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Vector Currents and Current Algebra. III. Dual-Resonance Model with
Universally Coupled Vector Mesons*
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We extend the model for conserved vector currents in the dual-resonance model to include the in6nite
set of universally coupled vector mesons. One- and two-current amplitudes satisfying current algebra and
factorizing on the 3E highest trajectories are constructed for a form factor falling like (q') ~. Physically
acceptable completely factorized amplitudes are not obtained in the limit M —+ ~, however. Complete
factorization and unsubtracted dispersion relations in q' for single-current amplitudes are shown to indeed
imply exponentially falling form factors. However, we then prove that no acceptable completely factorized
two-current amplitudes can be constructed from a current coupling only to the universal vector mesons.

I. INTRODUCTION

HE successful construction of a dual Reggeized
resonance model (DRM) for hadronic ampli-

tudes' suggests the possibility of a similar model for
amplitudes involving the electromagnetic and weak
currents. In the case of axial currents, however, the
present dual E-particle amplitudes suffer an obvious
and fatal Aaw: Taken as amplitudes for E pions, they
fail to vanish for p,"~0 (except for X=4). Conse-

quently, the formulation of a model for a physically
reasonable axial current with a pion-pole-dominated
divergence requires a simultaneous reformulation of the
hadronic model.

For vector currents, on the other hand, the situation
is more promising. A fundamental requirement for the
existence of a physically acceptable vector-meson-
dominated conserved current is the existence of uni-
versally coupled vector mesons, since such mesons give
the only contribution for soft currents (q,"—+0) and
provide the full charge coupling. This requirement is
met by the DRM, since as we have previously shown, '
the lowest-mass vector meson couples universally. '
Furthermore, assuming the dominance of this vector
meson, we have been able to construct' dual amplitudes
for one current LV,"(q)]and two currents LM, p" (q&,q2)]
plus E spinless hadrons that obey exactly the current-
algebra divergence condition

q&„M,& "(q&,q2) =if,&,V,"(q,+q,) (1.1)

and factorize on all leading trajectories.
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~ For a review, see D. Sivers and J. Vellin, Rev. Mod. Phys.
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'R. C. Brower and J. H. Weis, Phys. Rev. 188, 2486 (1969);
188, 2495 (1969), hereafter referred to as I and II, respectively.
Equation numbers from these papers are preceded by I or II.

3 Precisely, the amplitude for this meson and E spinless hadrons,
BI'(q), is exactly conserved for all qI', q„BI'(q) =0.
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In order to satisfy factorization for nonleading tra-
jectories and obtain more rapidly falling form factors, it
is natural to include poles in q corresponding to higher-
mass vector mesons. Here we extend our previous model
to include all the vector mesons in the DRM which
couple universally, i.e., the lowest-mass vector meson
and its recurrences, one at each mass mP=m'+1+l
(l =0, 1, 2, . . .). Since the low-lying trajectories in the
DRM have a very large degeneracy, these vector
mesons are only a small subset of the total, but, as noted
above, they play a particularly vital role in models for
currents.

Applying generalized vector-meson dominance for
these mesons, we can construct one- and two-current
amplitudes that (i) obey the current-algebra condition,
(ii) factorize on the 3/I highest trajectories, and (iii)
have form factors that fall like (q') ~. On the other
hand, if only leading trajectory factorization is required,
the current-algebra condition can be satisfied for
arbitrary form factors, as demonstrated in Appendix B.

7Ve feel that these results give a good indication of the
power of factorization in determining the structure of
currents in zero-width models and suggest that in a full
solution to the problem form factors will fall expo-
nentially. However, the limit 3f~~ of our amplitudes
does not lead to a full solution. Indeed, we prove that
complete factorization cannot be obtained for currents
satisfying our requirements (see Sec. lI and Figs. 1 and
2) if only the universally coupled vector mesons are
included. If factorization of M&" in channels containing
a single current [Fig. 2(c)] is imposed, form factors are
required to be exponential, but the resultant amplitude
develops unphysical poles in the two-current channel
which is dual to the single-current channels. '

Therefore, approximate solutions, such as those
presented here, are the most that can be obtained if only

' For simplicity we assume here that all external and internal
particles are in the same family, i.e., ps2=qn', n; =s;—m'.' These poles are located at t =qP+qP+n. A simple interpre-
tation of this result is given in Sec. III.

451



R. C. 8 ROWER ANl? J. H. WEIS

(b)

Fro. 1. Constraints on the single-current amplitude. (a) Vector-
meson dominance. (b) Factorization. The amplitude must be
expressible as a sum over the poles shown by the heavy lines and
these poles must correspond to states in the hadronic spectrum.

the universally coupled vector mesons are included.

However, a completely factorizable solution may be
obtainable if some or all of the other vector mesons are
included. The major difhculty with this lies in the
tremendous number of existing parameters /the cur-

(b)

rent —vector-meson coupling constants f —see Fig. 1(a)j
that are apparently arbitrary if only single-current
amplitudes are considered, but are in fact severely
constrained in a nonobvious manner by the connection
of these amplitudes to the two-current amplitudes
through factorization LFig. 2(c)]. In the conclusion we
discuss briefly the full problem and suggest some pos-
sible ways of formulating it in a general manner.

In Sec. II we review the properties of current ampli-
tudes and the strong consequences duality has for them.
We introduce a general operator notation for currents.
The divergence (Ward) identities in the DRM which
are essential to the construction of current amplitudes
are discussed in detail in Appendix A. We then discuss
the properties of the current-algebra parametrization
with M highest trajectories factorizable. The details are
given in Appendixes 8 and C. In Sec. III, we use a
systematic approach to the construction of factorized
current amplitudes in order to demonstrate the insuS. -

ciency of the universally coupled vector mesons; the
two-current amplitudes are constructed from the single-

current amplitudes by use of quadratic factorization.
Finally, some general comments on dual models for
currents and the work of other authors "are made in

Sec. IV.

