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Use of Finite-Energy Sum Rules for a Numerical Study of Regge
Behavior in a Unitarized ~-~ Veneziano Model*
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A simple single-channel IC-matrix unitarization of the w-w Veneziano model is performed. Inelastic
sects corresponding to neglected channels are incorporated by giving the input, degenerate p and f'
trajectories an imaginary part above the 4m inelastic threshold. Finite-energy sum rules are used to study
the high-s behavior for t(0, and corrected trajectories are extracted. The input degeneracy is broken,
with the p being shifted up to an intercept of about 0.6 as against the input 0.483. The importance of non-
leading terms in the Regge expansion, through interference e6'ects at intermediate energies, is noted. We
examine the resulting deviation from crossing symmetry.

I. INTRODUCTION

HK popularity of the Veneziano formula, ' as a
model for theoretical and phenomenological in-

vestigations, is well known. The idea of having an
expression for an amplitude that explicitly displays
crossing symmetry and Regge asymptotic behavior is
extremely desirable, but the most obvious defect of this
model is its restriction to infinitesimally narrow reso-
nances and corresponding lack of unitarity. Experi-
mentally, resonances are narrow as compared with the
average spacing between them, and it is claimed that the
Veneziano model is a good zeroth approximation; how-
ever, most Gts to the low-energy (resonance) region are
forced to correct some, or all, of the widths and so
incorporate unitarity. ' The theoretical question of what
happens to the Regge trajectories then arises.

This work studies the p and f' trajectories and their
residue functions in m-x scattering within the framework
of a unitarization of the Veneziano model. The m.-~
system is simple kinematically, without the complica-
tions of spin, and has undergone many previous exami-
nations4; it has been chosen here because of its well-
studied singularity structure, and importance in any
self-consistent dynamical scheme. The principal features
in this calculation will be the unitarization of the model
and the extraction of the resulting "corrected" tra-
jectories and residue functions by use of the finite-
energy sum rules (FESR).e The idea is to correct the
low-energy resonance behavior, and to use the assumed
duality to predict the high-energy asymptotic Regge
behavior.
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The present calculation is not to be considered as a
complete dynamical scheme, but rather as the first of a
series of iterative steps that will ensure both unitarity
and crossing symmetry. ' In this calculation we consider
exact unitarity in the s channel to be more important
than the deviation from crossing symmetry that will

result.
It has become increasingly apparent that the eGects

of other channels must be included in calculations of
this type. v s Here we introduce an inelasticity to
decouple the m-~ problem from the necessary full
multichannel setup.

II. OUTLINE OF METHOD

1

V('(s) =-
32K' —1

d cosH I'i(cosH) V'(s, t,u) (2.1)

' L. A. P. Halazs, Phys. Letters 298, 228 (1969).
7 A, J. Dragt, Phys. Rev. 156, 1588 (1967).
SA. W. Martin and R. W. Childers, Phys. Rev. 182, 1762

(1969).' F. Arbab, Phys. Rev. 183, 1207 {1969).
'0 J. A. Shapiro, Phys. Rev. 1'79, 1345 (1969).

Ke ensure unitarity of the 5 matrix by expressing it
in terms of a Hermitian E matrix, Sr ——(1+iE~)/
(1—iE&). An arbitrary choice of E&(s) ensures unitarity
in one channel only, and in general it is dificult to get
crossing symmetry as well. We will unitarize the s
channel, and use the imaginary part so generated for
physical s as input to FESR to determine t-channel

Regge parameters. The FESR, as used here, need the
scattering amplitude only for s) se (where se =4rrr ', the
elastic threshold), although unphysical t values may be
required.

The Veneziano amplitude seems to describe experi-
mental data quite well, ' when one shifts the real-axis
poles in s by some sort of "unitarization. '" Since the
required shifts are small, we have identified the E
matrix with th Veneziano amplitude; the real-axis s
poles are permitted in E. Of course, one must unitarize
the correct s-channel isospin amplitudes.

We introduce s-channel partial waves of the familiar
m -m. Veneziano functions V(sr, t,u) by'e
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and de6ne an elastic E-matrix element by

where p(s) is the usual kinematic factor 2q/gs. This
leads to a T-matrix element

T~'(s) =
2i p(s)

= Iri'(s)iI I ip—(s) I'~'(s)3, (2 2)

normalized to give

Examining the T(s,t) obtained in this way, we fLnd

that the real-axis s poles which gave narrow inhnite
spikes, and obscured the Regge behavior, have been
pushed onto the second sheet. These give bumps of
6nite height, obeying the unitarity bound. However, the
widths decrease with increasing s, and appear to level off
at small constant values, ' again leaving isolated spikes.
The Regge limit is still obscured.

As this point we make use of the FESR proposed by
Dolen, Horn, and Schmid~ as a means of smoothing out
the bumps, and observing the Regge limit. These sum
rules of the form

S„'i(s.,t) =
S ~+i

ds's'" ImT'&(s', t)

relate the s-channel discontinuity ImT(s, t) to the t
channel Regge poles and residues. LImTr'(s, t) is the
t-channel isospin combination, evaluated in the s-
channel physical region. j

The upper limit of integration should be within the
region where the Regge expansion is valid; but if one
accepts the idea of "duality, "in which the local average
of the low-energy amplitude (smoothing out the bumps)
coincides with the extrapolation to low energy of the
Regge expansion, it is found that s„can be lower than
one would initially expect."

