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c have shown that thc Adlcl coQdltlon ls R natural consequence of duRlity. However, contiRi'y to thc
usual expectations, it is not related to the existence of partially or totally conserved currents.

The dangerous pole terms for this amplitude are'N spite of all the difhculties encountered in construct-
ing a I'cRsoIlRblc duRl-I'csoDRDcc models the 1csults

obtRlncd up to no%' sccID to rcBcct SOInc Rspccts of thc
physical world. %C should like to report in this paper
one further attractive property of the model, namely,
that the Adler' condition is a natuxal consequence of
duality. ' As will be shown later in the paper, this result
does not imply the existence of a, partially conserved
current. This is rather remarkable since our usual belief
was that ln soft-pion cRlculRtloIls, partlRl conservation
of axial-vector current (PCAC) plays a dominant role.
%C think a deeper understanding of the situation is
necessary before wc can draw any general conclusions
on thc basis for the Adler condition.

I.ct us start with the simplest kind of dual model

where there is only one trajectory for the internal and
external Uncs and where the external particles of positive
parity are in the ground state. (The external particles
can also be taken of negative parity but this implies a.

parity doubling of the trajectory. ) The Adler condition
ln this case IncRDS that thc RIIlplltudc goes to zeI'o whcD

the energy-momentum four-vector of one of the external
particles goes to zero except for possible pole terms. I.ct
us first see that this is indeed the case for the four-point
amplitude (Fig. 1, %=4):

+
n(s) n(t)

when k~„-+0, i.e., when n(s) and n(t) -+0. By explicit
calculation wc can show that

I'(—n(s))l'( —n(t))
— -+

I'(—n(s) —(t))
+— — 0. (3)

n(S) n(t) a(s)~o;a(s)~o

Next we consider the general E-point tree graphs'
(Fig. I). In the operator formalism of Fubini, Gordon,
and. Veneziano4 this can be writte~ as

«!G~("».~(» I»,
where thc vertex

(4a)

p.=p(P.)= e&'ate&aa (4b)

g(s.) — s—a(ss)+Bs—1(l s)a(0)—lies ) (4c)

I (—n(s))l'( —n(t))

I'( —n(s) —n(t)) -«IG~("b. l0)
n(st)

RIld 6 RI'C defined 1I1 RCf. 4. SlIlCC wC R1C RllowiDg

k~„-s0, we must subtract from (4) the two following

(]) pole terms:

FIG. 1.S-point function
I s;= (ko+ki+kg+. - ~ +k;)', t = (kg+k2)'j.
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f Present address: Institute for Nuclear Study, University of
Tokyo, Tanashi, Tokyo, Japan.' S. L. Adler, Phys. Rev. 137, 81022 (1965).

~Adler condition in connection with dual model was first
considered by C. Lovelace, Phys. Letters 288, 264 (1968).
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where y(1+2) = 8( I+ 2)~~8(~'+~'. )~. Thc erst terITi ls thc
scalar pole term in the s1 channel and the second the
sca,la.r pole term in the 3 channel. Before proceeding, let
us clarify our limiting procedure. Since yi is not the

3 K. Sardakgi and H. Ruegg, Phys. Letters 288, 342 (1968);
M. A. Virasoro, Phys. Rev. Letters 22, 37 (1969); C. Goebel and
B.Sakita, ibid. 22, 257 (1969);H. M. Chan and T. S. Tsun, Phys.
Letters 288, 485 (1969);Z. Koba and H. S.Nielsen, Nucl. Phys.
10/, 633 (1969).

4 S. I'ubini, D. Gordon, and 6, Veneziano, Phys. Letters 298,
679 (1969};V. Nambu, Univex'sity of Chicago Report No. EI'I
69-64 (unpublished).
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where (DIP &~~ means the partition states

{ig,i2, . .
I
.Qmi =1V).