II. PARTIALLY FACTORIZABLE CURRENT-
ALGEBRA AMPLITUDES

We seek here, as in II, currents consistent with the
simplest dual-resonance model for mesons: the hadronic

amplitudes are products of orbital factors, 8(pq, . . ,p~).
(N-point beta functions), ' and SU(3) internal sym-

metry factors, u -', Tr(X&'A2 X&), summed over permu-

tations of the particle momenta (p;).' Of course, all the

existing hadronic models are at the moment rather

conjectural, and it is possible that only new models will

admit consistent vector currents. In any case, we believe

our methods have quite general applicability: For ex-

ample, the existence of universally coupled vector

mesons follows with only very natural, weak restrictions

on the trajectories in the E-point beta functions. "
We note one feature of the hadronic model which has

vital importance in the construction of current ampli-

(c3

FzG. 2. Constraints on the two-current amplitude. (a) Vector-
meson dominance. (b) Linear factorization. (c) Quadratic factori-
zation. The amplitude must be expressible as a sum over the poles
shown by the heavy lines, and these poles must correspond to
states in the hadronic spectrum.

6 M. Sander, Nucl. Phys. B13, 587 (1969).
7 H. Sugawara, Tokyo University of Education report, 1969

(unpublished); I. ahba, Progr. Theoret. Phys. (Kyoto) 42, 432
(1969).

8 M. Ademollo and E. del Giudice, Nuovo Cimento 63A, 639
(1969).

9 R. C. Srower, A. Rabl, and J. H. leis, Nuovo Cimento 6SA,
654 (1970).

'0 D. Z. Freedman, Phys. Rev. D 1, 1133 (1970).
~~ Chan Hong-Mo and J. Paton, Nucl. Phys. 310, 516 (1969).
~ It follows if the trajectory in a channel with M hadrons and

one current is the same as the trajectory in the channel with only

the M hadrons. This allows soft poles to survive in factorization.
See Eq. (II 2.10).
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tudes. The hadronic spectrum" is in fact smaller than
that exhibited explicitly by the operator formalism of
FGV" because certain "spurious" states actually do not
couple. ' "We will ensure the absence of such states by
using the modified vertex function V(p) which has no
coupling to spurious states. "

Before describing the partially factorizable current-
algebra parametrizations, we discuss briefly some of the
general properties of dual current amplitudes. For more
extensive discussion, the reader is referred to I.

~ =0

FIG. 3. Divergence condition for single-current amplitude.

V.l",p" (V) =o.
As q„—+ 0, this term has just two soft poles,

(2.1)

+2pp&; ii
l".p'(C) ~

(g+pp(, i))'—ms

g"+2p p(~)"
~hfLfIron y

(V+Ip('))' —m'-
and clearly satisfies (2.1).

For the two-current terms with adjacent currents
there is only one soft pole and thus the divergence in q&

is nonvanishing as q» —+ 0. By use of CVC and qua-
dratic factorization [Fig. 2(c)], this can be extended to
q&'=0, q2'=t, and all k, implying a J=1 axed pole in
the t channel. This yields the usual right-signature 6xed
poles in isospin antisymmetric amplitudes and, in addi-
tion, wrong-signature Axed poles in isospin symmetric
amplitudes, a stronger result than that which obtains
without duality (for the case of two hadrons this
actually can be shown with just the assumption of
dispersion relations for signatured amplitudes).

In the remainder of this paper exotic resonances are
assumed to be absent. '~ Duality and current algebra
"K. Bardakci and S. Mandelstam, Phys. Rev. 184, 1640 (1969);

S. Fubini and G. Veneziano, Nuovo Cimento 64A, 811 (1969).
Additional linear dependencies, such as those discovered by M. A.
Virasoro LPhys. Rev. D 1, 2933 i1970lj for m'= —1, may play
a similarly vital role.

'4 S. Fubini, D. Gordon, and G. Veneziano, Phys. Letters 29B,
679 {1969),hereafter referred to as FGV. See also Y. Nambu,
University of Chicago report, 1969 (unpublished}; L. Susskind,
Phys. Rev. D 1, 1182 (19/0)."R. C. Brower and J. H. Weis, Nuovo Cimento Letters 3, 285
(1970); see Appendix A for a summary.

"The subscripts indicate the permutation I' of the hadronic
momenta and the position(s) of the current(s) just before P(i).
From now on we restrict ourselves to the permutations shown in
the figures. The explicit internal symmetry factors for no exotic
resonances are given by (II 2.15) and (II 3.20).' Therefore, we are treating only the nondiGractive contri-
bution. For I& ——0 and large q' the Pomeranchon contribution may
be very important. For an example of a model for this contribu-
tion, see II, Sec. IV, and Ref. 9, Sec. IV.

A. Properties of Dual Vector-Current Amplitudes

The assumption that current amplitudes satisfy
planar duality has important consequences because the
divergence conditions can be applied to each term in the
dual decomposition of an amplitude. ' Thus conservation
of vector current (CVC) implies, for each term of the
single-current amplitude" (see Fig. 3),

(1.1) then give the particularly simple divergence condi-
tions (see Fig. 4)"

and
Vis~'yp""(re e) =o (s&i)

Si.~",p""(Vias) = V'.p" (qi+9s)
~ii,p (glyg2)$2y l i, p ($1+$2)

(2.2)

(2.3)

ql ~
I-0

(b)

PzG. 4. Divergence conditions for two-current amplitudes.
(a) Nonadjacent currents. (b) Adjacent currents.

These actually hold independently of current algebra
for q~'=0 and q2'=t. We remark that it is quite natural
that only the adjacent current terms have Axed poles,
since they are the only ones with singularities in the
two-current (f) channel where fixed poles occur. As we
found in II, the nonadjacent current terms auto-
matically satisfy (2.2) and need not be considered
further.