We can 6x s„around 5—12 GeV'; provided that e is
not too large, we do get appreciable contributions to the
integral from the lower few GeV', and so we essentially
determine the Regge parameters from the low- and
intermediate-energy behavior.

We evaluate the sum rules S„(s,t) for a range of s
values and make a least-squares Qt to determine the
t-channel Regge parameters n, (t) and P;(t). Even with
the advantage of the sum rule, we And the bumps are
not suQiciently smoothed out to allow a satisfactory
determination of the trajectories. Since this it is per-

"This follows from the idea of "local duality, " where local
averaging is enough to display the Regge form. See Ref, 5 and C.
Schmid, Phys. Rev. Letters 20, 689 (1968),

formed in a region of s„values around 8 GeV', or higher,
it is clear that demanding only elastic unitarity of the
amplitude is inadequate; in fact, inelastic eftects have
their onset with 4~ production at s=16m2=0.32 GeV2,
E-X production at s = 1 GeV', and N-X production at
s=4 GeV'

A full multichannel unitarization would be prohibi-
tive. Since we are studying only the m-x system, it is
more convenient to approximate the eGect of other
channels by the use of the "reduced" E matrix. '~ In the
elastic region this is the usual E matrix, real and
symmetric, but once inelastic thresholds are passed, it
picks up an imaginary part which can easily be related
to the inelasticity. In partial-wave form we let the (now
inelastic) S matrix be

S r(s) —
~ I(s)s248l (N) =s2ilkg (s) (2.4)

where 8$(s) is always real. One essentially defines
Z (s,t) by X& (s) =tank& (s), so that it becomes com-
plex when g ~r(s) & I (in the inelastic region).

A natural and appealing way of introducing in-
elasticity into the "Veneziano-as-E-matrix" model, is to
give the input trajectories imaginary parts once in-
elastic thresholds are crossed. One expects the tra-
jectories to be analytic functions of s with a right-hand.
cut only, beginning at the elastic threshold, so. The
elastic cut is introduced by the E-matrix unitarizatian,
so we give the trajectories an imaginary part from
s=0.32 GeV, the 4x threshold. This procedure intro-
duces extra parameters, which are determined by as-
suming a possible p elasticity X, of 0.9—0.95." For
simplicity, we have chosen the functional form of the
imaginary part to be linear. In the region around s, this
is fairly indistinguishable from other possible con-
siderations based on analytic trajectories and Regge
behavior ""

III. DETAILS OF CALCULATION

For the purposes of comparison it is convenient to
consider simultaneously three types of calculation.
These are

(i) the Ueneziano model with complex trajectory func-
tions" (referred to below as case CU), where an imagi-
nary part is added to the trajectory function to
correspond to the onset of the elastic cut;

(ii) the unitarized Ueneziano model using the reduced
E matrix to incorporate inelasticity (case RK);

AI

"In particular, for the many-channel treatment, see G. E.
Hite, Ph. D. thesis, University of Illinois, 1967 (unpublished).» J. S. Ball and M. Parkinson, Phys. Rev. 162, 1504 (1.968);
168, 1926 (1968);T.Brunila, M. Roos, and J.Pisut, CERN Report
No. TH-972, 1969 (unpublished), for a more complete numerical
evaluation.

'4R. Z. Roskies, Phys. Rev. Letters 21, 1851 (1968); Yale
Report No. 2726-543, 1969 (unpublished)."B.R. Desai and P. Kaus, University of California, Riverside,
Report No. UCR-34P107-83, 1969 (unpublished).

~6 M. L. Paciello, L. Sertorio, and B.Taglienti, Nugyq Qi~qnto
63A, 1026 (1969).
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rr(/) is curved in the region where t(0.'s Actually it is
necessary to have fv(x)/x —+0 as x —+~ so that the
correct Regge limit (the signature factor)" is obtained,
but in this calculation we require a(s) only up to a
6nite value of s, no more than 15—20 GeV', and. so it is
simplest just to use a linear form f &(x) =C&(x—xs)."

For the RE calculation, we perform the unitarization
using the partial-wave decomposition of Vl(s, i), and
resum the corrected partial waves to obtain Tl(s, t). In
this case the input trajectory has the form

rr(x) =ux+b+s6(x xl) f—z(x), (3 2)
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inelastic threshold, the 4~, with x& ——16m ~0,32 GeV'.
This makes VI(s, t) become the complex, "reduced" E
matrix. The elastic imaginary part is put in by the
unitarization. Again fx (x) is linear, Clr (x—xl). If
C~ ——0, we get only the elastic part, and this is the
purely elastically unitary EE.

The parameters of the trajectory, u, b and C, and the
over-all scale, g, of the amplitude VI(s, i) are obtained
from details of the low-energy 7r-m system.
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FIG. 1. Comparison of phase shifts bq~ and inelasticities qual

calcula, ted from the unitarized Veneziano model, RE (solid lines)
with data in the p-f0 region taken from Oh t Ref. 25 (dashed line) j.
(a} Inelasticities. The bump g8'&1 near sy0 is the "ghost"; 880 is
also a6ected, rising instead of falling as the data do. (b) Phase
shifts.