We observe that rn the hmrt kr„~O and a(0) ~0,
the f~~&'s are not singular. We must then show that

(OI P(N)&kyat(s )+ IO)+ (DIP(iv)eTi&at
I 0)

(~)

If (OI P &~& is the vacuum, this reduces to the four-point
case and has already been proved. If (DIP &~'W(OI, we
have for the erst term

(DIP& ~s .~(s,)~, IO)

s—n {sa)—1(1 &)
u (0)—1

&((0IP ~~'e"" exp(kyat ~"'s"/ge)
I 0)

where we used the explicit form for (OI P~~~:

The second term in (8) is simply

—(kg„)'"~ ~ (kg„)'~ (1—~) ~'i—'dz (10)

correct vertex when k» goes o6 the mass shell, we should
be careful to stay on. the mass shell. This can be done

by putting n(0) ~0 simultaneously as we let kq-+0.
Also, since the propagator is singular in the limit of
n(0) +0, we could not have allowed n(0) ~0 before
allowing k» —+ 0. Now let us use the following expansion:

(Ga(s,)e&.t= P y(~)(OIP~"&,

I'ro. 2. Vertex function.

goes to 0 when k»„—+ 0. This proves the Adler condition
for the X-point scalar function. This result is also
clear]y true if the E-point scalar function contains
internal loops. '

Let us compare our results pertaining to the Adler
condition with the usual results of the PCAC case. For
this purpose let us consider the vertex funct ion
(A I

e"'te~'I P) as shown in Fig. 2. Suppose we tate A
and J3 to be partition states. The vertex function then
goes to zero when k„—+ 0 if I A) W I 8), but it stays 6nite
if

I 2)=
I
8).This is very different from the PCAC case,

where all the one-particle matrix elements of p (k)
vanish in the limit k~0. The theory of conserved
axial-vector current with massless pions also gives this
result. Without this property, the soft pion could
couple to the internal line and we would not have the
Adler condition for the above usual theories. In our
case, all the diagonal elements are 6nite. However, the
Adler condition is not violated because we cannot
distinguish here between a scalar coupled to the internal
line and one coupled to the external line. Indeed, by
duality, we can always shift the soft particle to the
position where it couples only to the external line. It
turned out that the diagonal elements give exactly the
pole terms, which in any case do not vanish.

It was necessary to show this explicitly for the follow-
ing reason: When we talk about the diagonal element,
it is not precisely diagonal since (OI h(s)

I 0)
=8{—n(s),n(0)). This means that the vacuum con-
tains an infinite number of scalar excitations as dined
by Nambu. 4 It is the contribution of these scalar
excitations which gives the crossed-channel poles in
addltlon to the direct-channel poles.

We emphasize that we do not have the partially or
totally conserved current because the vertex function
does not vanish in the k» ~0 limit.

For the sake of interested readers, we show that our
argument holds formally for the most general case
shown in Fig. 3.The square stands for any configuration

and the third term is zero because (OIP~+~N(OI. The
left-hand side of (8) is therefore

(kr„)'& ~ ~ (k)„)'~

s— ~'&—'L l —(1—s)— &"&+~-']ds . (11)
I IO. 3. General dual amplitude.

When k»„—+0, the factor inside the curly bracket stays
Gnite, and we have at least one k»„multiplying it
because (0 I

P '~& A (0 I . The whole expression therefore

' K. Kikkawa, B. Sakita, and M. A. Virasoro, Phys. Rev. gg,
1/Oi (1969);K, Bardakgi, M. Halpern, and J. Shapiro, ibid. 185,
1910 (1969); D. Amati, C. Bouchiat, and J. I.. Gervais, Nuoyo
Cimento I.etters 2, 399 (1969).



CREMMER, XUYTS, AND SUGAKARA

including loops. ' This amplitude can be written in the
notation of Ida, Matsumoto, and Yazaki':

y Ptfltj3& r p ~Py(k)I2&
Pl n . —=(3IM'I y (12)

p Pter'(k) I2)

(.
is a convenient notation for the symmetric vertex
obtained 6rst by Caneschi, Schwimmer, and Veneziano, '
I' is the projection operator to the physical state, and
0 is the twisting operator. Ke should not specify the
structure of the operator multiplying line 1.We expa, nd
Pt

I 3) and Pt
I 2) in terms of partition states

u = (n —2)ass —(n —3)ns~& 1. (16)

The E-point scalar amplitude corresponding to Fig. I
can be written'

dsdy(0IGy
—~s{*s}+}s—t(1 y)

—as{0}-lg(~t )

Xs—as{st}+}s—1(] z)
—~s{0}—t

I {))

just as in Eq. (3). The crucial point in this proof is that
we can have any value for I'3 and I'2.