In Sec. I we have briefly mentioned the strong con-
sistency conditions the hadronic amplitudes place on the
current amplitudes. These are shown diagrammatically
in Figs. 1 and 2. We have already emphasized the power
of the quadratic factorization constraint [Fig. 2 (c)],and
our explicit models also show this clearly. The linear
factorization constraints [Figs. 1(b) and 2(b)] are
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weaker, but will play an important role in Sec. III. The
determination of the current amplitudes by the vector-
meson amplitudes through unsubtracted dispersion rela-
tions (USDR) in q2 [Figs. 1(a) and 2(a)] means that
they can be expected to possess many of the same
properties, e.g., Regge behavior, duality (pole-domi-
nated USDR in subenergies), etc. However, since the
sum over vector mesons must in fact be infinite, the
possibility of nonuniformities in convergence must be
kept in mind. Indeed, the existence of a 6xed pole in the
two-current amplitude, which cannot be present in the
vector-meson amplitudes, implies such a nonuniformity.
Qn the other hand, there seems to be no reason why
duality should be violated; the current-algebra diver-
gence condition is not in convict with duality, i.e., it
does not require that any invariant amplitude not
satisfy USDR subenergies"

B. Operator Approach to Currents

In order to implement these consistency conditions,
we find it convenient to use the operator formalism. All
the intermediate states in Figs. 1 and 2 have the form'4

I » =II [~(.&""]""l(l') '"
I o)

at mass m'+e, e&R=Q rX„. This rich spectrum con-
tains many vector mesons: «,&&tlo) and many more
formed from contraction of higher-rank tensors with
g~" et""~~, and ql".

The lowest-mass vector meson (nz'+1), a&»""
I 0), used

in the model of II, recurs at m'+2, m'+3, . . . . These
mesons play a unique role because their spin. -1 parts are
exactly conserved even o8 the mass shell. Their ampli-
tude to S spinless particles is thus conserved, '"
q„B&(q)=0, where

as will be shown in Sec. III, the "current operator"

8"(q) =F(q')[~2«»"+q"] (2 3)

q.A" (q) = &(q) (2.6)

where X) is some operator which, like 5, satishes
(ol Slp)=0, and (2.3) becomes

(ol m(q, ) v(p, )DV(p, )".Dv(p )g(q, ) lo)
—(0

I
V(p9)DV(p, ) Dv(p&)g (q&+q2) I

0) (2.7).
This formulation of the conditions is undoubtedly much
more general than the specific E-point beta-function
model considered here. The difficulty with solving them
is that (2.7) constrains the huge class of solutions to
(2.6) very strongly but in a very nonobvious manner.
For the remainder of this paper we make the approxi-
mation (2.5).

is conserved and generates the couplings (0
I
g" (q) V(p) IX)

of the current to a spin-0 particle (p) and an excited
state

I
X)(p+q). It obeys USDR in q' if P(q') falls faster

than any power as
I
q'I —&~. Note the crucial role the

vertex V plays: It both eliminates spurious excited
states

I
X,) and ensures current conservation. Theone-to-

one relationship between current conservation and
absence of spurious states is also seen clearly in the
calculations of Sec. III.

More general conserved currents can be constructed
from operators like (q'g&" q&q")«—„&", q g~ &«„&&
—

q a(„)a( ~&, etc. Indeed the fundamental divergence
conditions are easily put in algebraic form. Condition
(2.1) becomes

Il" (q) =(o
I [ 2«&"+q"]P), (2.4)

C. Partially Factorizable Solutions

with

I p) = v(P )D(R,k ') v(P )" v(P ) I
o)

= V (p,)D(R,kP) V (p,) V(P~) I
0).

Conservation follows from the fact that

q„(ol [~2«„yq ]=(ols(q)

is the first spurious state generated by the spurious-
state operator" S(q) (see Appendix A), and thus has
vanishing coupling to

I p).
These universally coupled vector mesons can be used

to construct conserved vector current amplitudes. Thus,

"The invariant amplitudes given in II and Appendixes 3 and
C satisfy USDR with the sole exception of the amplitude multi-
plving gt'". The existence of such a right-signature J=0 axed pole
in this amplitude has also been corjlectlred by other authors and
there appears to be some experimental support for it—see M.
Damashek and F. C. Gilman, Phys. Rev. D 1, 1319 (1970)."C. B. Chiu, S. Matsuda, and C. Rebbi, Phys. Rev. Letters 23,
1526 (1969); F. Gliozzi, Nuovo Cimento Letters 2, 846 (1969);
C. B. Thorn, Phys. Rev. D 1, 1693 (1970); M. A. Virasoro, ibid.
1, 2933 (1970).

With the restriction to dominance by the universally
coupled vector mesons, we can construct approximate
solutions to (2.1)—(2.3) [alternatively, (2.6) and (2.7)],
if we allow violations of factorization on low-lying
trajectories. With this restriction, complete factorization
cannot be obtained, as we show in Sec. III. Here we
discuss the important features of the approximate
solutions; the mathematical details are relegated to
Appendixes B and C.

In II we gave amplitudes with single vector-meson
poles which satisfy the current-algebra divergence con-
ditions and factorize on leading trajectories. If only
leading-trajectory factorization is required, this can be
generalized to include all universally coupled vector
mesons with arbitrary coupling constants f„(see
Appendix 8).

More interesting, however, are the current-algebra
amplitudes which factorize on all trajectories lying less
than M units below the leading trajectory and have the
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form factor

3II 1 q2
—1

~~(q') = Il
i o =mo+1+t

B(1—n(q') M)
(qo)

—M (2 g)
B(1—n(0), M) " "

(see Appendix C).This model, which satisfies essentially
all the other requirements discussed above, is obtained
by truncating the expansion (A4) for V after M terms to
yield V))r [see Eq. (C3)]. The factorization of the
single-current amplitude is then violated by the pres-
ence of spurious states on trajectories that are 3f or
more units below the leading one. We note also that the
current matrix element for a spinless particle and an
excited state on a trajectory k units below the leading
trajectory in general behaves like

p (qo) (qo) k~ (q2)-M+0 (2 9)
as q' —+~.