(i) The position of the s-channel resonances, at s„,
are given by Ren(s ) =as +b =Is. We use the Lovelace"
values, a=0.885 GeV ', 6=0.483,"obtained from the p
at st and the Adler condition, n(res, ') =-', . (These are
diferent from the values @=1.015~0.17 GeV ' and
a=0.406~0.12, obtained if one assumes that the p and
fs lie on a degenerate trajectory. u)

(ii) We relate the constant CI to the p width I'„
and, 6x g from the usual ptrs coupling constant f,
(f'/4s. =2.1—2.5). Near the p pole,

EI(t) —El(u)
V'(s, i,u) = 16rrg

a(st I) i Imn(—s)—

rr(X) =aX+b+i8(X Xs)fr(X). —(3.1)

The function fv(x) should rise no more than linearly
with x,'4 '~ although this is a statement on its asymptotic
behav1or~ and does not pI'e elude an Involved low-s
structure.

The linear Ren(s) given by Eq. (3.1) violates the,
usual analytic form of the trajectory. "A curved Ren(s)
required. by analyticity, is a basic problem in the use of
the Veneziano model, as ancestors are introduced if

~7 P. D. B. Collins and E. J. Squires, Rgggg I'Olds iz Egrtkle
Physics (Springer, Iicrlin, J9tigl, pp. 70—72.

(111) RIld tile pill'cly clas tlc E-Illa tl lx unltarlza tlon
(case EE), wlllcll ls R spcclal IIlstRllcc of case RE,
without any inelasticity.

%e treat CV because it is the simplest numerically
and is explicitly crossing symmetric; each of the tra-
jectories n(s), rr(i), and n(u) develops an imaginary part
at the 2x elastic threshold, so=4m '~0.08 GeV'.

'g The approa, ch to the treatment of ancestors, which are un-
avoidable in. the Veneziano model with analytic (hence curved)
trajectories, is to show that the coupling of the ancesters can be
considered negligible, as in Ref. 16.

"%e ensure the correct signature factor by enforcing s-z
crossing symmetry in the FKSR.

'0 In fact, even if 0.(s) is analytic, with f(s) having an appro-
priate limiting behavior, ~(s) is usuaHy considered to obey a
doubly subtracted dispersion relation, and so the departure from
linearity only displays itself at large s values. This point is stressed
in an examination of baryon trajectories by R. M. Spector, Phys.
Rev. j.'I3, 1761 (1968), ~here he 6nds an f(s) =0.135(s—0.95),
to be compared with the value used in our CV of f(s) =0,16&
X (s—0.08). It is the smaBness of f(s) that gives the decoupling
of Ref. 18.
4 ~' C. Lovelace, Phys. Letters 288, 264 (1968).
Q!, ~These values of o and b give rise to a "ghost" (pole with
negative residue) at s2, in l=0, below the f0. A slight change in g
and b could correct this (Ref. 10}, but it does not aGect our
purpose, and, as seen in I'ig. 2, the violation of unitarity is not
large.

~ The trajectories 0.,(s), o,y&(s} are necessarily degenerate in the
original Veneziano model, because of the absence of "exotic"
resonances in the I=2 channel, and the constraints of crossing
symmetry.
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FzG. 2. Argand diagrams of the CV and RE partial-wave amplitudes a& =2p{s)T& (s). The dashed circle is the unitarity circle of
radius 1. The first few resonance positions s„are marked with arrows. (a) Complex Veneziano l =0, I=0. Note that almost all the low-
energy points fall outside of the unitarity circle. Note also the effect of the "ghost" at s2. (b) Complex Veneziano, l = 1 I= 1. The dots
on the solid line indicate increments in s, As=0.05 GeV'. (c) Unitarized Veneziano RE, l =0, I=0. Here only the "ghost" at s& lies
outside of the circle, and not by much. (d) Unitarized Veneziano, l=1, I=1.The dots now indicate increments of s, ps=0.25 GeV2.

This corresponds to

T'(s, t) =f...'(t I)/(m, ' —s im, l'—,) . —(3.4)

So with I', =0.125 GeV' we get Cy ——0.167 GeV ' and

g =0.5—0.6.
(iii) For EX, Irnn(s) =0 (Crr=O) so that we have

I',et, = ',p(s,)(2&,)'g, wi-th (2k,)'=s„—4m ', whichgives

g =0.614.This is the value of g used in all three cases for
comparison.

(iv) When Crr/0, corresponding to the inclusion of
inelastic effects beginning at 8&, we identify m,F,'
=~~p(s,) (2k, )'g as the elastic width and m, l', '~

=Irnn(s, )/a as the inelastic width. Choosing a total

width at the p, I'"'=I','+I', '"=0.135 GeVs, and an
elastic width I'"~0.120 GeV', corresponding to a p
elasticity X,~0.9, we fix C~ =0.384 GeV 2.