I et us now discuss the case where the internal and
the external trajectories are di6erent. We assume the
masses of the external scalar particles to be zero from
the beginning. We assume that the intercept of the
n-body resonance in the channels k;+k;+i+ .+&;+ —~

(1~& s, t'+z}~&X—1) (see Fig. 1) is n (0) and that

P'I2&= 2 I2{~}&, (13a)

~(*)=Z (C„/I!)'}'a.

and the C„are de6ned by

(17b)

Now, using the formulas

y d~(s)
{1—z}~ '+0( =Op, (14)

p Pt p Pt

where I.=R——,'pt' and OP=POP, ' we get

(1 a)s~s—~s —g C zn

and Lo {~j=i. ~hen kt~ 0, we have ys
——1. Expression

(17) then becomes

dy(0 IGy
—s{ s}+}s—l(1 y)

—s{{}}—sg(sty)y
I {))

P da(s)Py(k) I2)
XQq( (15)

dss —us{0}—l(1 s)
—as(0)—l(1 s)sas{0}—Is{0} (19)

The Adler condition can be satis6ed if the last integral
vanishes inde endentl of y This can be achieved if

by 1 in (15). Using (13a), each term of (15) becomes

p I 2{Ms})
&{—~(Ps')+furs, —~(Ps')+&s)(3{}.} I

ill v
a P'

This completes the proof because when n(Pss) —Xs —+ 0
and n(Pss) —Es —+0, we have

}}3(—o!(Ps )+Qs —{s(Ps )+Ps)

—+ ——+0
{s(Ps')—&Vs es(Ps') Ãs—

M. Ida, H. Matsumoto, and S. Yazaki, University of Tokyo
report, 1970 (unpublished). This work is based on the following
contributions: S. Fubini and G. Veneziano, Nuovo Cimento
64A, 881 (1969); K. Bardakg and S. Mandelstam, Phys. Rev.
183, 1456 (1969); 184, 1640 (1969); D. Amati, M. LeSellac, and
D. Olive, Nuovo Cimento 66A, 315 (1970); 66A, 831 (1970);
C. B. Chiu, S. Matsuda, and C. Rebbi, Phys. Rev. Letters 23,
1526 (1969); C. 3. Thorn, Phys. Rev. D 2, 1071 (1970); R, C.
Broker and J. H. %'eis, Xuovo Cimento Letters 3, 285 (1970);
F. Gliozzi, iNd. 2, 846 (1969), and other papers quoted therein.
See also K. Kikkawa and H. Sato, Phys. Letters 328, 280 (1970).

7 L. Caneschi, A. Schwimmer, and G. Veneziano, Phys. Letters
308, 356 (1969);L. Canggch and A, Schwimmer, Xuovo Cimento
J,etters 3, 213 {1970),

ns(0) =-', and n, (0)=-0.

LThe y =0 point gives ns(0) =- s and the y = 1 point gives
ns(0) =0. For the points between zero and 1, we use the
formula Js't' '(1—i)s '(1+br) sCk=(1+f)-*B(gy).j
Of course, this is not the most general solution, since we
started with the constraint (16). Note also that, in
general, the Adler condition will hold only for kl —&0,
not for k;so (s/1). In our model, because of the non-
vanishing soft scalar vertex, we have no reason to
expect the pole terms to vanish. Ke have to force it.
This is achieved by the Lovelace-type condition (20).
Once again we stress that it does not lead to the partially
or totally conserved current because it does not say
anything about the vertex function. We are not clear