Factorization is violated in a more serious manner by
the two-current amplitudes. These are written, following
Srower and Halpern" and II, as the sum of three terms

M)""(q,,qo) =MIi&" (q, ,qo)

+Mc)'"(q, ,q,)+Mpp)'"(qi, q,). (2.10)

The terms MII&" and M&&" have purely Regge behavior;
M~&" contains all the vector-meson poles and Mq&"

cancels its unwanted Regge-behaved divergence. The
exact current-algebra divergence comes from MFp&",
which has fixed poles in J&. The term %III'" is con-
structed by using V~ and has contributions from
spurious states on trajectories displaced by M units or
more. The sum Mc)'"+Mpp&" contributes only to such
trajectories and the contribution is badly nonfac-
torizable. Furthermore, since this piece has no poles in
q', it corresponds to subtractions in the q2 dispersion
relations, contrary to our requirements. This fact, along
with (2.9), means that the current-algebra sum rule is
satisfied uniformly in qo and is saturated for large q' by
the low-lying nonfactorized poles. This hints at the
failure of this parametrization as M —+~." In fact, in
this limit Mc)'"+Mpp)'" would have no poles in k,2 [Fig.
2(c)]. Since it has Regge behavior for k,o —+ —oe and
nonzero, it must violate Regge behavior for k;2 —+ +~.

We believe that more general parametrizations with

2oR. C. Brower and M. B. Halpern, Phys. Rev. 182, 1779
(1969).

"We remark that in this limit,

I'(1—n(q') )
(q) (1 (0)) ( )

The factor
M

(jg)& =exp(q&ln~) exp q& g
l=o )

is similar to the very singular form factors obtained by S. Fubini
and G. Veneziano (private communication) and I„Susskjnd
LPhys. Rev. D 1, 1182 (1970)).

the M highest trajectories factorizing can be con-
structed with only the condition that F (q') decrease at
least as rapidly as (q') ~. This connection between the
asymptotic behavior of form factors and factorization is
very suggestive but only suggestive, due to the nega-
tive result of Sec. III.

III. INSUFFICIENCY OF UNIVERSALLY
COUPLED VECTOR MESONS

We first construct the single-current amplitudes as-
suming dominance of the universally coupled vector
mesons and find that factorization and unsubtracted
dispersion relations in q' imply exponential form factors.
The two-current amplitudes are then constructed
from the single-current amplitudes and are found to
possess unphysical singularities which violate linear
factorization.

The complete determination of the two-current ampli-
tudes by the single-current amplitudes follows from
quadratic factorization and unsubtracted dispersion
relations which imply" [see Fig. 2(c)]

(qo~p4 ~p)v~qi)

Vn (qoqp1& ~ ~ ~ ~pf) Vn (pi+le ~ ~ ~ qp)vqql)
(3.1)

k,'—m„'

where e labels the full spectrum of internal states in the
channel (k; =qo+ pi+ +p;). We remind the

reader that, although V & is exactly divergenceless on
the mass shell (k;o=m ') and in the expansion

V-'(q, pi, ,p')
=q)IV„(o)ypiuV„O)+ . . ~ +p PV„( )(32)'

each invariant amplitude U„'" is evaluated on the
mass shell, the 4-vectors allow nonzero divergence off
the mass shell,

q„v:(q,P„.. ,P;) = (k,o.—m ')D„. (3.3)

Consequently, both 3f&" and its divergence are de-
termined entirely by the on-mass-shell amplitudes, V &.

A. Single-Current Amplitude and
Exponential Form Factors

A likely candidate for the single-current amplitude is"

Ve(q, pi, . . . ,p~f)

=F(q')(0l [v2~(i)"+q~]V(pi)D" V(p*) l) )) (34)
since the vertex V eliminates spurious states and makes
V)," exactly conserved [see Eqs. (A1) and (AS)].
Further, in order to compensate the polynomials in q'
introduced by V [see Eq. (A4)], one suspects that F (q')

~'This expression really stands for a set of unsubtracted dis-
persion relations, one for each invariant amplitude in the over-
complete set used here. See also Ref. 18,

~Here we label the states by the overcomplete occupation
number basis.
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must fall faster than any power. We now demonstrate
that this is indeed the case.

The single-current amplitude by assumption is de-
termined from the amplitudes for the on-mass-shell
universally coupled vector mesons of mass m~', B~),I', by
writing unsubtracted dispersion relations in q'. Thus, '2

for any Quite polynomial Q, as is easily demonstrated by
writing a dispersion relation for the left-hand side.
Applying this result" to (3.5) for on-mass-shell states
I», we obtain

V "=F(q')(0I 2 [v2 ( )"+q"3—
r=o g

—5$ —t'

FI(q2) =
1—q'/(m'+1+1)

BI&"=(0I2 [')(2(I(I)"+q"3
r=o l—r+1

XF.(l)V{pl)D "V(p ) I»

(3.5)

XF„(q2—m' —1)V(p,)D "V(p,) I»
=F(q')(0I[~2 (.& +q jV(p.)D V{p)I»

Therefore, (3.4) with exponential form factors, is in-
deed required by unsubtracted dispersion relations in q'
and factorization (correct internal spectrum without
spurious states).

