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A systematic study of properties of q-number Schwinger terms in the algebra of currents is carried out
on the basis of Lorentz covariance. It is found that these terms can be expressed by means of a second-rank
Lorentz tensor. As an application, the existence of a covariant time-ordered product of two currents is
proven for a wide class of Schwinger terms.

I. INTRODUCTION

HE study of q-number Schwinger terms in the
algebra of currents is of considerable interest.

Experimentally, its presence may be manifest in sum
rules' involving cross sections for high-energy electron-
proton scattering and electron-positron annihilation
reactions. Also, its Lorentz property is very important
in constructing Lorentz-covariant time-ordered prod-
ucts of two or more currents, as has been shown by
many authors. ' '

There are several interesting attempts' " to deter-
mine the structure of Schwinger terms. In this paper,
we present a systematic discussion of the problem based
on rather general (and plausible) assumptions. To make
our Ansatz in a clear fashion, let j„(x) (a=1,2, . . . ,n)
be a set of n local vector and/or axial-vector currents.
The total number (n) of the currents depends upon the

specific group under consideration. For example, we

have n= 1 if we are only considering the electromagnetic
current, while we get n=3, 6, 8, or 16 if we are con-
sidering the SU(2), SW(2), SU(3), or SW(3) group,
respectively. Moreover, we shall use the standard Pauli
notation with x4 ——ixo and j4 (x)=ij 0 (x) throughout
this paper. Also, we shall specify Lorentz indices by
Greek subscripts p, ,v,)=1,2,3,4, while Latin indices

(k, l,s, etc.) represent their space components with
values 1,2,3.

Now we shall state our Ansi''tee.

Ansatz I
This is nothing but the ordinary algebra of currents,

I.e.,

*Work supported in part by the U. S. Atomic Energy
Commission.

1See, e.g. , J. M. Cornwall, D. Corrigan, and R. E. Norton,
Phys. Rev. Letters 24, 1141 (1970);J. Pestieau and H. Terazawa,
ibid. 24, 1149 (1970).
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3

~(.o-~.)Lj.( ),j"(y)3=Q."( ) ~&"( -y),
~(»-yo) Lj4'(x), j~'(y) 3 =Q~'(x) &"'(x-X)

8-s,"(y) s«( -y).
8Ãl

Although in many applications we need not assume that
Q4 '(x) and Qi, '(x) are components of a single Lorentz
vector Q„~(x), it gives an unnecessary complication, "
and for simplicity we assume hereafter that Q„'~(x) is
another local vector (and/or axial-vector) current. In
the case of the SU(3) group, we have Q„''(x)

f,&,j„—'(x) Howev. er, we do not assume any specific
form for Q„'~(x) in this paper.

We may remark that the absence of Schwinger terms
with derivatives higher than the second order has been
formally proved in accordance with our Ansots by
Gross and Jackiw' by means of a Jacobi identity
among Jo'(x), Jo'(y) and the energy density 0'oo(z).
This fact is also consistent with a work by Levin, ' who
reached the same conclusion for electromagnetic cur-
rents. However, our insets may not be valid in some
models, as indicated by recent work of Boulware and
Jackiw" on anomalous commutators. If the conclusion
of these authors is accepted, then we would have
Schwinger terms with derivatives up to the third order.
In this paper, we shall not consider such complications.

For convenience, let us set

8 8
g„„'(x)= = g, (x) — j (x)

8xy 8$y

8
D-(x) = j„.(x) .

BXp

We are interested in equal-time commutators among
j„~(x),j„„(x),and D (x) and we shall assume Ansatz II.

Ansatz II
Let A(x) and B(x) to be any two of j„~(x), j„„'(x),

and D'(x). Then the equal-time commutator between

"Some consequences without this assumption are given by Kuo
and Sugawara (Ref. 7). Also, when the electromagnetic or weak
interaction is taken into account, this assumption will not be valid,
as has been noted by Jackiw (Ref. 9).Hence, in the present paper,
we are implicitly assuming the absence of these interactions.
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~(xo —yo)LD (x),j4"{y)1
8(xo-yo) [A (x),B(y)] = "(.)~&'&(*-y)+~.'{y) ~"'( —y). (1.2)

t9$E8$y
q ~, , . . . , ~ (y) ~ "&(x-y).

BXIsI OX'~ Second, we have the identities

A(x) and B(y) can be expressed as a finite sum of most 2, with the form
8&3&(x—y) and its space derivatives:

Ke de6ne the order of the commutator to be the integer
associated with the highest derivatives of the b function.
Hence the order of the commutator [A(x),B(y)) in the
above example is X, that of [j4'(x),j4'(y)) is 0, and
that of [j4'(x),jP(y)] is 1, since the Schwinger term

Su, ' {x) {no summation over a) is known to be non-

zero 13,14

Ansafs III (Lorentz Invarianee)

[X„j„'(x)]=6„4j;(x) B„.j4'(x—)+L, i*&j„ (x),

[& Q.'(x))=- 44Q (x) —4.Q4 (x)+L.4"&Q, (x),

where E, is the Lorentz-boost operator in the sth
spatial direction and I.,q{" is the differential operator

1.,4{ ) =X4——X, -

Bgg 8x4

Notice that we do not assume any specihc I.orentz-
transformation property for the Schwinger term

S»,"(x)except for the fact that it must be a second-rank
tensor with respect to the spatial rotation subgroup, 03.

~u"(x) =&&,&'(x) = —Z(g "(x),
2&» "(x)=&n,"(x)—&H"(x),

~ "'(x)—S.,'( ) =S„.~{x)—S,„~.(x),

'(*)- "(.) = Q."(.)-
~&p, Bx)BSA;

Q."(*)= -Q "(x)

These identities reduce to well-known results' 7 when
we set Z&i '(x)=0. To derive more interesting results,
next we assume Anselme V.

Ansats V

The order of the commutator 8(xp yo)[D (x),D&(y)]
is equal to or less than 2; i.e., we can. wirte

~(xo-yo) [D'(x),D'(y))

=F"(x)tI~"(x-y)+F "(x) $~'&(x-y)

[&.,~(«—yo) P (*),B(y)]]
= ~(xo —yo) [N'. ,~(x)],B(y)]

+b(« —yo) [A {x),[E„B(y)]],
[«,[«,~(x)])—%'&,%'' ~(x)))= [[«,«) ~(x)).