This is an artifice to introduce an imaginary part to
the trajectory to approximate the effects of inelasticity,
and the exact low-energy behavior should not be taken
too seriously. '4 However Fig. 1 does indicate some

'4 The p resonance is almost entirely elastic, although a multi-
channel resonance fit by Ball and Parkinson (Ref. 13) indicates a
possible elasticity X,=0.95. Use of this value in RE, above, gives
a value of q much closer to 1 than do the data of Ref. 25. We
prefer a smaller X,=0.9, which then gives Xy&=0.8; this is too
small. t G. Ascoli et al. , Phys. Rev. Letters 21, (1969) find Xy —+ 43-
about 0.9, I'P't=0. 145 GeV.j To fit actually the data of Ref. 25,
we would have to abandon the simple linear form, Eq. (3.2).
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ill Th oothing effect is obvious. (s) I,=O (f'exchange) for CV())+j so that it is the average bout @which Im+ clearly os
1=0 —(},2 Geg'. (b) Ig= 1 (p exchange) for CV at /=0, —. ; e

0 Q~ (d)'I = 1 (p exchange) for RE,'5 =0 GeV~.exchange) for RX, 1=0 e . g=

agreement wl c R a'th th d t of Ref. 25 even for this simple
linear fol m.

The behavior of some of the lower partial waves for
the cases CV and RE can be seen in the Argand dia-

f Fi . 2. There are two features of principa
~ % 4I

lntcrest. One ls thRt cvcn with the lDlaglnary paI'

~~8. Y. Oh e$ ul. , Phys. Rev. Letters 23, 33k (1969). Their
study of x-x sca ri g

qu1te considerable inelasticity ln the zV» an

added in CV, the I=0 5 wave, and to a lesser extent the
I= I I wavery greatly cxcccd the uQltRrlty bound foI' s
values extending beyond the f' resonance. These are the
waves that are principally RBected by the unitarization
in RX, and, apart from them, the colnplex Veneziano
model CV is fairly unitary. (The 3=2 and 1=3 partial
waves fall well within the unitary circle).

The other important feature is that for values of s
above s, 4.0 GeV', the amplitudes a~ =2p(s) Tg seem to
be rSpjralling in tOWRrdS R pOlnt nCRr RC@g= —0.2,
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Ima~ 0.25, with decreasing radii. The exact point is not
fixed, and varies from example to example, as do the
exact shapes of the loops. This behavior can be crudely
understood in terms of a resonance of elasticity X(s)
superimposed on a background B(s), where both X and
8 vary slightly over the position of the resonance; if X
and 8 are exactly constant, we expect a circle of radius
X about the point 8+iX. In fact, the Veneziano model

CV gives a partial-wave amplitude of this form. In the
neighborhood of the pole s„ that is resonating, the re-

maining poles in the infinite sum contribute to the
"background" 8, and presumably make up the Regge
average that the full amplitude oscillates about in a
duality sense. The interesting point is that the unitarized
case RE displays essentially the same behavior, and so
is likewise dual and presumably has Regge behavior.
Purely elastic unitarization does not give this spiralling
behavior.

Going over to the full amplitude, we see that only in

the CV and RE cases do the resonance bumps smooth
out, resulting in the awaited Regge asymptotic behavior,
and this at a fairly high s value. The imaginary part of
the amplitude, ImT (s,t), is shown as the solid lines, in

Fig. 3, and it is clear that pushing the poles off the real
axis by increasing amounts does smooth out the reso-
nance bumps. In EE only the elastic widths enter, and

they decrease in the region examined, causing large
narrow peaks. "

Use of the FESR is now made, in order to smooth out
the bumps in a duality sense; if duality were not true,
we would have to take the upper limit of the FESR as
far as we would go to observe the Regge behavior
directly in ImT(s, t).'r Some smoothing would result, but
the bumps would still be seen. In Fig. 3 we plot as the
dashed line the value Ln(t)+1]SO(s,t), superimposed on
the amplitude to which it relates.

Except in the EE case, the Regge behavior of the
FESR has set in by about 4 GeV' in CV and 8 GeV' in

RE, a clear improvement. One must conclude that EE
does not have smooth Regge behavior, and that duality
does not hold for it, although there is some smoothing.
In fact, the l&=1 EE amplitude oscillates violently
through positive and negative values, and so does its
FESR.

The FESR require the input ImT(s, t) at values of s
and t that can lie outside of the s-channel physical
region. This is a problem encountered in many dis-
persion-relation-type techniques; although s is re-
stricted to run along the physical right-hand cut, s+sp,
for a fixed negative $, the lower s values correspond to

"This behavior for the widths is pointed out by Shapiro (Ref.
10), and in our case can be seen by using CV with Imn(s) =const.
The resulting amplitude is very similar to EE in over-all behavior.

'7 A point to be noted is that if we use a crude extrapolation
procedure, say, that of using s~(') in the low-energy region,
instead of the possibly more correct P (&)(z&) or some other
modified form te.g. , that suggested by L. Sertorio and L. L.
Wang, Phys. Rev. 178, 2462 (1969)J, we can expect the useful
s„ to be somewhat higher.

unphysical points and a continuation in 3 is required. In
CV this continuation is provided by the explicitly
continuable form of the gamma functions, while in RX,
T(s, t) is represented by a Legendre series. The t values
needed correspond to values of s, = cosa, greater than 1
in magnitude. Although at these values of s, the
amplitudes T&(s) are strongly decreasing as / increases,
the Legendre functions P~(s,) behave as s', and cause
the series to diverge; the attitude adopted here is to
truncate the sum when the product T~(s)P~(s,) reaches
its smallest value "

In the original Veneziano model CV, the nearest
singularity which determines the Lehmann ellipse of
convergence of the series is a t pole (s&1) or I pole
(a&1) at n(t~) =1 and a(N~) =1. With our choice of
parameters, N&=t&—0.584 GeU'. The trouble caused by
I& I& corresponds to s&4m„' —t —N~= —t—0.504 GeV'.
Because the FESR are done for a axed negative t in the
range

~
t

~

&0.8 GeV', this troublesome region is not an
appreciable part of the region of integration (so&s
&8—14 GeV')

In the unitary case one expects the nearest singularity
to be the start of the I or t unitarity cuts, increasing the
above "bad-s" region to s&

~

I I. Our method does not
unitarize the u or t channels and so we will still use the
partial-wave series to continue to nonphysical values of
t,29 as is done in the application of the FESR to experi-
mental data. ' We do not expect this region to contribute
much to the FESR, and even restricting the integral to
physical points only does not change the result much.