(3.6)
B. Two-Current Amylitude

x(x—1) (x—r+1)5(S—1) (8 r+—I)
P,(x) = =

r &(m'+ I) (m'+r)

Tllls cxpl'cssloll ls ob'talnc(l l)y llslllg'. (A6) Ito cllllllllatc
all except one 0and then letting the projection operator
act on the on-mass-shell state (0I [V2u(I)i'+q&] at q'=m'
+1+l [see Eq. (A9)]. The sum in (3.6) terminates at
r= J since F„anin ihl tae sall on-mass-shell states I» at
k'=III'+J for r &J

The difhculty with (3.5) for general q' is that spurious
intermediate states contribute and it is not conserved.
By demanding either (i) that no spurious states
contribute,

V1,&=0 for kg=I&12+7,

ol (11) current collscl'vatloll

q V&,"=0 for k'=m'+J
we arrive a,t identical conditions on the fI,

Using the above single-current amplitude (3.4) and
quadratic factorization (3.1), we easily obtain the two-
current amplitude'4

where

~""{qq )=F{q')Il""(q,q~)F(q '), (3.8)

B""{ql,q )= —((I)"")~+2, (3 9)

fl""(ql,q2) = —(o I
[v2~(I)"

+q2"1V(pl)D "V(p~) [v2o(I)"'+ql"j10).

The structure of this amplitude is most easily studied
by using its integral representation which is readily
obtained from (A4) and (A9). Using the notation of
Appendix A, we have

p fl(III'+1+1)"=0 for II=1, 2, 3, . . . . (3.'l)

Writing a dispersion relation for F(q'), it is easy to see
that {3.7) requires that F(q') fall faster than any power
as

I
q'I —+~ ("exponential form factor").

V'A'th exponential form factors, we have

F(q')Q(q' —~' —1)=2 f~FI(q')Q(l)

X FI(IIV+ I ql', I'+1 q2';—m'+1; u')
I
„—. „.

We examine the singularities in the two-current {l)
channel. They arise from divergences of the integrand as
u ~ 1 [1.C., Err+2 ~ {1—u) ' j wllC1C tllC hypelgeo-
metric function has the behavior

2FI(III'+1—q12, III'+ I —q22; m'+I; u)

I'(III'+1)I'(ql2+q22 —m' —1)
2FI(m'+ I —qP, m'+I —qP; III'+2 —q12 —qP; 1—u)

I'(qI2) I"(qP)
I'(III'+ I)I'(m'+ I —qp —qp)

+(1 u) qP+q22 —m~—1 -2FI(ql', q2', ql'+q~' —m', 1 —u) . (3.10)
I'(III'+1 —qp) 1'(III'+1—q22)

'4 j.'h easiest way to verify that this is the correct result is to note that (a) the residues of poles in kP are given by (3.4), and (b) for
t &$0 unsubtracted dispersion relations can be written in k, so the poles completely deterggne the function.



The 6rst term yields the usual poles on the trajectory o.&

and its daughters, The second term, however, gives
poles at n& —gi2 —q22+m~+1=2qi. F2+1 =0, 1, 2, .
Such singularities are clearly unphysical, since their
positions depend on the current "masses" q . The
presence of these anomalous singularities in place of the
desired fixed pole can be understood, if we notice that
our amplitude (3.8) has vanishing divergence q»B""=0. —
As we argued in I, the absence of an unphysical J= I
lntermedlate state at t=q2' Implies a nonvanlshmg
divergence q~„nfl"" ~ V" for q~„—& 0, which, when com-
bined with quadratic factorization, implies a 6xed pole.
Our anomalous singularity violates the conditions of
this theorem by providing just such an unphysical
state. '5

Thc oI'lgln of thc VRIllshlng dlvcx'gcncc of oui M~" CRn

be seen clearly in (3.4). Although, if the invariant
amplitudes are evaluated on the mass shell at k =m'
+J, the infinite series for 0 terminates and the basic
equation (3.3) holds, it is clear that (3.4) as it stands
represents a certain o6-shell continuation which is
divergenceless everywhere. Since in our case (3.1) can. be
rewritten in terms of this OG-shell continuation,

it is obvious that M &" has vanishing divergence. We note
that this off-shell continuation is never needed in our
derivation of nfl'", since 3fI"" obeys USDR in k but
unhappily it provides an equivalent formulation. This
appears to be the origin of the diQiculty with the
universally coupled vector-meson approximation.

IV. CONCLUSION

We have seen that, if only the universally coupled
mesons are included, vector currents completely con-
sistent with the present DRM cannot be constructed.
However, the existence of partially factorizable ampli-
tudes consistent with current algebra is encouraging and
leads to some optimism that the inclusion of further
vectox mesons may allow a full solution. The difhculty
with this (and part of the source of our optimism) is the
vast number of mesons available in the DRM. Clearly
some guide to selecting the appropriate current (analo-
gous to the minimal principle" of electrodynamics) is

2' The anomalous singularity imitates the 6xed pole at q1 q2 =0,
since it is then at an integer. Further we observe from (3.10}that,
like a frxed pole, it does not contribute to the residues at the vector-
meson poles.

~' Pote added' iN proof. Recently our universal current (here and
in Ref. 2) has been demonstrated to be in some sense minimal
(with a trivial form factor F=1), since it has been rederived with
a minimal substitution (up to a few nonminimal corrections) in a
suitably modi6ed form of the Nambu equation (Ref. 14)—see
B. Hasslacher and D. K. Sinclair, Nuovo Cimento Letters 4, 515
(1970).Their method of calculation of course reproduces the same
unacceptable two-current amplitude. Nonetheless, the identihca-
tion of our current as "minimal" supports the position that no
literal use of minimality is likely to solve this problem exactly.

needed. We mention two approaches that may yieM this
guldc.

First, the algebraic approach suggested in this paper
(Sec. II B) should be developed further. By expressing
the divergence conditions as conditions on E-point
functions we were able to restrict our attention to the
current —ground-state —arbitrary-resonance vertex. Of
course, the fundamental object in a zero-width model is
the vertex for a current and two arbitrary resonances.
The current-algebra divergence conditions are expressed
naturally in terms of it, but, at present, the conditions
that duality imposes are not well understood. Generally,
one would like to be able to see directly how the
singularities in dual channels (e.g. , t and k;2) are related.
This would help circumvent difhculties like those en-
countered in Sec. III, where we satis6ed factorization in
one channel and then found unpermitted singularities in
the dual channel. Wc expect that a deeper under-
standing of duality" will allow a concise vertex formula-
tion of the conditions on currents.