These are just Jacobi identities. Note that we do iso&'

assume a Jacobi identity among three density operators

[A(x), B(y), and C(s)], since that may lead to a
coiltladictlon. Also, we llotlce tllat [Eg)Et] ls a pill e

spatial rotation operator; therefore, [[X„«],A(x)) is
calculable from the rotation property of A(x) without

any knowledge of its Lorentz transformation property.
Then from AnsNtst, I—IV, we can prove first that the

order of the commutator b(xo —yo)[D (x),J4'(y)) is at

'3 J. Schwinger, Phys. Rev. Letters 3, 296 (1959);T. Goto and
T. Imamura, Progr. Theoret. Phys. (Kyoto) 14, 396 (1955); K.
Johnson, Nucl. Phys. 25, 431 (1961).

I4 G, P6csik, Nuovo Cimento 43A, 541 (1966); S. Okubo, ibid.
44A, 1015 (1966)."K. Johnson and F. E. Low, Progr. Theoret. Phys. (Kyoto)
Suppl. 37'-38, 74 (1966); G. Konishi and K, Yamamoto, ibid. 37',

1314 (1967).%'e remark that, if the Jacobi identity among spatial
components of jp(x} is valid, then we must have q-number
Schwinger terms for the quark model. See I'. Buccella, G. Venez-
ian.o, R, Gatto, and S. Okubo, Phys. Rev. 149, 1268 (1966).

+F&
&"(x) 6'4& (x—y) . (1.g)

~YI ~Yi

Then, of course, we must have

F~~"(x) =FL"{x)= —Fw'{x),
8

F&,"(x)—F&, "(x)= —2 F i&"(x),
8x~

F'( )+F"( ) =-- [F"(.)+F. -(.)].
2 OSIS

When we assume Ansu/s V in addition, we can prove that
the orders of the comrnutators 8(xo —yo)[j& (x),ji~(y)]
and f&(xo yo)[D'(x), ji~(y)]—are at most 1 and 2,
respectively, and that we can write

~(«—yo)L j&'(x),j"{y)]
8

=f&~'(x) ~ "&(x y) f &"'(y) —~ "—&(x—y), {11o)
Xg

~(*o—y )[D (*),j"(y)]= "(*)~«&(x-y)
a2

+G.&~"(y)
XEBg~
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Furthermore, one has the relation

G, lg"(x) =GI,I, '(x) = —G.II"(x),

f.ls"(x) =f.IP (x), (1.13)

We can compute 8(xo —yo)r j4'(x),j&&'(y)] in terms of
other quantities Lsee Eq. {2.51)] without introducing
new ones

f.u"(x) =fII"(x)+fII"(*),
Bing

The order of the commutator b(xo —yo) Lj41 {x),j4~'(y)]
(1 14) is at most 2; i.e., one can write

L&.SI"'(x)]
—1.,4&*'Sp. '(x) =—f.11 '(x) —2G.II'(x), (1.15)

~("-y.)Lj"( ),j "b))
8

= I'p, "(x)8'41(x—y)+ I".Ii,~'(y) 5'4I(x—y)
Bxg

8
F,p'(x) = G,lp'(x)+ — Z,p'(x), (1.16)

8$1t: l3S4
+I' I"'(y) --~"'(x-y) (123)

8xg 8$~

LE„~"(x)]—L„&*&~"(x)=F,"(x).

Anscts VI

If wc assuIYlc 3'Mc~s VII In Mldltlon wc Q1ust have a
~1.17~

second-rank Lorentz tensor, :@~ R„„~~(x) satisfying
condltlons

%hen we assume Jesuits VI in addition, we can prove
the existence of a symmetric, tracctess Lorcntz tensor
H„„'(x) (p, l = 1,2,3,4), satisfying

H„„.~(,)=0, H„„.~(x) =H„„ &(x)= -H„„"(x), (1.19)

= g„,H, „~~(x)+S„,H„(x)
b„,HI„~'(x) b—„,H„I '(x) . —(1.20)

Also, we can express G.II.'(x), &.I"(x), Rnd K»"(x) as

G,u"(*)=&.aH41"'(x)+»IH4. "(x),
Z, I (x)N=H, i '(x) 8,IH4I'(x—),

8
E,II."(x)= G.II~'(x) ——ZI."(x)

BS4 t9$@

(1.21)

Rnd EII '(x) ls glvcll bp Eq. (2.28) 111 tcrllls of O'I. (x).
Moreover, we can prove that the orders of 8{xo—yo)
~Cj ( ),~' "{y}] d ~( -yo)C& (*),& '(y}]
most 2. Hence we can write

&(xo—yo)L ji (*),ju'{y)]

=XII '(y)5&41(x—y)+X,II '(y) 6'il(x —y)
Xg

+X.."'b) ~"'('-y). (1.22)
X~Bxg

The order of the commutator b(xo —yo) I j41'(x) D'(y)]
is at most 2; i.e., we can write

&(xo—yo)Lj41 (x)»'{y)]
8

=E "(x)5&41(x—y)+Ep, '(x) — 8'il(x —y)
Bgg

82
+E. "() ~"'( -y). (1»)

8$)8/8

R-"(x)=R-"(*)
R„(x}+R„."(x)=R.„"(x)+R„„"(x), (1.24)

2H„„"(x)=R„„~'(x) R„„"(x)„—
and in terms of this tensor, we can express SII'~(x),
f, '(x), and X, "(x}as

SII,'(x)=RII '(x) —8IIH44O'(x),

f, ii,"(x)= b, IR4I,"(x)+b.i R,p'(x)
(1.25)2X,II"(x)=8 IR.I,"(x)+b,lR I( )x

(& It'—.a+&.8 1)Rii"(x)

Finally, we can prove that if we demand that the com-
mutators b(xo —yo)L jii (x),j4I, '(y)] and b(xo —y(,)
XLjp(x), j4q'(y)] have orders at most 1, then we
must have R„( )x=8„, R"( )x. This implies f,lp~(x)
= f1~~~(x}=0; i.e., the commutation relation
Lj„'(x),j,'{y)] must satisfy that of the field algebra.
Therefore, if we demand the validity of the nonzero
space-space cul I'cnt commutators& thcrl wc conclude
that at least some of the commutators which we studied
must have the order 2, i.e., nonhero second-order
derlvatlves of the 5 function.