8 See second paper of Ref. 6. Using the de6nitions ('17b) and
('4b), the amplitude can be written in a completely factorized form,
A. = (0 j n {2s+1)V{2s+1)rs {2s)V {2s) .

j 0), with the following
notations: rs(j) =[8 +Rs+2{,+Eg—o{ss)j ', V{2s)=ass VsVe,
V{»+1)=vs'~iVsV~, Vs=fit't) I0» sioif{t'), V.=~{~t)10)
{0jA {c), Vg=A {d~f) jo)g If{0jA {d), f{1)=Q {J3 fss!) } b", and
(1—x) ~2(to '= +0"J3 x". It is not diKcult to generalize A. when
the intercepts of the trajectories are not constrained by (16).
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about the deeper meaning of the Lovelace condition, if
there is any.
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A discussion of the decay E+—+ m'+1+v is presented, which makes clear that a recent calculation of the
( parameter in E 3 decay depends upon the introduction of large SU (3) violation and not upon a modifica-
tion of the hypothesis of partial conservation of the axial-vector current. In addition, a formula is derived
giving a means of estimating g(m~~) and its dependence upon SU(3) breaking.

I. INTRODUCTION
' N a recent paper, ' Brandt and Preparata presented
~ - a treatment of the decay E —+ a+i+a which
yielded a value for the ratio of the two form factors
which determine the matrix element of the axial-
vector current between single E- and ~-meson states
(the so-called j parameter), consistent with minus one.
Since, as they point out, at least some of the experi-
mental evidence points to the fact that p could be nega-
tive and on the order of unity, there is no a priori reason
to argue that their treatment of this process is not in
fact correct (although there is certainly room for dis-
cussion of this point). However, this is not the point to
which I would like to address myself in this paper.
Rather, I would like to limit myself to presenting a
clarification of the physical content of the assumptions
implicit in the authors' derivation of this large negative
value for t. I believe that such a clarification is im-
portant, since this prediction for p does not come from
a modification of the hypothesis of partial conservation
of the axial-vector current (PCAC), but rather in the
introduction (in an indirect way) of large SU(3) break-
ing. Since the entire result depends upon this assump-
tion, it seems worthwhile to present a treatment of
X&3 decays which explicitly separates the assumptions
involved in applying the PCAC hypothesis from all
other assumptions.

In order to present the arguments leading to this
conclusion in the clearest possible way, I shall first
state and discuss an exact, on-mass-shell formula,
giving the value of ( at t=mx'. This formula has the
advantage that it is written in terms of physically

* Research supported in part by N. S. F, Grant No. GP-17032.
'R. Brandt and G. Preparata, Nuovo pimento T.etters 4, 80

{1970).

measurable quantities and the so-called "PCAC-
correction terms" are explicitly exhibited. Before going
on to prove this formula, I will show how it can be used
to obtain the result of Brandt and Preparata. The
derivation is easily compared with that given by Brandt
and Preparata, but has the advantage that at each stage
it clearly distinguishes between independent physical
assumptions. The formula to be derived has the addi-
tional interesting property that it explicitly exhibits the
dependence of $ upon the introduction of small SU(3)
breaking.

II. CONVENTIONS

Prior to stating the theorem to be discussed, it is
useful to establish the notation to be used throughout.
My conventions are as follows.

The symbols V ~(x) and A "(x) (o.=1,. . . , 8;
p=0, . . . , 3) denote the octet of vector and axial-
vector currents assumed to satisfy the Gell-iVI ann
current algebra,

[V '(x), Vp'(y)], o „o=if p„V "(=x)P(x y)+S T— .

[V.'(x),A&&( )y],o=„=if.&, A~( )xP( -x)y+S. T. , (1)

[A '(x),A p"(y)],o y~ if p~V, "(x)P(x y——)+S.T. , —

where S.T. stands for possible Schwinger terms. I
shall also denote by 2~+ and A o the linear combinations

Ax "(x)=A;(x)+iA;(x),
A~ ~(x) =A,,~(x),

etc.
If one believes that the decay E+—+7f-'+l+s can

be described by the usual theory of weak inter-
actions, then it measures the matrix element