The FESR are calculated using a simple trapezoidal
integral, with enough points to cover the resonance
peaks smoothly. (About 200 points for s from 0.1 to
10 GeV'. ) The Regge behavior of the FESR is quite
clear by s about 5—9 GeV'.

We now extract effective trajectory and residue
functions by making a simple least-squares fit to

lnLS„r(X, t)j=A (t) InÃ+B(t), (3.5)

with the behavior

giving
s.'(&,~) =P.(l)&"~'~/L~. (~)+~+1j,

e.(~)
&(t) =a,(t), B=ln

~.(~)+~+1
(3.6)

If in this low s region we can identify the effective
trajectory with the leading trajectory, we expect a
behavior like that of the Veneziano model CV, with

'(t)=«+»nd ~.(~) =Ã"""II (~.(l)). (3 ~)

with Pr' a constant.
"The partial-wave amplitudes are evaluated by numerical

integration, using a 12- or 24-point Gaussian rule, so that very
high l values, instead of giving TI=O, give large T~ because of
numerical inaccuracies. We wish to truncate the sum before
this point.

2'The series for ImT(s, t) is, of course, supposed to converge
in a larger ellipse, in the s plane, corresponding to the edge of
the double spectral function as nearest singularity.
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F&G. 4. Trajectories and residues calculated from S„&(s,t) in the unitarized Veneziano model RE. The dashed lines are the input
trajectoryn; (t) =0.885t+0.483 and the leading residue pp t(t). (a) Effective fp trajectory Op(t) obtained by fit to (1) Spp(s, t), (2) Slp(s, t),
and (3) S2p(s, t) with s in the range 9.5—13 GeV'; the mean error is &1&&10 3. (b) Corresponding residue pp(t). (c) EBective p trajectory
o.'(t) obtained by Gt to (1) Sp (s,t), (2) Sj'(s,t), and (3) $2'(s, t), withsin the range 9.5-13 GeV'. The mean error is +1X10 '. (d) Corre-
sponding residue P'(t).

For small values of t down to —0.1 GeV', the fits are
fairly good, improving if N is large, and n, (t) and P, (t)
do not deviate much from the input n(s) and P (s). The
close agreement between ImT(N, t) and S„(N,t) in the
CV case, shows the validity of the FESR as used in this
manner. But as t approaches and passes —0.4 GeV',
strange-looking dips and peaks (Figs. 4) are obtained. .

These dips are far more severe in the RE case than in
CV, and change with different moments tt in S„(s,t) In.
order not to overemphasize the higher s values in the
FESR, e not larger than 2 was used. The shifting of
these peaks [ occurring near P(t) =0; t —0.55 GeV'j
with the diferent moments e, leads one to consider the
possibility that they are due to the interference of the
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leading trajectory with the daughters. In the case CV,
the 6rst daughter trajectory and residue is displayed in
Fig. 5. The daughter residue is small and goes through
zero at the same time as the leading residue, but because
the behavior is different can lead to an interference
eAect. At the s values used, the imaginary part added
has not caused the oscillations of the poles to die com-
pletely away, and this probably enhances the effect of
the interference. At larger values of E, up to 20 GeV',
we get a strictly one-trajectory fit without the
interference.

The more prominent interference effects in the RK
case can be traced to the fact that in the unitarization,
the I,=2 amplitude is purely elastic, and obtains a large
imaginary part, which behaves as 0.3s '&'& with n2(t)—0.435)—0.01. In the case CV, the amplitude for I,=2
is proportional to F(u, t) (see the Appendix) which has
no direct-channel resonances, and so has no imaginary
part.

%e also tried fitting with two trajectories. Although
the peaks now obtained in the leading trajectory were
less significant, and a fairly large "effective daughter"
was indicated, the method is not accurate enough to
separate the trajectories reliably. This casts doubt on
its use on data, with inherently lower accuracy. Never-
theless, it must be concluded that the inclusion of
secondary terms in the expansion for values of s around
7—10 GeV is important.

Using a linear fit to the output trajectories, one sees
that the input is followed fairly closely, but that the
output p trajectory lies somewhat above the input, with

n, (0) 0.6, while the output fe seems to fall below the
input, with nr(0) 0.43. Thus the exchange degeneracy
is broken by the unitarization. This output p intercept
agrees with the commonly found value of about 0.57,
when fitting high-energy data, although the resonances
on the p trajectory dictate a value certainly less than
0.483, as seen just after Eq. (3.2).

Because of the impossibility of using the partial-wave
series to continue the unitarized amplitude to t) 0.08
GeV', and the limited accuracy that manifested itself
above, no attempt was made to alter the input parame-
ters to obtain the closest self-consistency; to do so would
require a form for input of nondegenerate trajectories. '0

Possible corrections for the above difficulties are dis-
cussed in Sec. IV.