We remark that for the SU(2) case we have
B„j„'(x)=D'(x)=0.Hence the Ansiifse V and VI are
automatically satisned with H„„"(x)=0.In general,
without assuITllng Assets VII, wc can show that, lf one
of Zip'(x), GII.', and. Fi~'(x) is zero, then all of them
must be zero with H„;~{x)=0.As we see from Eq. (1.4),
jn. this cRsc wc llavc 'tile fallllllRI' folllllllR SII (x)
=SI.I"(x). The condition that 0"(x) be a Lorentz
scalar is that F;~(x)= 0, as we see from Kq. (1.17).

If the Schwinger term Siq ~(x) is a c number inde-
pend. ent of the coordinate x, then it must be propor-

"Possibly, the validity of Ause/s VII is most debatable in
comparison to the other postulates. Unfortunately, it is rather
dificult to give a raison fJ'Are for its validity, except for the fact
that it is necessary to derive some more interesting results and
that it is satis6ed in the 6eld algebra.
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tional to bn, , which leads to H„„'(x)=0. In addition,
if we assume unsafe VII, then R„, ' is proportional to
8„„;then Eq. (1.25) gives the result f,~q'~(x) =0.

II. DERIVATION OP MAIN RESUI TS

%e base our calculation on the folio%'1Ilg identity

[&,~(* —y.)[~( )»(y&ll

Kithout loss of generality, one can assUme

&u"(y) = &~1"(y) .

Inserting Eq. (2.5) into Eq. (2.4), one obtains

&1'(y)= 0,
2&ls"(y) =5'la'(y) —&w "(y).

From Eqs. (2.6) and (2.8), we find also

(26)

(2.7)

(2.8)

8= &,4'*'+L.4"'+(x.—y.) — &(»—yo) I ~(x),B(y)1
8$4

I, 4(*)+1,4(w)+(x, y,)
8$4

8 8
~b) "—&"'(x—y)

8$gI 8$Ic~

8 8
= {L 4'"'~(y&) "—~"'(x—y) (2 3)

8$yI 8$@~

wllele p(y} ls all arbitrary fuilctloll of y (hilt, liot x).
Equations (2.1)-(23) are our starting point.

For a while, we shaH assume only Ams@fs'e I-IV. First,
let us set A(x)= j4 (x) and B(y)= j,'(y) in Eq. (2.1).
Using Reste I and III, we then obtain

(*. y.)~(» y.)—[D (*)j—4'b) j

(x,—-y,)b{xo yo}——A (x),B(y)
8$4

+s(»—y,)[a,A(x),Bb)$

+&(»—yo)[~(x),~.B{y)J, (2 1}

where 11,A (x) and A,B(y) are d«ned by

a,a(x) = [X„A{*)j—I.„&*&A(x),

~.Bb)= [~.,B(y)3 I-"l"Bb-) (2.2)

In the derivation of Eq. (2.1), we used thc Jaco»
identity, Besets IV.

%e also notice the foHowing relation:

&n"(y) = —&n'(y), (2.9)

5'll;"(y) —5'al'(y)= 5'~1"(y)—Rs"(y) . (2.10)

These are nothing but Eqs. (1.2)—(1.5). To prove
Eq. (1.7), we notice that we must have

Q4"(x)= -Q4"(x)

because of AssQfs I. Then the Lorentz covar18, Ilce of
Q„"(x) (see Ansutz III) gives the desired relation,

Q
.~(x) = -Q "(x)

In order to derive Eq. (1.6), we note the following
identity:

~(* -y.)[D.(*),j 'b&l+~(*.-y.)[j.(x),L b)j
8 8
--+ — ~(»—

yo&Lj"(x)j"b)l
8$4 8/4

8
+ &(» y—o)[j~'(x-),j4'(y) j

l9$ic

+ &(»-yo) [j4 (x) j~'(y) l (2 12)
~Pk

82
0"(x)-0'(x) ———-ZP (x)+—Zg,, '(x)

8$) 8$)8$@

8
= {5'.~"b)—5'~ "b)&

—~"'(x—y). (2.4)
8$Ic

Q."'(x), (2»)
8',

=—[5' "(x)-S, (x)g, (2.14)
8$11;

2[5p.'(x) —Zl g'(x) j

8

From this together with the Aesats II, we conclude
Bxy

that 8(»—yo) [D (x),j4'(y)j cannot contain derivatives
of 5~4'(x —y) higher than second order. In other words,
the order of the commutator [D (x),jq~(y)j is at most 2,
and one can set

~(«-yo)[D'(x) j4'{y)l

=~"(x)&"'(x—y)+&1'(y) ~'"(x—y)
8$g

+Zip, "(y) 8&"(x—y) . (2.5)
8$~t9$It,

=5'»'(x) —~1~"(x)+~~1"(x)—~~1"(x), (2.15)

wllel'e wc llRvc used, Eqs. (2.5) Rnd (2.11). In view of
Eqs. (2.6)—(2.8), one can easily checir. that Fqs. (2.14)
and (2.15) are automatically satis6ed while Fq. (2.]3)
glvcs tllc desired relation Eq. (1.6). Qfc may remark

by many authors. See Res. 2, 3, 6, aIId 1' as vreIl as E. Kazes,
Phys. Rev. 15'F, j.309 I'j.96l).



that Eqs. (2.13)—(2.15) also follow from the identity Similarly, when we set A (x)= j4~(x) and B(y)= jbb(y)
in Eq. (2.1), we get

Next. , setting A(x) = J4 (x) and f 6) D (y)
Fq. (2.1) and using Ansuts III, we find

{(x—y.)~(xo—yo)L ji (x),jb'b)]}
8$)

8

Bx)

{(x.—y.)&(xo—yo)Lj"(x)»'(y)])

