be ob-
tained in each case by the now-familiar substitutions
k——k,vr—r—Fk.

Thus, the “error’” in 7™ is

Tr{s()y*s(r—k)yss(r+pi—k)yss(r-+ pj+ pr—Fk)
Xy's(r+pi+pr) —s(r—R)y*s(r)vss(r+ p;)

Xyss(r+pitpe)v'sr+pit+pe—k)} . (5.9)

T

» ) pk
r+pi+p YD !
r+pj r-pi
PP, PP,
(a) (b)

T16. 7. Labeling of momenta in commutator terms
occurring in Eq. (5.3). (a) T®; (b)T™,

(5.8)

Since the difference (5.9) does not unambiguously
contribute zero to 7™, we must consider it as a con-
tribution to the anomaly, provided that the correct
way to define all these corrections is indeed to let the
momentum £ go around the short loop. This is an
arbitrary prescription without a complete renormaliza-
tion scheme, but let us tentatively adopt it and investi-
gate the consequences.

We evaluate (5.9) in the Feynman gauge, i.e., con-
tract with —gu, and set p;=p;=p;=0.13 Then the
“error” in T(™ becomes

Tr{s(r—k)v*s(#)yss(r)vss(r)y,s(r—k)
—s(r)vis(r—k)vss(r—k)yss(r—k)vus(r)}
16m(k2—2r-k)

= . (5.10)
[o—Br—mRr—mt

Equation (5.10) has the same form as the gmo
anomaly, so we know it is not unambiguously zero.

Another anomalous contribution to the right-hand
side of (5.3) comes from the similar “error” in the last
term of (5.7). Replacing this term by the correct scalar
vertex correction in 7™, we obtain the difference

Tr{s(r+pi) v s(r+pi—k)yss(r+ pi—k)vss(r—pi—k)
Xy's(r—pi) —s(r+ pi—k)v*s(r+pvs

XS(7+Pj+Pk)75S(1'—Pi)’YVS(1’—p,;—k)} . (511)
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Again, contracting with —g,, at p;= p;= pr=0, expression (5.11) becomes
—16m(k2—2r-k)

(5.12)

[(r— k)z__m‘zjz(rz__mz)z’

as before.

There remain eight terms in the expansion of (5.5) still unaccounted for. Four of them cancel algebraically,

leaving an additional contribution to the anomaly

Tr{s(r—k)yss(r+ pi—k)y's(r+ p)vss(r+ pit+ pr)vss(r— po)ysr*
+s()yss(r+pi)vis(r+ pi—k)yss(r+ pit pu—k)yss(r— pi—k)yvs
F5@)yss(r+ pi)yss(r+ pit p)yis(r+ pit pr—k)yss(r— pi—k)v'vs

+5(r—k)yss(r+ pi—k)yss(r+ pit+ pr—k)v's(r+pit pr)yss(r—pi)ysy*} -

Because of the symmetry of D,,(k), v* and 4* may be
interchanged in the second and fourth terms of (5.13).
Then it is easy to see that (5.13) would contribute zero
to the integral over » and % if &k — —k, r — r—Fk, were
permissible.

As before, we evaluate the trace in (5.13) with the
external momenta set to zero, and contract with —g,,.
The result is

32m(k2—2r-k)

L=k =m? T —m?)*

(5.14)

Thus, the apparent errors in the scalar vertex cor-
rections to 7™ and T cancel exactly the explicit
terms remaining from the expansion of s(r—p;)y
- piyss(r), and the anomaly is zero independently of the
cutoff procedure in the Feynman gauge.

Finally, let us check the gauge invariance of T,
T@, and T. Each is a physical quantity, and so
should be gauge invariant.

We use the general gauge (4.1) in Eq. (5.5), with
v+ p; replaced by 2m, and in Egs. (5.7) and (5.8), and,
as in Sec. IV, reduce the result using the identities
(4.11) and (4.12). In each term, the coefficient of a
turns out to depend upon the integral

d*k 2r-k—k2
/d“r/ —(m2—ritr-k) (5.15)
k4 (7'2“‘7%2) 2[(7’—k)2 _m2]2

for p;= p;= pr=0. But this integral is exactly the same
as the one occurring in expression (4.13) for Gs, evaluted
at po=p,=0, and so is the same type as the integral
(3.12) for A. In particular, therefore, the same cutoff
methods which make A vanish make the integral (5.16)
zero also.