IV. CONCLUSIONS AND DISCUSSION

The major conclusions of this work are simply stated.

(i) It is clear that simple elastic unitarization is not
sufhcient to obtain smooth Regge behavior, even with
the added effect of the FKSR. Our use of the FESR does

30 Since we are using U(s, t) only as the non-crossing-symmetric
E matrix, we can use a form that does not have degenerate
trajectories for the f0 and p, U(s, t) becomes then simply a useful
expression that has poles in a;(s) and asymptotic behavior
governed by n, (t). These can be different trajectories.

l5-
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l.o—

0.0—

0.5—

/I
t X I I I

-1.0 -0.8 -0.4 0.0
t[Gev ]

0.4

FIG. 5. Residue functions of leading and erst daughter tra-
jectories calculated from Veneziano formula for I&=1 (p~ & ~

=-',P;~&='). The dashed line is the straight line tangent to Po~(t)
at t= —0.55. Note that a straight line provides a good approxi-
mation to p in this region. P;, (t) is for the expansion in s ',
p,„'(t) for expansion 1~'.

not fix the value of the upper limit X midway between
resonances as is commonly done, but rather examines
the actual behavior as a function of E. One has to in-
clude some factor that causes the resonances to damp
out and overlap, and we identify this factor with
inelastic effects. Only then can we say that duality
holds true, for the intermediate energy region of around
4—10 GeV'.

(ii) At these energies, one has to take into account
"daughter" trajectories, which show up as distortions in
the shape of single effective trajectories, because of
interference effects. It becomes important to consider
the effects of adding secondary Veneziano terms, which
contribute to the lower-lying trajectories only. "

(iii) Despite the effects seen in (ii) above, the output
trajectories follow the input fairly closely, except for
shifts that are different for the It ——0 (the f ) and the
I,=1 (the p). Thus exchange degeneracy seems to be
broken by the unitarization procedure.

Some points that should be examined if we hope to
carry this study any further are essentially related to the
identification of V (s,t) with the X matrix, and the use
of a simple E matrix.

Introducing the inelastic effects as we do, by giving
n(s) an imaginary part, gives no inelasticity to the I,= 2

amplitude, while the data of Ref. 25 do indicate the
presence of appreciable inelasticity. Another defect is

"K.V. Vasavada, Phys. Rev. D 1, 88 (1970), has shown that
possible secondary Ueneziano terms can be added to the Lovelace
model (Ref. 3) to obtain improved agreement with data out to
the fo.
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TARSI K I. Test of crossing"syQlmetry violation within the
Mandelstam triangle. The vector b~ is represented columnwise
with elements (b )=a, &'. For the crossing-symmetric V(s,t),
bv =bv and dg = 1, so only bI/ is shown. For a unitary E' matrix,
bx, bx, aIId dx'=b .b'/jb [ )5 (

are displayed. '

—2.67X10 2

—1.17X10
+1.17X10-~
—1.82X10 4

+1.43X10 4

—1.59X10 4

—8.12X10-6
+3.52X10 s

+1.08X10 6

+3.52X10 '
—2.24X 10-7
+1.11X10-7
—0.17X10-7
—0.47X 10-7
—0.90X10-7

—2.87X10-~
—1.24X10 ~

+1.05X 10-2
—0.28X10 4

+6,61X10-4
—1.59X10-4
+0.96X10-4
—2.20X 1.0-4
+0.013X10-4
+0.035X10-4
+1.79X10-5

10.4X10 '
—0.012X10-5
—0.005X 10-5
—0.009X10 ~

—2.87X10 2

—0.95X10-2
+1.15X10 2

+3.87X10 4

+4,54X10 4

—3.37X10-4
+1.34X10 '
+1.00X10-'
+0.09X10-'
—1.23X 10-4
+6.56X10-4
+5.56X10 '
+3.48X10 4

+0.36X10-4
—3.80X 10-4

1.000
0.984

a Higher values of a show numerical inaccuracies in the amplitudes for
bv& resulting in dv«1. The contribution of bE& for these values are of
order 10 ~.

that the treatment is not exactly crossing symmetric,
and in fact this can be related to the lack of the above
inelasticity. One method proposed to use the X matrix,
but correct the lack of crossing symmetry as much as
possible, ' ' replaces the kinematic factor ip(s) =2sk/gs,
by a more general function. This function is chosen to
have a left-hand cut, as well as the right-hand imaginary
part 2k/Qs; this is so the partial-wave amplitude
generated will have left and right cuts. Lovelace's' form
pr, (s) replaces ps(s) =2k/gs by

the inelastic channels" may mean that part of the
inelasticity in the data is really due to Pomeranchuk
exchange in the t channel, contributing equally to each
I, channel, even at the intermediate energies. This
should perhaps be subtracted from the data before
comparison with the model, although exactly how to do
this is not clear.