= —{LZ.,~b-(x)]—1.„&*i~'(x)j~&4&(x—y)

—{Lz„z»b (x)]—I.„& &z„b (x)} s&'&(x—y)
t9X~BSIs

8—2 Z, l"(x) 5&4&(x—y)
BS4 Bx&

+(x.-y.)~(xo-yo)LD (*)»'(y)]. (2.16)

+(x.-y )~(xo-yo)LD'(x) jb'(y)] (2 22)

Inserting Eq. (2.1/) into this equation, we find that the
order of 8(xo—yo)L ji'(x), jb (y)] must be at most 1.
We may remark that Kq. (2.22) reduces to Eq. (2.2) of
Dashen and Lee' when we set y=0 and assume the
conservation law D (x)=8„j„'(x)=0. At any rate,
inserting Kqs. (1.10) and (2.17) into Eq. (2.22}, we
derive

(2.23)

Therefore, if the order of b(xo —yo)LD'(x), Db(y)] is at,

most 3, then the right-hand side of Eq. (2.16) contains
at most the second-order derivatives of b&4l (x y) Thu—s, .
following the argument of Dashen and Lee, ' one con-
cludes that the order of h(xo —yo)gjb (x),D'(y)] is at
most 2, Hence one can write

~(xo—yo) LD'(x), j"(y)]
=rb"(x)8&"(x—y)+G» '(y) 8'4'(x —y)

Bing

—2G.ib"(y). (2.24)

This establishes Eqs. (1.11) and. (1.15). Notice that
Eqs. (1.13) and (1.14) follow directly from the definition
Eq. (1.10).Again, Eq. (2.24) reduces to that of Dashen
and Lee if G,» '(y)=0.

Interchanging (a,b) and (l,k) in Kq. (2.24) and sub-
tracting, we 6nd

L&.,&u,"(y)]—J-.4'"'&lb'(y) =G.bi"(y) —G.»'(y),
82

+Gl, b b(y) &&4l(x—y), (2.17) where we used Eqs. (1.4) and (1.13). Comparing this
with Eq. (2.19), we get

where without loss of generality one can assume G.bi"(y) = —G.bb" (y) . (2.25)

R, '(by)=G, i(by)

Moreover, if we assume Ansats V, i.e., if we can write
the commutator b(xo —yo)LD (x),D'(y)] as in Eq. (1.8),
then Eq. (2.16) gives us

G.»'(x)+G.bi"(x)

(Z„Z»"(x)]—+I.„&*&Z»"(x), (2.19)

2 Gb.b'(x) —G,i' (x)
8$$

This result, together with Kq. (2.18), establishes the
validity of Eq. (1,12). Equations (1.16) and (1.17) are
nothing but Eqs. (2.20) and (2.21) because of G»~b(y) = 0
Lsee Kq. (2.23)].

Before going into further detail, we remark. that
Zib~b(y) =0 leads to G, ib"(y) =0. This is because, if we
have Z»"(x)=0, then Eq. (2.19) gives us G,ib"(x)
= —G,bib'(x). Then, repeated use of this equation,
together with Gi,b"——G,lb"(x) LEq. (2.18)], leads to
G,»~b(x) =0, since

8= —2 Z, ("(x)+2F,ib (x) (2.20} G,(b"———G,blab= —Gb, i"——Gbb,"
BS4 —Glka — Gl~k8

Q~ba g
Bxp

()
Next, setting A (x)= jb'(x) and 8(y) = Db(y)

(K„a' ( )]+xL, 'o—"4(x)+F, '(x). (2.21) Eq. (2.1), we compute
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{fE„o),"(x)] I.—,4")oI, '(x) }5 &4) (x y—) This imphes that GI ),
' (x) is a Lorentz scalar. However,

CI 4' (x) is obviously a third-rank tensor with respect

G 4~( )g L (~)G 4~( )} g(4)(x ) to tllc spRtlal lotRtloII subg«up 04. Hcllcc tllc ollly
possibility is that vie have

8 8
= —2 G, I),"(x} i) ~4) (x—y)

BS4 8$&

+(x.—y.)&(xo—y.)Li4~ (x)»'b)3

+—{(x.—y.') ~(xo—yo) I .i4 (x)»'(y) j}
Bxg

8
= -2—G,v, '(x) ~")(x-y)

8X4 &Z

a~&4)(x—y) a'~I4)(x —y)
+2 — Z, I'(x) +&Ie'(x)

Qgrc BXZ Bgz&Szc

+(x' —y.)~(xo—yo)Ci4"(x)»'(y)1 (2 26)

GI ~"(x)=44 ~G"(x),

where G4~(x) is a Lorentz scalar. But GI ),4o(x) is
symmetric with respect to the interchange of / and m,
as we see from Eqs. (2.18) and {2.33).On the other hand,
6z~yg ls antlsyIQITletrlc with rcspcct to 1 and tÃ. TlMlcforeq
we conclude that we have GI k~'(x) =0 or

GI ),"(x)=bI),G '(x)+8 I,GI"(x). (2.35)

If %'e do Qot use this Lorcntz-invariancc arguHlcnt tlMQ
in order to arrive at the same conclusion we have to
make repeated applications of the Jacobi identity
among X„E(,and GI'„4"(x) and note that Ã.,&43 is
a purely spatial rotation operator.