A second approach is to ignore temporarily the
factorization constraints and explore various dual
parametrizations satisfying current conservation and
having good large-q behavior (e.g. , Bjorken limit,
electroproduction limit, etc.). As has been previously
noted, ' parametrizations like those presented here have
bad large-q~ behavior, whereas the parametrizations
given by other authors' ' have good behavior. Further-
more, amplitudes of the form discussed in Refs. 7—10
have many properties suggested by 6eld theory, e.g.,
reIationships between asymptotic behavior of form fac-
tors and the spins of particles and 6xed poles, electropro-
duction scaling, relationship between threshold behavior
of clectroproduction structure fur ctlons and elastic forIn
factors, etc."On the other hand, the only models which
have successfully satis6ed current algebra for E-point
functions"0 have used the divergence identities, and no
one has yet succeeded in combining these with current
amplitudes of a more general type. " If this could be
done with just leading-trajectory factorization, much
couM. probably be learned about the role of high-mass
vector mesons.

Finally, the results of this paper suggest a crucial role
for exponential form factors in R factorized model for
conserved currents. We suggest that the difhculty of
combining the requirements of good large-q' behavior,
factorlzation, Rnd conscxvatlon may bc Icduccd lf
exponential form factors are assumed initially.

A beginning on this has recently been made by S. Fubini and
G. Veneziano, Nuovo Cimento 67A, 29 (1970).

Some of these properties have been touched upon in Ref. 9.
They will be discussed in more detail in a forthcoming report:
J. H. leis, LRL Re ort No. UCRL 19780, 1970 (unpublished).~ D. Z. Freedman Ref. 10) has given amplitudes of the form of
Ref. 7 that satisfy the current algebra for one vector current and
one scalar current. The scalar current indeed has good large-q
behavior but the vector current is introduced by the same tech-
niques discussed here and in II and therefore has bad large-q'
behavior. What we are suggesting here is to combine the good
features into a single current.
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$(k) t)'(p) = V(p) St ( k —p—) =0 (AS)
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AI I ENDIX A: DIVERGENCE IDENTr TIES

In this Appendix we review and generalize the
divergence (Ward) identities of the DRM which are
essential to the construction of current amplitudes.

A. Operator Notation

Thc dlvcrgcncc ldentltlcs al'c convcnlcntly cxprcsscd
in the I'"GV operator notation by using the spurious-
state operator"

$(k) =v2k'u(»+k

+E [r(r+1)11(2~(.)'o(.+I) ~—(A1)

We have followed the notation of Ref. 1.5. Spurious
states ()(, I

then have the form

(), I
=() Is(k) (a,ll () I),

where k is the momentum of the state directed to the
right. The basic "commutation" relations of 5 with the
vertex and propagator of I'"GV are

$(k) V(P) =V(P)[$(—k —P) —P'j

[$(k)—m' —ljD(R+1, k')
(A2)=D(8+1+1,k') [S(k)—1]

for all /.

It is also convenient to introduce the "projection"
operator" '0

(P(k) =1—[SI(—k) —I)I2$— — $(k),
$(k)[St(—k) —m'$

which has the explicit form"

The following identities are useful:

VDV= VDV = VDV,

vIo&=vIo&, (0I$'=(0IV,

where
I 0) has momentum squared of rid;

(A7)

[(5—m' —f) " (5—m2 —1)(5—m') jSI
=[(SI—f—1)(5—~' —f—1)—(i+1)(r)I'+f+ 1)j

X (5—I))2—1) (5—rN' —1), (Ag)

B. Divergence Mentities

Using the operator techniques, we may easily rederive
and generalize thc dlvcrgcncc idcntltlcs of II.

The amplitude

~'4) =—(Ol [v2~()"+KIP),

I p&=v(p)D(R, k')v(p). v(P -)Io&
=V(PI)D(E,k)2)v(P2) .V(p~ 1)IO&, (A11)

for q'=m'+1+k, describes the scattering of a universal

vector meson and X scalars of lowest mass. Evaluation
of (A10) yields an integral representation for 81'

(oI [v2u(, ) +q j(s&—~2)(st —~2—1)" (st —~ —&+ 1)
= (0 I (q' —m' —1) (q' —nz' —2) ((t' —m' —r+ 1)

X([%2(I(»~+g~j(q' —I)12—r) —rg~), (A9)

where (0I has momentum squared of q'.

S'(—k) —es' $(k))
(A3)

1 i

fl"(C) = dll' dQ~ 20(I)"(RI,. . .,N~ 2)

XIN+1(Ii) ~ ~ ~ l g)v-2)

—=«(»~&~+I,
To eliminate spurious intermediate states one replaces

the vertex V(p) of FGV by"

V(p) =~(k)V(p)~'(-k-p) '0(»"=g"+2PI"+2P2"III+' ' +2pnr I"(NI ''Nm-&)— '

(A13)oo —tg2 —1

)=0

'~ M. Kaku and C. B.Thorn, Phys. Rev. D j., 2860 (I970).

(, ) and I~+I is the usual integrand for the (IV+1)-p»nt

X V(p)(
SI(—k) —I)12 $(k+p) —I)I2 fllIlctloI1 fol all scalal's. FollowlIlg Fublnl alld Velle-

(A4) ziano, )3 we represent the integral J'de I~+I by brackets

(() +)
One can easily verify' that BI' is conserved for all. g~.