Apart from the criterion based on the inelasticity of
the I,=2 amplitude, one would like to see the exphcit
deviation from exact crossing symmetry, To do so, it is
necessary to compare the amplitude at points related by
an analytic continuation in s and f. Since we use a
partial-wave senes to represent the amphtude, a mean-
ingful continuation in 3 to a place where crossing can be
checked is into the Mandelstam triangle. A continuation
III s Is Rlso I'cqlllI'cd ' wc sllllply Icplacc k In ps($) by 'l&,

where a is (4III ' —s)IIs. It is at this point that the
singularity of ps(s) at s=0, because of Qs, becomes a
nuisance. This is a reason for some of the other modi6ca-
tions of ps(s) adopted '4" Since our partial waves are
obtained numerically, and because of the gs singu-
larity, it is di6icult to decide how significant the
variations of the amplitude across the triangle are.
Instead, we base our examination on the crossing-
symmetric partial-wave expansion proposed by Bala-
chandran and Nuyts.

This is an expansion of the amplitude T(s,l) in terms
of functions 5„I(s,l) that are orthogonal in the two
variables s and t on the triangle, and have simple
crossing properties. Expanding the amplitude T(s,t), we
have

T(s, t) =g 2(I+1+1)(21+1)a„IS„I(s,l),

This has a limit for large E when ps(s) -+ 1 of

This form, when used in place of ps(s), gives an inelas-
ticity to the I,=2 amplitude, governed by the (1ns)/s
term, which dies away at large s, but is signihcant at
low and intermediate energies. Use of lt corresponds to
defining a different E matrix, EI(s) =ps(s) VI(s)/
(1 iVId p) w—hich now has an imaginary part, as well as
a modified real part. Similarly, the E/D method, where
lii'I is (say) identified with VI (s) and DI derived by the
usual relation, gives a new E matrix E/RCD. Any of
these methods will damp the I,=2 amplitude somewhat,
lessening the interference in (ii).

One 6nal point ln connection with the Ulelastlclty:
A1though the Pomeranchukon is not included, " the
belief that it is connected with the diffractive e6ect of all

3~ D. Mong, Phys. Rev. 181, 1800 (1969).

where the coeS.cients a ' are obtained by the same kind
of numerical integrals, as used in the above work. These
coef6cients obey a very simple crossing property when
considered as colllpoIlcllts of a vcctol (b )I& wllclc
o =Is+i It is b'=. b~, where (5 )I=Q XII,~(b')r. with the
X~I, explicitly given in Ref. 36. Table I tabulates b, 6,
and. a measure of deviation d=b 5/~b()5) (.which is the
"cosine of the angle" between the vectors), and. the
corresponding quantities for V(s, t) which is crossing
symmetric, of course. As can be seen, not more than a
few partial waves are significant in size, and they do not
deviate from the corresponding values for V(s, l) by
more than a few (up to 20%) percent. Use of the E
matrix is clearly not crossing symmetric. The exact
sign%. cance of these numbers is not clear, as the triangle
is very small relative to the scale of energies we consider.

Ravenhall and Schult, '4 using a set of crossing-
symmetric equations, 6nd that the X matrix they ob-

"H.Harari, Phys. Rev. Letters 20, 1395 (1968).
"D. G. Ravenhall and R. L. Schult, University of Illinois

report 1969 (unpublished)."J.G. Cordes, Phys. Rev. 156, 1707 (1967).
"A. P. Balachandran and J. Nuyts, Phys. Rev. 1'H, 1821

(1968).
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tain does not differ by more than 5% from po(s) V(s, ').
Lipinski, '7 using crossing-symmetric sum rules identical
in content to the double partial-wave analysis above,
6nds that Lovelace's' form violates crossing symmetry
by about S%%uz in the S wa, ve, and can be reduced by
modifying pz(s).

The conclusion would seem tobe thatusing po(s) V(s, t)
as the E matrix is not an unreasonable Q.rst choice.

In order to consider this calculation as part of an
iterative scheme that will lead to a crossing-symmetric
self-consistent amplitude, a number of defects of the
method must be overcome. As pointed out at the end of
Sec. III, use of a partial-wave series prevents us from
examining the trajectories for t very positive, and pre-
vents us from comparing an imaginary part in the 6tted
n(t) with that inserted in n(s) in the X matrix. Then,
too, we must recall that the imaginary part of n(t) will
correspond to the total width, as in CV, while the
imaginary part of n(s) is only the inelastic width.
Ren(t) will still be used to indicate the position of the
resonances, and should be compared with Ren(s). The
distortion in shape of n(t) would. require a form for the
input more general than V(s,t). For example we could
use the form permitting logarithmic trajectories, pro-
posed by Coon, "or we could combine a Ueneziano form
for the lower trajectories, with a few trajectories
explicitly put in as (say) F &,&(s.). These are problems
that are encountered in any attempt to bootstrap Regge
trajectories directly, if a realistic shape is required.
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I'(e+n(t)) 1
F(s,t) = Q-.=~ r(n(t))I'(n) n —n(s)

(A2)
()

a(e —1)!

- R„(t) or
, ~-(t)=

n=1 g —gn

with s„de6ned by n(s„) =e, and [n(t)7„—=[e—1+n(t) j
X[m 2+—n(t) j n(t).