Since G ),I' (x) = —G„),I '(x), we fInd

Th). p«vcs th« the o«er « ~(xo—yo)LJ'4I (x)»'{y)j
is at most 3. If we assume Ansa$s VI, i.e., that its order
is at most 2, then Eq. (2.26) gives

G.-'(x) = -G„"(x).
Also, Eq. (2.19) is now written as

(2.36)

$E„ZI),4~(x)$—1.,4'*)Z)4"(x)
= —4).) GI"(*)—&,IGI"(x}—2b), IG."(x). (2.37)

&n'(x) =&I&'(x)—4 l)IIX„"(x), (2.38)
8 wc 6nd

E,II~'(x) = — G, I),"(x)+ — ZI, "(x), (2.29)
&$4 8$zs Ll)...ZI),"{x)]—L,4& )XII,"(x)

= —8.),GI' {x)—B,IGp'{x) (2.39)
where vie have assumed. , without loss of generahty,

L&.,G,„,. (x)3—L.44*)GI &"(x)

= 4) p„.Z, '~(x)+ b„4ZI, '~(x), (2.27)
SettlQg

[E„o),"(x)]—L,4&*)o4' (x) =+E,I '(x), (2.28)

E,I),'(x)=EI,), '(x). L&.,~.."(x)j-L,«.)~..'(*)= -8G."(*). {2.40)

Now, llotlcc tlIRt because of Eqs. (2.19) RIld (2.27), R 1f we sct
set of GI„),"(x) and ZI),"(x) is closed under commuta-
tion with the boost operator E,. This implies that
GI I; (x) Rnd ZII; (x) form RII lnvar)ant subspacc under
the I.orentz group. To determine their I orentz-tensor
property, first let us set

HI~"(x)=&u'( )x,

H41 "(*)=a)4 "(x)=GI"(x),
H44" (x)= —4z„„'~(x),

{2A1)

G„,4 (*)—=4G,"(x).

Then Eq. (2.27) gives us

t g.,G,4-(x)]—I.„I*)G,&-{x)=Z,."(x). (2.32)

then the commutation relations (2.32), (2.39), Rnd

(2.40) can be rewritten as a single equation:

PE'„H„„"(x) —1J.. &* H4„).' (x)
=b„m.. (x}+a,m„. .{x}

B„,H4P (x) b„a—„4'(x) (2.4—2)

hen we set for all )t4, 4 = 1,2,3,4. This implies that a„,'~(x) is indeed

G z,~p i z 2 3gi a second-rank LoI'cQtz tensor- Froln thc de6nltlon

Fqs. (2.27) and (2.32) lead to

(2.34)

H„„' (x)=0,
a„„"(*)=a„„&.(x) = -a„."(*). (2.43)
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In terms of H„„~(x),one can express

G,.p'(x) = b(~H„"(x)+S,~H4p'(x),

Zg)"(x) =Hg['(x) —5 /H44"(x)

Returning to the original problem, let us choose
A(x) = j& (x) and B(y)= jt, '(y) in Eq. (2.1). After some

(2 44) calculations, we obtain

These expressions prove Eqs. (1.19)—(1.21). In terms
of H„:~(x), we can rewrite F~, ~(x) as

F„"(x)= T4„'(x)——,'S(,T44 (x),

(x.—y.) &(xo—yo) Lj4'(x),j~'(y)7

t9-».Qa"(y) -&i. S ~ "(y)

where a, completely symmetric tensor, T„,q"(x), is
defined by

2'„.),"(x)=
8

H 6'(x)+ H„g"(x)
BXp,

+ Hg„"(x), (2.46)
BXy

2"„„-'(x)= S„,2' (x)+S„,T (x)+S,.T„.~(x),

where Tq '(x) is a Lorentz vector. Setting p=a= X= 1,
for example, we get (8/Bxq)Hn'(x)= Tq '(x). Again,
due to Lorentz covariance and the tracelessness condi-
tion H, :~( )=x0, the solution is given by

H,„(x)=-', [S,„T„'(x)+S,„2'„'(x)7—-', S„,T;&(x) .
BXy

When we notice the integrability condition

82
H '(x) = H ~'(x)

BXyBXp BXpBX),

then it follows that (8/Bx„)2"."( )=xb„„q'~(x) for some
Lorentz scalar function p(x). Therefore, if we further
demand that H„„'(x) is a local operator which does not
explicitly depend upon the coordinate x, then the only
possibility is that T."(x)=0 and H„:~( )=x0. There-
fore, summarizing our results, we ind that, if one of
Z.q'~(x), G,~q''(x), and F~~'~(x) is zero, then all of them
must be zero identically.

and where we have used Eqs. (1.16) and (2.44).
From these considerations we 6rst notice that, if we

have Z~q"(x)=0, this leads to H~'( )x=8,~H44 '(x).
Because of the Lorentz covariance of H„„'~( )x, this is
possible only if we have H„(x)= 8„„H'. However,
since H„„"(x) is traceless, we must have H„(x)=0
identically and hence G, tp~(x)=F~q'~(x)=0. On the
other hand, if we have G, ~~ '(x)=0, then it gives
H4p'(x) =0, which in turn shows H„„'(x)~ 8„„.Hence
we have H, „'~( )=x0 again; i.e., Zqp~(x)=F~+~(x)=0.
However, if we have F&& '(x) =0, then Eq. (2.45)
implies T4&, =—,5&,T444 '. Since T„„z is a completely
symmetric Lorentz tensor, this is possible only if T„„),
has the form

Ã-.,f~i"(y)7+1-.4'"'f~~'(y) &"'(x-y)

+{&i.S ~"(y) —4 S.~"(y)
8

+[&.,f ui" (y)7 —L4'"'f ~i"(y) } &"'(x—y)
X

8 8—S&,Qa'(x) — S.i"(x)+ —f,pi"(x)
BXA; BX4

+Ã ft~'(x)7 —1.4'*'fu'(x) 8"'(x—y)

—{6(,S g'(x) —Sg„S,P'(x)+[K„f„„p&(x)7

8—i.."f i'(x) }—& "(x—y) . (2.47)
~Pm

From this, we conclude that the order of $(xo yp)

X[j4Ã(x),ji'(y)7 is at most 2. Thus one can write it
as Eq. (1.22), and, inserting the expression, we get

[& f~"(y)7 L.4'"'f~~ "(y)—

8 l9

+&i.Q~'(y) — S.i"(y)+ f.~i"(y)
~ya By4

= —X.[y (y), (2.48)

[& f-~~'(y)7 —L 4'"'f-~~"(y)

—&~ S.i'(y)+&~.S ~"(y)

=2X -~"(y) (2 49)

We observe that we have an identity

~(xo yo)Lj4~ (x)j ~'(y—)7+&( oxyo)[j~'(x),j4~'(—y)7

8 8
+ ~(xo-yo) [j~ (*),ji'(y)7

8X4 BP'4

~(xo —yo)L j4 (x),ji'(y)7
BXg

~(xo —yo) [j~ (x),j4'(y)7
8$~
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One can check, however, that this relation is consistent and B(y) = j44 (y) in Eq. (2.1), it leads to
with Fq. (2.47) and hence will not give any new relation.