VECTOR CUR'RENTS AND CURRENT ALGEB RA. I I I ~ ~ ~ 459

We now generalize this result

q~(N'0(» "&N+1

=(OI [~q o(»"+q']V(pl)
XD(R+j, kl') D(R+j, kN 2')V(pN 1)lo)

=(ols(q) v(p )D(R+j, k ')
XD(R+j, kN-2') V(pN 1) I 0)

=(ol V(pl)D(R+ j+1,k(2)

xD(R+ j+1,kN 2')v(pN 1)[s(—pN) —2)2' —j]l 0)
+j(0 I

V (p )D(R+j, k ')
XD(R+j, kN 22)V(pN 1) I0)

=i &~'&N+1+(PN' ~' i)(~~—')N+1, (A14)

where u=llu2 NN 2 W.e have used (A1) and (A2)
and allowed PN' to be arbitrary for later applications.
Forj =0 and pN' ——m' this reduces to q„B)'(q) =0.

In II we also introduced the amplitude (II 3.1)

B""(ql,q2)
—= —(Ol [v2o(» "+q2"]V(pl)D(R,kl')

XD(RlkN —1 ) V(pN)[v2(2(» "2+ql"]
I 0) ) (A13)

whose spin-1 parts on the mass shell (q;2 =m2+1+I) are
amplitudes for adjacent universal vector mesons. The
corresponding integral representation is

(ql)q2) (U (1) U(1) )N+2 2g (N)N+2
=——(S""(ql,q2)&N+2, (A16)

where the "conjugate" 'U' is given by an expression
similar to (A10),

'U'(»"=ql"+2pN"+2pN 1"2(N 1+ ' ' '— —

+2pl&(gl NN —1) . (A17)

Using the operator formalism, we easily verify and
generalize (II 3.9)

ql„(u'S""&Np2

=(o
I [v2~(» "+q2"]v(pl) D(R+j kl') ' ' '

XD(R+j, kN 1')v(pN)s'(ql) Io)
=(o

I
[~2~(» "+q2 "][s'(—q2)

—~'—j]v(pl)
XD(R+j+1, k(2) D(R+j+1, kN 12) V(pN) I 0)
+j&ol I:~H(»"+q2"]v(pl)D(R+j kl') ' ' '

XD(R+j, kN 12)V(pN)
I 0)

q2"&I '&N+2+(q—2' ~' 1 j)——
X&2( '0(» "&NP2+g(u''0(» "&NP2, (A18)

and similarly,

&Q S )N+2q2 p

= —ql)'&N~')N+2+ (ql' —ill' —1 —j)
X(2( U (1) )N+2+ j(+ U (1) )N+2 ~

From (A18) and (A14), we obtain the generalization of
(II 3.11):

qlp&N )N+2q2v

= j'(~'&N+2+[j(ql'+q2') —(2j+1)~'
—(j+1)'—j'](IJ+')N+2+ (ql' —2)2' —1 —j)

X (q22 —2)22 —1—j)(N)'+2)N+2. (A19)

The identities (A14), (A18), and (A19) are used ex-
tensively in constructing the current algebra param-
etrizations of Appendixes 8 and C.

We have explicitly indicated that the momentum of 'U"

is (ql+q2). In the integral representation, setting (2, =1
is equivalent to multiplying the usual integrand I&+2 by
(1—I) ' '. Hence, defining

BFP""(ql,q2)
—=—(So)'"(1—I)~l '&N~2+g)'"(1)N+1 ) (A22)

we have

qlpBFP (ql)q2) ( U(1) (ql+q2))N'+1 )

and similarly

B»""(ql,q2) q2 = —&'t)'(»" (ql+q2))N+1 &A 3)

APPENDIX B: CURRENT-ALGEBRA PARAM-
ETRIZATION WITH ARBITRARY

FORM FACTORS

The current-algebra parametrization of II is ex-
pressed in compact notation and then generalized to
arbitrary form factors,

where

F(q') =E f(F((q'),
L=O

Fl(q') =
1—q2/(m2+1+t)

and p 1 fl =1.
As discussed in Sec. II C, the two-current amplitude

is written

(ql, q2) =MH (ql, q2)+~0 (ql, q2)+1' FP~ (ql, q2) ~

C. Current-Algebra Identity

We now rederive the identity used here and in II to
introduce the current-algebra fixed pole. First consider

Bo""(ql,q2) —=—&[0'(»"+(ql"+2q2")I]
X ['U(» "+(q2 "+2ql")u])N+2

(0 )N+2 (A20)

From (A18) for j=o and (A14) for an (1V+2)-point
function, we have

q,„BH(""(ql,q,) = —(t 2)2'—1)—[&u'U(»")N+2

+ (q2"+2ql")(I')N+2]. (A21)

To obtain the current-algebra identity, we examine
(A21) as a function of (2(=t—m2. As (2( ~1 only the
pole at o.g

——1 in the quantity in brackets contributes. Its
residue is an (1)1'+1)-point function and is essentially the
required right-hand side of (2.3). A straightforward
computation using the integral representation gives

ql BC (ql q2) &U(1) (ql+q2))N+1 ql (1)N+1 ~
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From II, we have for a single-pole form factor (fo ——1), (A18) along with the trivial identity

~II (ql)q2) FO(ql )(pa~a'(ql)B (qlpq2)(PO v'(q2)FO(q2 )

+L2 (m'+1) g "+ql ql "](u'))vga,
(82)

AERY (ql ql) PO(l)BQ (ql q2)

~»""(qIHl) —Fo(")B»""(ql&q2) i

to obtain

Q (—1)J juI= —lu(1 —u)' '
j=o

ql„($&"(1—u) I)~„l
= (L—

q2 "u+ (qnl —m' —1—l)u'U (I)")(1—u) ')))+I (810)
(PI „.(q) =g „—q q„/(m'+1+1).

One easily verikes, using (A18) and (A19), that

(83)

~"'(q)=Z fIPI(q')(T'I"'(q) (84)

which satishes

q.~"'(q) =q".