Thus, although there is no ambiguity in the n — 37
amplitude, there is an ambiguity in the gauge-depen-
dent parts of T, T, and 7™, which must be defined
to be zero.

VI. ORDER-¢2 CONTRIBUTION TO AXIAL-VECTOR
WARD IDENTITY FOR =— 2+

Thus far we have studied one case, n — om, where
the physical amplitude and the gauge-dependent part

(5.13)

were each ambiguous by a divergent integral of the
form

/ drd R f(r k) — f(r—F, —k)], (6.1)

and another case, n— 3w, where only the gauge-
dependent part was ambiguous by a term like (6.1).
Finally we want to consider 7° — 2v; here we will find
that there is no ambiguity of the form of (6.1).

In order o2 the relevant axial-vector Ward identity
relates the physical amplitude

szpm"klakngﬁ(kl,kz)
- / d*k D, (k) / dtxdtyeit wgi itk v

XYk 1015 'Y,k2p2| T[].53(y)jem“(x)jemy(0)]| ) (6.2)
to the quantity

er2r129py koo T (k1,ks)

=/d4k D,w(k)/d"xd“y gtk zgikrtke) v

d
X ;'9—"<'y’k11>1; 77k2P2| Tl:j53n(y)jem“(x)jemv(o)]| ).
y
(6.3)

If the commutator (2.25) vanishes, then these two
expressions must be equal; this is what we want to
check by evaluating (6.3) in perturbation theory. We
calculate the order a? part of the graphs shown in Fig. 1
[where p. now connects to v- (k1+k2)] and choose the
momentum as shown there. Then

ele"“’klakzﬂT(k"kZ)=/d4r/d4k

XDy (k) TP (rk) ,  (6.4)
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Tezeww(y k)= "Tr{s(r)v*s(r —k)y’s(r)y*2s(r —

+s(r)yrs(r—

AND TEPLITZ 3

ko)y - (kit-ko)yss(r-+ky)y
k)ye2s(r—ka—k)y's(r—ko)y - (kitko)yss(r-+ka)y*

Fs()yers(r—ko)yis(r—ka—k)y's(r—ka)y - (krtko)yss(r-+ka)yo:

+s(r)yers(r—

ko)yts(r—ko—Fk)y - (Ritko)yss(r-+ki—k)y's(r+k1)y

Fs(r)yrs(r—ko)y - (katko)yss(r+ko)yes(r+ki—k)ys(r+ka)y*:

+s(r)yPrs(r —ka)y - (Ratko)yss(r+ka)y#s(r+ki—k)yors(r—k)y =+ (k1,p1 <> ka,p2)} .

From the identity (5.6), the 2mys term is precisely
the desired quantity (6.2), but again there is something
left over. The part left over, 4721 must have the form

A p‘“"(kl,kg) = e“pm”/hakz,A (kl,kz) (66)

and is given by

Apzpl(kl,k2)=/d47’/d4k D,,(k)

XTr{s(r)y*s(r—k)yr2s(r—ka—k)y"yss(r+ki)y*:
+s(r)yrrs(r—ka)vsy s(r+ki—k)yris(r—k)y
+(ky, p1e> ko, p2)} . (6.7)

Again this would be zero if we could let k£ — —&,
7 —r—Fk in one of the terms.

If we now expand the propagators which depend on
kq or ks, using

s(r+k1) =s(r) —s(r) kis(r)+higher order in k1, (6.8)

where s(r)=(r—m)~!, then only the second term con-
tributes. The first term cannot have the form (6.6)
while the higher-order terms are convergent integrals
with the change of variable allowed. But if we put the
second term of (6.8) in (6.7), and introduce a Feynman
parameter to make the denominators functions of %2
and 7? only, then the integral 4712 is zero by symmetric
integration independently of how it is regulated. Thus
we find no ambiguity in the axial-vector Ward identity
for the O(a?) contribution to 7°— 2y.

In addition, the perturbation-theory expansion of
(6.2), i.e., (6.5) with v-(ki+ks) replaced by 2m, is
both externally and internally gauge invariant, as can
be shown by multiplying by ki,,, ks,, or setting D, (k)
=kyk,/k?, and using the identities (4.11) and (4.12).
Thus we find no ambiguity of the form (6.1) in 7° — 2.