%e also Gnd another identity, X.,8»—y, 1 x,j,„'y

(8 8+- 8(xo—yo)[j4 (x) j"b)]
E8x4 8y4

—8(»—yo) [D'(x),j~'b)]
8

+ ~(»—yo) Lj1 (*),j"(y)1
8$)

from which we can compute ~(»—yo)l:j4'(*)~jt414b)]
completely in terms of other quantities; the result is

8(»—yo) [j4'(x) j4) '(y)]
= fQ44"(x) —op"(x) }8&4)(x—y)

+ &»Q4"(y) &»—"(y)+f»"(y) 8")(x—y)
8/4 Bxg

—(f »"(y)+G»"(y)} 8")(x—y), (2 51)
~&g~&s

where we have set

In the case of the 5U(3) theory Ciccariello et al. )s

suggest that we may have the following relation:

d'*j4 (x)j"'b) =Q. (y) = f.4.i b)—

This is compatjble wltll Eq. (2.51) only 1f we llave
o),"(x)=0.

Also, if we demand that the order of 8(»—ye)
)([j4~(x),j44, 4(y)] is at most 1, then we must have

f„„»(y)+G,»"(y) = 0. Then one can show, after some
algebra, that we must have H„„"(x)=0 and that f«
is completely antisymmetric under the interchange of
s, l, and k and of e and b.

When we set A(x)=j4'(x) and B(y)= j44'(y), we
obtai~ a relatior which is identically satished, and it
gives no new relation. But if we choose A(x) = j&~(x)

"S. Ciccariello, R. Gatto, P, Sg,rfori, and M. Tonin, Phys.|,etters 3OB, 546 I1969),

1,4( )+1,4(y)+(x y ).
8$4

X8(»—yo)Lj1 (x) j4~'b)]
—(x —y )8(»—yo)[j41'(x),j44'b)]

8
&(* —y)~(*o—yo)[j ( ) j "b)]}

8$~

+~( o
—yo)Lj'( ) j"'b)1 (2.52)

From this, together with Eqs. (2.51) and (1.22), we
find that the order of 8(»—ye)[j41 (x),j444(y)] is at
most 3. Moreover, if we assume that its order is at most
2 (Ansa/s VII), then Eq. (2.52) gives us

2([J' »»b)] L.4—'")X .» b(y)}

8-Lf:-"'b)+f.;"(y)+2G,,- (y)]
81 Lf. —")(y)+f .")(y)+ 2G, ~"b)]

+8. f.»"(y)+&,.f u, "(y)

[&.,X.»'(y)] —L.4'")X.»"(y)
8

=2I'srra'(y)+8, 4&),Q4"(y) —81. 5„& '(y)
8/4

+» f.) "(y) 8.*f»"(y)—+8).f1 (y)

8
f »"(y)+ ——f. 1(y), (2.54)

Bp'„ ~Pa

[&.»»"b)]—1-.4'")&4~"(y)

8= I'.»"(y)+ f»"(y) — f1,"(y) (2.55).
Bpg ~g'a

Notice that a set composed of X,»~'(x), f„„~4(x),
G)~) (x), and S)4' (x) is closed under commutation
w)th 'the boost opelatol X„aswe see from Fqs. (2.53),
(2.49), (2 42), (2 44), and (2.24). Therefore, they form
a basis for a representation of the I orentz group. In-
deed, its solution is given by Eqs. (1.24) and (1.25).
However, its derivation is a bit involved and too
cumbersome to be reproduced. here; therefore, we shall
give a simple sketch of the proof as follows.

In Eq. (2.53), let us successively set 4)4=-s, re=i,
m=0, and 3=k and sum over respective variables. This
gives four equations. Solving them, we 6nd that one can
write

f, 3(4)=x[&.,A'a"(x)]+lower-order terms,

f"1 '(x) = [&.p.),'(x)]+lower-order terms,

fe) ~'~(x) = [&.,C.4."4(x)]+lower-order terms,
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where "lower-order terms" designates those propor-
tional to either fl„„b„k, or 5,k, and where A, k'b(x),
B,k'b(x), and C,k"(x) are some operators contracted
from X,lk'b. Now, using the Jacobi identity for E„
Zl, and f k, '(x) in combination with Eqs. (2.56) and
(2.49), we can then prove that X, lk'b(y) must be com-

pletely symmetric under interchange of s, m, l, and k,
apart from lower-order terms which are proportional to
8, , 5», ll.k, etc. Completely symmetrizing Eqs. (2.49)
and (2.53) among suitable variables, we see that the
completely symmetric parts of X,mlk'b and f, lk'b, to-
gether with some lower-order terms, are closed under
commutation with the boost operator E, ; in other
words, they must form a representation space of the
Lorentz group. The completely symmetric part of
X, i~

b must contain parts corresponding to spins 4, 2,
or 0. Since a 6nite-dimensional representation of the
Lorentz group is always fully reducible and can be
written in terms of tensors, symmetric parts of both
X, lk

b and f.lk'(x) must be parts of a fourth-rank sym-
metric Lorentz tensor X„„}„'~,if the former contains
a part corresponding to spin 4. However, unfortunately,
this assignment suffers from the incorrect sign in one of
the commutators of Eqs. (2.49) and (2.53). Thus, we
conclude that X, ty'~ must not contain a spin-4 part
and hence it is reducible to lower-order terms. As we
can see from Eq. (2.53), f, lk

b must also be written as
a sum of 6 functions involving 5,~, 5,A, , and b~~. If we do

not want to use the representation theory of the Lorentz
group, we have to make repeated use of Jacobi identities
among Ea, K&, and X.„la'(x) in order to reach the same
conclusion. At any rate, expressing both X, lk'b(x) and

f,la'(x) as sums of terms containing ll, , ala, ll, k, etc. ,

and inserting them into Eqs. (2.49) and (2.53), one can
solve the problem with the help of Eqs. (2.24), (2.42),
and (2.44) in a form

2X,lk"(x) = b„lS» '(x)+ b, iS„kab(x)

+ (s,s.a+&„s„,)z.b(x), (2.57)

f.la'(x) = &.lXa"(x)+&.kXl"(*),

where Xk '(x) and E'(x) satisfy

[R X„ab(x)] I (a)X ab(x) —S ab(x)+g Rab(x)

[I4:a,Slk'(*)] I-a 4'*'S la"(x)—
= —s,lXk'(x) —s,kXi'(x)

25lkH4a'b(x) —2ll, kH4—4'b(x), (2.58)
[R'„R"(x)]=—X '(x) —X "(x).