Our generalization can then be written as

%II~"(ql,q,)

= t~"'(ql) —a"'JB"'"'(ql,ql) 9""(ql)—g" 1

2 f&LF&(ql )+I N'(ql)g &'+g P'+I &'(q2)FI(q2 )1

q(ukfrl""(ql~ql) = ql~~—o""(qlÃl)
= (m'+1) L(u'U(I) "&~+l

+ (ql"+2ql")(u')~pl),

and observes from (A23) tha, t 3fpp"" gives the required
current-algebra divergence so that Ml'" has the required
properties.

For arbitrary form factors it is convenient to intro-
duce a vector meson "propagator"

ql (u'0'(I)" (1—u) &~+.

(=(u+ (ql2 m—' 1—l—)u'] (1 u—) ')~+I

This amplitude Mi'" factorizes for leading trajectories,
since it differs from the factorizable function 6l"„BI'"'6"„.
by terms of order I or higher; such terms give no
contribution to leading trajectories in kg (channels dual
to the l channel).

YVe remark that this parametrization has a structure
similar to the arbitrary form-factor parametrization of
grower and Halpern20 for the double-Qip amplitude for
X=2, although it does not reduce exactly to their
result.

APPENDIX C: CURRENT-ALGEBRA
PARAMETRIZATION FACTORIZING

Om m LEADING TRAJECTORIES

Here we generalize the construction of II to obtain
amplitudes satisfying current algebra and factorizing
(without spurious states) on the M leading trajectories.
The parametrization given here has form factors with
the speci6c form

+2(m'+1+l)g)'"u'j(1 —u)I)~+2, (86)

fI(m'+1+1)
M o&"(ql, qg) = —P ((Bo""(1—u) ')))I+l, (87)

f((m'+1+ l)
M»&" (ql, ql) =g — (Sc&"(1—u) ~I&~+s

z ~,—1—I

+F(l)g""(1&~+I

F-(q) =F.(q» (q)

BL1—(I(q'), Mj
(C1)

B/1 —(I(0), Mj
but we conjecture that the asymptotic condition
F(q') (q') ~ is sufllcient to allow the construction
of more general parametrizations with M-trajectory
factorization.

In Sec. III, we considered the amplitude

(88)=F (l)B»""(ql,ql) . B"(q„q,) = —(Ol Lv2O(I) "+ql "jV(pl)I)(&,kl') I'(p2) ".
XD(2(.',k)v p) 12'(p~) (Vaa(I)»+ql~j [0&. (C2)

ql ulled II""(qlÃl) = —qI~Il'f o""(ql&q2)

The third term clearly has the desired current-algebra

g c o c ( )' Wc obscl'vc tllRt thc ullpllyslcal slllglllRI'ltlcs 111 ( call bc
(llvcl'gcllccs of thc othcl' two tcl'Ills CRllccl Rs required, sv()lded If we replace 12'(p) by

=P f)(m'+1+l)(Pu'U(I)"

+{q."+2ql")u'3(1 —u)'&~+1 (89)

In obtaining this result we have first used (A14) and

z=o

(P(—k) —m'q
) S(k+p) —m'q

ll"(p)l
) 'E

(«)
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l.e.
p

we consider

~"'(qx, q2)

= —(0lLv2&(»"+8"jV(pi)D(R»)2) . .

D(R»~-~') V~(p~) I:~&~(»"'+qi"j
I o)

One immediately observes that (C4) differs from (C2)
by terms with the propagators shifted by M+1 units or
more. Such terms contribute only to trajectories dis-
placed below the leading trajectory by M+1 units or
more. We also observe that 8))r&" is conserved only if qP
or q22 equals m2+1+I for N(M —1, i.e., only for the
first M vector mesons. In fact,

St(—qg) —m'
X V(p,)D(R+l, kP)

(m'+1) ~ (m'+M)
~~ '(q~')R~ '(qn')

M!

X{(q22—m' —M —1)N3r+'v &»"

—(M+1)q "u~+')~ 2 (C5)
S(—qg) —m')

XD(R+l, k~ P) V(p~) (
To obtain this result we have used (A9) and the

XL&2g&»I't+q, &j!0). (C4) identity

(St—m'). . .(St—m' —M) V(S—m' —1) . (S—m' —M)S'=—
M!(m'+1) (m'+Jq)

which follows from (AS).
We follow the decomposition (2.10) and define

Ma'"(qi, q~) =Fj (qP)&~""(q»q2)~~(q2')

(m'+1) . .(m'+M)

The divergence of M)r&" is calculated by using (CS) and
(A18) for j=M. The divergence of Mc""ls calculated as
in Appendix 8 to obtain (89). The sum over l is then
done by using the sum rule

Q f)(m'+1+l)l" =0 for e(M —1 (C9)
l-0

X( S""+2Mg"" +'), , (C6) d th

f)(m'+1+1)
M&~"(q&,q,) = —P (e&~"(1—u)'))),+„(C7)

ng —1—/

f)(m'+1+1)
""(q,q) =Z

0.)—1—1

=P(t)Bppl'"(q), q2) .
+~(&)a""(1) +

(Cg)

The third term clearly has the required current-
algebra divergence. The divergences of the other two
terms cancel as required,

qx~MIr""(qi, q2) = q)I Mc""(qi,q2)—
(m'+1) (m'+M)

(M ])l

X{& 0 g)"+(q2"+2qi")+ )++2.

which follows from (C1) and the de6nition of f)
!:Eq (»)j

This amplitude factorizes on all trajectories lying M
units or less belovr the leading one because it differs from
8~I"" by terms that do not contribute to these tra-
jectories. This is clear for Mrr"" LKq. (C6)j since it
differs from 8'""by terms with at least M powers of u.
The sum Mc""+Mpp)'" is proportional to

which by (C9) also has at least M powers of u.
We remark that for %=1, this parametrization re-

duces to the result of II Lsee Eq. (82)j.