VII. CONCLUSIONS

We have searched for an anomaly in the 5% vertex
and in the pr%%° vertex, and found ambiguous ex-
pressions whose most natural values are zero. In the
first case, we conclude that if all ambiguous integrals
are to be evaluated in the way which ensures electro-
magnetic gauge invariance, the ‘“‘naive” axial-vector
Ward identity is satisfied. In the second case, we reached
the same conclusion under the assumption that di-
vergent integrals for certain graphs are to be defined by

(6.5)

requiring the internal loop momenta to appear in a
consistent way.

It is evident that there is no clean result of the sort
presented by Jackiw and Johnson* and by Adler.2
Although our results suggest that PCAC should hold
to order e? for the vertices we have studied, in models
of the sort discussed, it is apparent that a serious study
of the renormalizability of the axial-vector vertex in
such theories is necessary to understand the nature of
the n-decay paradox. It would certainly be useful to
reexamine these questions using the split-point de-
finition of densities bilinear in fermion fields®4—al-
though perhaps the effect would be simply to translate
our results into another language.

We have also used our methods to compute the gauge-
dependent terms of the 5— 37° vertex and other
quantities which appear in Eq. (5.3), as well as the
order a? corrections to the anomaly responsible for
70— 2y. As for the ymo vertex, the gauge-dependent
terms of (5.3) are not individually unambiguously zero,
even though they are more or less observable quantities.
In contrast, the corrections to the axial-vector—2y
vertex are individually internally gauge invariant,
without any special definition of the cutoff procedure.
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APPENDIX

First we show that with the cutoff procedure defined
by (3.24) and (3.25), expression (3.22) is obtained for
A. Tt is necessary only to calculate D and D’. Instead
of (3.19), we have

ak A?
D@A) =+ / — . (A1)
(k2_,m2)2 k2+A2
We introduce the Feynman parameters as usual:
D)= 2A2/d4k/ dxf dy x6(1—x—1y)
+[k2—wm?4-yA2]3
= —I—urZAZ/ x[ (1 —x)A2—xm? 1
0
= —in? In(A%/m?) (A2)



3 WARD

plus terms which vanish as A —, in agreement with
(3.21); and similarly

D' =+2i 2/ dr /1 dz M?
=i -
(r2—m?) Jo r*(1 —2)—m? r2+M?

1 1 1—2
= —27r4M2/ dz/ (lx[ dy (1—zy)~2
0 0 0

X[xe(m2+M?2)—m2Tt. (A3)
The y and z integrations are elementary:
2riM® t Inx dx
D=—— e = (A4)

m M2 Sy otm?/ (mi+ M)

Substitute £=x4m?/(m*+M?), and expand the new
limits of integration in powers of m?/M?, keeping only
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first-order terms:

Hm2 M2 Ing-In(1 —m2/M2E)
D= +27r"/

dt. (AS)

+m?/ M2 £
The second term is a constant as M2 —oo, The first is
H+m2[M? g M2
—7t / —(In2¢)dg =74 ln2<——> ,  (A6)
ymt m? dE m?

in agreement with (3.23).
Finally, let us define 4 according to the procedure
suggested at the end of Sec. I1:

'k A? 1 1
A= / dr— -
k* B2—A2 (r*—m?) (k—r)2—m?

1 1
x( -—) @
(r—Fk)2—m? r2—m?

and do the % integration first. From (A7),

dy(a—7)

1 I—a 1—a—f
A =24/(i41’d4k/ (la/ dB/ —
0 0 0 LA —y)k2—

Integrating over k, and then over 7, and making some
algebraic substitutions, one obtains from (A8)

1 1 1
A=7r4A2/ dx/ dy/ dz
0 0 0
(

2z—1) 1

[ey(e —~5+1) =11 A2(1—y)+my’
Substituting 2 — 1—z, one obtains 4= —4, and there-
fore apparently 4=0. This is not correct, however,

(A9)

BAH-(1—a—B) (P —m?) — (1 —a+8—7)(2k-N T

(A8)

since the integral diverges near xy=1, 3=0, or z=1.
To define the integral, replace the z integral by

’

o1 I—e
dz— dz.
0 €>0;¢/ >0 .

lim

(A10)

Then 4 is in general a logarithmically divergent func-
tion of e and ¢, and is zero only under the arbitrary rule

=¢'. The divergence is due to our failure to introduce
an 7 cutoff.