T (x) = T,„'(x).
Moreover, when we set

R„(x)= T;b(x)+H„;b(x),

(2.61)

(2.62)

then R„, '(x) satisfies Eq. (1.24), as can be seen from
Eqs. (2.61) and (1.19). Also, X,p, 'b(x), f,la'b(x), and
Sla'b(x) are now expressed in terms of R„;b(x) as in Eq.
(1.25); i.e.,

Spa b(x) = Rlk b(x) —lllkH44 (x),
f,lk'(*) = &.lR4k '(*)+&.kR4i'(x),

2X .la'(*)=8 lR.k'(x)+b, lR k"(x)
—(timl~ak+ ~al~mk)R44'(x) .

When we assume that the order of

~(xo-yo) [jl (x),j4k'(y)]

(2.63)

is at most 1, i.e., X,lk b(x) = 0, then Eq. (2.63) implies

R.k'(x) = 8.kR44"(x) .

Since R„(x)is a Lorentz tensor, this leads immediately
to

R„„"(x)= S„,R"(x) . (2.64)

Then Eq. (2.63) gives f, lk '(x) =0. Also, R„, '(x)
=R»ba(x) [see Eq. (1.24)] implies R' (x)=Rb'(x); it
follows that H„„b(x)=0 [again by Eq. (1.24)], and
hence Slk"(x) = blkR"(x).

If we assume that the order of

&(xo-yo) Lj«'(x),j.k'(y)]

is also at most 1, i.e., F,lk b(x)=0, then Eqs. (2.54)
and (2.48) imply that X,lk'b(x) and flkab(x) are closed
under commutation with E,. In that case, a similar
calculation proves that we must have

8
fib"(x) = R4l"(x),

8$p

8
X,p, '(x) = R, l

— [R44'(x) H4, '(x)]-
Ox@

these equations are combined into a single equation

[E T '(x)] I.—4&*&T '(x)
= S„,T,„b(x)+S„,T„b(x)

b„,—T4,'(x) b„,—T„4'(x), (2.60)

i.e., T„„'b(x) is a Lorentz tensor. From Eq. (2.59), we
see that T„„'(x)satisfies the symmetry condition

When one sets

T. "(x)= l [S."( )+S ."(*)],
T4l, 'b(x) =Xl,"'(x) H4l;b(x), —
Tk4'(*) =- Xk'(x) —

Hk4 "(x),
T44 '(x) = —8 b(x) — Eb.(x)

(2.59)

8
R4k'(x) —Qk'(x) . (2.65)

8$4

So, if the order of both commutators b(xo —yo)
X[ji'(x),j4k (y)] and b(xo yo)[j 4l'(x),j4—k (y)] is «
most 1, we musthave fib b(x)=0, becauseof Eq. (2.64).
ThiS implieS that ll(Xo —yo)[jl'(X), jkb(y)]=0; i.e., the
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space components commute as in the field algebra.
Therefore, if we do not wish this type of commutation
relation, at least one of b(xo —yo)[jP(x), j4&~(y)] and
8(xo—yp) [j4p(x),j4&~(y)] must be of order 2 [i.e., must
contain nonzero second-order derivatives with respect
to 8 "&(x—y)]. Note that the field algebra is consistent
with R„„~'(x)= C5,„6,b

We remark that if we repeat our procedure by taking,
for instance, A(x)=D'(x) and B(y)= j„„~(y), we will
introduce quantities involving second-order time de-
rivatives of j„'(x).Hence our set of relations is maximal
if we do not use terms containing (82/Bx48x4) j„(x)

Finally, we note that since H»"(x) =0, we have
(H„„"(x))0——0. It follows that (G,ii' (x))o——(Zi, i '(x))0
= (Fzi"(x))0= 0 and that Eq. (2.63) implies

(X .&s'(x))o= 0.

Thus the vacuum expectation values of all equal-time
commutators which we have considered so far do not
contain the second-order derivative of 6&4i(x —y), in
conformity with the Lehmann-Kallen representation.

As another application of Kq. (2.1), we notice that the
ordinary canonical commutation relation of scalar
fields, 8(xo—yo)[$(x),P(y))=0, leads to the fact that
B(xo—yp)[(8/Bxp)tjh(x), g(y)] must be proportional to
8'4i(x —y); this result has been noted by Kazes. 'r

III. COVARIANT TIME-ORDERED
PRODUCT OF TWO CURRENTS

It is well known that time-ordered products of two or
more currents are in general not Lorentz covariant.
Hence it is important to investigate (i) whether it is
possible to construct a covariant T* product, (ii) how
the seagull, which makes the T product covariant,
should be constructed from the commutators, and (iii)
what additional constraints are placed on the seagull by
the requirement that the Ward-Takahashi identities,
obtained by ignoring Schwinger terms and seagull
terms, be valid.

These problems have been discussed by several
authors' 4 under various restrictive assumptions. How-
ever, Gross and Jackiw' have recently solved the
problem under much weaker assumptions. Indeed, they
find that the answer for (i) and (ii) is affirmative while

the condition for (iii) is somewhat model dependent.
Although we have perhaps nothing really new to add to
this subject in view of this fact, nevertheless it may be
instructive to demonstrate explicitly these points in our
case, since we employ an approach entirely diferent
from the one used by Gross and Jackiw. '

To obtain the Lorentz property of a time-ordered

product, we start from the following identity:

[&.,T(A (*)B(y))] (L.4"+J-.4'"') T(A—(*)B(y))
= T(A,A (x)B(y))+T(A (x)E,B(y))

-i(x.-y )~(xo—y.)[A (x),B(y)], (3 1)

where A.A(x) and E,B(y) are defined in Kq. (2.2). Since
8(xo —yo) [j„(x),j„~(y)] is not zero, we find that
Eq. (3.1) demonstrates the well-known fact that
T(j„'(x),j.'(y)) is not Lorentz covariant.