The Regge asymptotic limit for 6xed t and s —+oo is
easily seen using the Stirling approximation for the
gamma function which gives the leading behavior,

P(y+b)/P(y)-y' - lyl-,

P(y+c) = 2 y ' '""(—f)+o(y' ' " '),
P(y+f)

Rey&0 (A3)

dominated by the t-channel parent trajectory. By using
further terms in the expansion of the ratio of two gamma
functions, wecan6nd lower powers of s [or of v=-,'(s —u)
for symmetryj corresponding to the eGect of daughters, 4'
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with the erst terms"

Ap=i,
~r=2(c —f) (c+f—1),
A2= (1/24)(c —f) (c—f—1)

X[3(c+f—1)'—c+f—1j.
(A4)

APPENDIX: ~-~ VENEZIANO MODEL AND
DAUGHTER TRAJECTORIES

The basic ~-m Ueneziano function, ""
'(1—a(~))P(1—~(~))

F(s,t) =— (A1)
P(1—n(s) —n(t))

3~ H. M. Lipinski, University of Nisconsin Report No. C00-264,
1969 (unpublished),' D. D. Coon, Phys. Letters 293, 669 (1969). The objections
to this form, on the grounds of crossing symmetry and Regge
behavior, raised by F. Capra, ibid. 308, 53 (1969), do not apply
if the form is used as a"E matrix, which is not crossing symmetric.
See Ref. 30.

' K. Kang, Nuovo Cimento Letters 3, 576 (1970). J. Yellin,
Phys. Rev. 182, 1482 (1969).

has s and t poles (resonances) lying on the degenerate
p- fo trajectories n(s), u(t) at n=e, +=1, 2, . . . . The

The high-energy behavior is controlled by Regge
poles corresponding to resonances in the t channel, so we
look at the t-channel isospin amplitudes. Lack of I,= 2
resonances requires VP(s, t,u) =gF(s,u) to vanish (con-
tribute to the background) and it will vanish expo-
nentially with s if I(s)/1ns~", where I(s) is the
imaginary part of n(s) that we add to display the Regge
limit by displacing the resonance poles, 1/sin~n, from
the real axis. To obtain the correct signature factor, we
also require I(s)/s —+ 0). If I(s) is small or zero, F(s,u)
will appear to go as s&', with y' lower than the leading
trajectory, y=n(t), by amount d=3b+aZ 1~057— .
(where X=4m, '). Even) with a rising I(s), this effect
may be observed for small values of s.

40D. L Fivel and P. K. Mitter, Phys. Rev. 183, 1240 (1969);
F. Drago and S. Matsuda, ibid. 181, 2095 (1969).

41 N. N. Khuri, Phys. Rev. 185, 1876 (1969).
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c=1—b —aZ(t), x=n(t),
f= 1—b —aZ (t) —n(t), w —= 1—3b —aZ.

I.«)
«'(, t,y) Z -p"(t)

r. p =sin~n&(t)

Performing the expansion, we obtain the Regge limits y=av.'

4

1+e
—i7rotl. «)

V)'(s, t,u) ~ p —pc'(t) y~«'), (A5)
I =0

s&nunc�(t)

V&'(s, t.,u) —+ 0,

with the daughter trajectories nl, (t) —=n(t) I-. —
The leading residues are

For the av case it is important to notice that m for
F(s,t) is —w for F (u, t). This gives the correct signature
then, since the expansion of F(s,t) is in powers of av and
should be in powers of (—av) =e ' (av). This ensures
that we have (r+e ' ""&) as the signature factor in the
expressions Lrecall that sinn'np= (—1)"sin7rnq].

YVith the first three terms explicit, in the av case we
have

p,'(t) =-', g/r( (t)),
p, ' (t) = g/r ( (t) ), (A6)

~(—av) &"

r( (t))

y=as:

c =b+n(t),
=b

x=c f=n(t), —
w= c+f 1=—3b+a—t 1; (A7)—

y=av.
c=b+n(t)+at (t),
f=b+aZ(t),

and for F(u, t)

x =n(t),
w—=3b+aZ —1;

y=as:
c=1—b —2aZ(t), x=n(t),
f=1—b —2'(t) —n(t), w—= 1—3b —2ax+at; (AS)

and y is either as or av. The residues after the first
depend on whether y =as or av, as could be expected. In
fact, we only get the correct signature factor if we use
y=av, since then the coefficients of the expansion of
F(s,t) and F(u, t) are the same. If we expand in as, we
will get the signature by forcing symmetry in the
FKSR.. This is possible because in the FESR we use only
ImTt(s) and only F(s, t) contributes to the right-hand
cut.

Recalling that u=Z —t —s=Z(t) —v and s=Z(t)+v
with Z (t) =-,' (Z —t), we 6nd for F (s,t)

n(t) n(t)(n(t) —1)
1+ 1—3b —aZ +

2(—nv) 24(—av)'

X[3(1—3) —aZ)' —(p —)& ), )A9)

F(u, t) = f(av, t),

so that we get

P,'= —P,'(t) [1—3b —aZ]n(t)/2,

(t)P (1—3b —a&)' —n(t) —1] (A10)
Xn(t) Ln(t) —1]/24.

)The (—1) in P& is from replacing sinn. np by —sin&rnl. ]
For the as case, we use the residues arising from F(s,t)
which are the same as above, except for aZ being re-
placed by at.

For computational purposes, it is easier to include the
scale factor a in the residues, and expand only in powers
of v or s. This is simply an exponential factor (a)~"&'&,

inserted into pq. p),r(t)=pq'(t)a "'&, used instead of
p"(t)

With the I ovelaceP parameters a =0.885 and
b=0.483, we find (1—3b —aZ) ——0.52. Figure 5 dis-
plays pp'(t) and p&'(t) for the s and v cases.