To 6nd the correct Lorentz-covariant tensor, let us
set

(x,y) = T*(j:(x)j.'(y))
= T(i p (x)i'(y))+~."(x)&"'(x y) —(3.2)

and demand that M„„' satisfies the Lorentz-tensor
condition

[& M '(xy)] —(I. 4'*'+L 4&i')M '(x,y)
= 5„43',„'~(x,y)+ 8„4M„;~(x,y)

—8„.3f4. '(x,y) —8..3II„4'(x,y) . (3.3)

Using ANsats III, we find that 0„„"(x,y) must satisfy

{[K„A„„"(x)] L,4&*&6„—„"(x))8 ~'~ (x y)—
= {8„4A,„'(x) b„,d—4,'(x)

+S„,S„, &(x) —S„S„,"(x))8&4&(x—y)

+ (.-y.)~( o-y)Lj:(*)j'(y)] (34)

The purpose of this section is to demonstrate the exist-
ence of a A„„(x)which satisfies this condition. To this
end, we assume Ansi''tee I—VI, but we need not assume
the validity of the last Ansats, VII. Setting

644'(x) =0,
A/4'~(x) = iH/, 4"(x)—,
i14i'~(x) =+iH4i, '(x) = —iH4i'(x),
Ag ('(x) = —-', i[St,('(x)+Sp, '(x)],

(3.5)

so that we have

~„,.~(x) = ~,„b.(x), (3.6)

T*(j:(x)j.'(y)) = T*(j.'(y) j:(*)). (3.7)

Note that, when we have H, „'~(x)= 0, our definition of
A„„~'(x) reduces to the one originally given by Dashen
and Lee' [for the case D'(x) = B„j„'(x)= 0] and by
Yang, ' who generalized the result without the con-

servation law but with the additional assumptions

H„„b(x)=0. Hence we conclude that we can find the
covariant time-ordered product in a much more general

case, although this may not be surprising in view of the
work by Gross and Jackiw. '

Also, one can construct the covariant time-ordered

one can check that Eq. (3.4) is satisfied in view of Eqs.
(1.4), (1.10), (1.15), and (1.19)—(1.21). Hence with the
identification Eq. (3.5), we have proved the existence of
a covariant time-ordered product, T*(j„'(x)j„'(y)).
Also, Eq. (3.5) implies that 6„,'(x) satisfies the sym-

metry condition
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products, T*(D'(x) j„'(y)), by the for&nula

—i H„4'y-
BXy,

8—H«'(y) ~"'(x—y)
BX4

T*(D (x)j"(y))=T(D (x)j"(y))
(3.9)

( 8
+i~ H„„~(y)

a'„

a
H44'—(y) ~'4&(x —y).

Bx@

Notice that the sign diQ'erence in the two expressions in
Eq. (3.9) implies that T(D'(x) j„'(y)) is not a Lorentz
vectorunlesswehaveH„„~(x)=0. 1f H„„'(x)=0, then
the validityof Eqs. (3.8) and(3. 9) maybe interpreted
to imply the cancellation of the Schwinger term and the
seagull term in the usual Lagrangian terminology. How-
ever, for thecase H„, '(x)WO, thesituationismorein-
volved, and its physical interpretation is less clear.

Analogously, we can define the covariant time-ordered
product T*(D'(x)D~(y)) by

8
T"(D.(x)j,'(y))=T"(D (x)D'(y))

~gv

=T(D'(x)D (y))+io"(x)8&4&(x y)—
8 8

+i H„„'(y) -~"&(x—y)
~gv ~&p,

8 8
2i H„—4~'(y) ~~4&(x—y)

8/4 BX"

T*(j:(x)j.'(y))=T*(D (x)j.'(y))
t9xg i—Q ~(x)6~&(x—y) (3.8)

where T*(D'(x)j„~(y)) is givenby

T*(D'(x)j4'(y))=T(D(x) j4'(y))

I

Notice that the second-order derivatives with respect
to 8~4&(x—y) cancel out when we use Eqs. (1.2) and
(1.21). We may remark that T(D(x)D~(y)) is not a
Lorentz scalar unless we have F'&'(x)=0and F"(x)
=O, ascanbe seen from Eqs. (3.1) and(1. 8).

In concluding this section, we remark that there is no
uniqueness in definining the covariant time-ordered
product. Probably, a reasonable restriction on 6„, '(x)
is that it must satisfy

~„„b(x)=~„„"(x),
~44 b(x)=0,

(311)

since the erst relation is necessary to ensure Eq. (3.7)
while 6«'(x)=0is necessary to have T*(j4 (x)j4'(y))
=T(j4'(x) j4'(y)). Thenthegeneralsolutionforb„;~(x)
is constructed by adding an arbitrary Lorentz tensor
~„„'(x)totheright-handsideof Eq. (3.5);here~„„'(x)
must satisfy the condition

~(x)= —Z„„b (x)= —Z„~(x) (3.12)

T*(D (x)j.'b)) =T(D'(x)j.'(y))

T'(j:(x)i.'~))
BXp,

+',Q'( )x~& &(x-y)

i.e., it must beantisymmetricunder exchanges of (a,b)
and (p,v). For example, we could have ~„„'(x)
=cQ„„~(x),where cis anarbitraryconstant. However,
for the diagonal term a=b, we have no ambiguity of
this kind since ~„„'(x)=0 (no summation over a). In
particular, we have no ambiguity for the definition of
the covariant time-ordered product of two electro-
magnetic currents, since we have only one component
n=1with u= 6=1 to start with. Also, for the case when
we have H„„'(x)=0identically as in the SU(2) case,
it is natural to add the additional condition

Then thisimplies6„„'~(x)=0again.8 8—i H44"(y) ~&'&(x—y)
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