PHYSICAL REVIEW D

VOLUME 3,

NUMBER 2 15 JANUARY 1971

General Properties of g-Number Schwinger Terms™*

Susumu OxUBO
Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627
(Received 17 July 1970)

A systematic study of properties of g-number Schwinger terms in the algebra of currents is carried out
on the basis of Lorentz covariance. It is found that these terms can be expressed by means of a second-rank
Lorentz tensor. As an application, the existence of a covariant time-ordered product of two currents is

proven for a wide class of Schwinger terms.

I. INTRODUCTION

HE study of ¢g-number Schwinger terms in the
algebra of currents is of considerable interest.
Experimentally, its presence may be manifest in sum
rules! involving cross sections for high-energy electron-
proton scattering and electron-positron annihilation
reactions. Also, its Lorentz property is very important
in constructing Lorentz-covariant time-ordered prod-
ucts of two or more currents, as has been shown by
many authors.®
There are several interesting attempts®1! to deter-
mine the structure of Schwinger terms. In this paper,
we present a systematic discussion of the problem based
on rather general (and plausible) assumptions. To make
our Ansatz in a clear fashion, let 7,%(x) (e=1,2,...,n)
be a set of 7 local vector and/or axial-vector currents.
The total number (1) of the currents depends upon the
specific group under consideration. For example, we
have n=1if we are only considering the electromagnetic
current, while we get =3, 6, 8, or 16 if we are con-
sidering the SU(2), SW(2), SU(3), or SW(3) group,
respectively. Moreover, we shall use the standard Pauli
notation with x4=1ixo and 7s*(x)=147%(x) throughout
this paper. Also, we shall specify Lorentz indices by
Greek subscripts u,»,A=1,2,34, while Latin indices
(k,ls, etc.) represent their space components with
values 1,2,3.
Now we shall state our Ansdtze.

Ansatz 1

This is nothing but the ordinary algebra of currents,
ie.,
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8(20—y0)[44*(%),7 * (1) ] = Qs** ()5 (x—),
8(wo—y0)[44*(%),7x°(¥) ]= Qe (%)6 ) (x—y)

0
—Su(y)—6®(x—y).
X1

Although in many applications we need not assume that
Q4**(x) and Qx**(x) are components of a single Lorentz
vector Q,°%(x), it gives an unnecessary complication,?
and for simplicity we assume hereafter that 0, (x) is
another local vector (and/or axial-vector) current. In
the case of the SU(3) group, we have (,%(x)
= — fabcju°(x). However, we do not assume any specific
form for Q,*®(x) in this paper.

We may remark that the absence of Schwinger terms
with derivatives higher than the second order has been
formally proved in accordance with our A#saiz by
Gross and Jackiw® by means of a Jacobi identity
among Jo*(x), Jo’(y) and the energy density ©o(z).
This fact is also consistent with a work by Levin,® who
reached the same conclusion for electromagnetic cur-
rents. However, our A#nsalz may not be valid in some
models, as indicated by recent work of Boulware and
Jackiw!! on anomalous commutators. If the conclusion
of these authors is accepted, then we would have
Schwinger terms with derivatives up to the third order.
In this paper, we shall not consider such complications.

For convenience, let us set

un(%) % @) ’
]v"x=’“‘—]u“x——‘“x,
b o, ax,,]"()

1.1)

3
D(w) = —ju().
3

X

We are interested in equal-time commutators among
7u2(®x), 7w*(x), and D(x) and we shall assume Ansatz I1.

Ansatz 11

Let A(x) and B(x) to be any two of 7,%(x), j.° (x),
and D°(x). Then the equal-time commutator between

2 Some consequences without this assumption are given by Kuo
and Sugawara (Ref. 7). Also, when the electromagnetic or weak
interaction is taken into account, this assumption will not be valid,
as has been noted by Jackiw (Ref. 9). Hence, in the present paper,
we are implicitly assuming the absence of these interactions.
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A(x) and B(y) can be expressed as a finite sum of
8® (x—y) and its space derivatives:

8(wo—y0)[A(%),B(y)]

N 3 gm

W (x—7y).
. 6ka

We define the order of the commutator to be the integer
associated with the highest derivatives of the & function.
Hence the order of the commutator [ 4 (x),B(y)] in the
above example is N, that of [j.%(x),7:%(»)] is 0, and
that of [j4%(x),7x*(y)] is 1, since the Schwinger term
Su%(x) (no summation over @) is known to be non-
zero.1%.14

Ansatz III (Lorentz Invariance)
[Ks,j,‘“(x)] = 6n4jsa(x) - 5#Sj4a(x)+Ls4(x)jua(x) ’
[K:nQuu(x)] = 5u4Qsa(x) —8usQa” @)+ Lot Q,%(x),

where K, is the Lorentz-boost operator in the sth
spatial direction and L. is the differential operator

a
Ly® =x0— —xs— .
6xs 6x4

Notice that we do not assume any specific Lorentz-
transformation property for the Schwinger term
S149%(x) except for the fact that it must be a second-rank
tensor with respect to the spatial rotation subgroup, Os.

Ansatz IV

[K,6(w0—y0)[A(),B(y)]]
= 5(%0—3’0)[[Ks,14 (x)])B(y)]
+8(xo—yo)[ A4 (x),[KsB()1],

[K8>[KtaA (x)]] "'EKMEKSJA (x>:]]: [[Ks:Kt]’A (x)] .

These are just Jacobi identities. Note that we do no?
assume a Jacobi identity among three density operators
[4(x), B(y), and C(z)], since that may lead to a
contradiction.’® Also, we notice that [K,K,] is a pure
spatial rotation operator; therefore, [[K,K.],4(x)] is
calculable from the rotation property of 4(x) without
any knowledge of its Lorentz transformation property.

Then from A#nsdlze I-1V, we can prove first that the
order of the commutator 8(xo—yo)[D?*(x),J4*(y)] is at
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T. Imamura, Progr. Theoret. Phys. (Kyoto) 14, 396 (1955); K.
Johnson, Nucl. Phys. 25, 431 (1961).
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Suppl. 37-38, 74 (1966) ; G. Konishi and K. Yamamoto, ibid. 37,
1314 (1967). We remark that, if the Jacobi identity among spatial
components of ji#(x) is valid, then we must have g-number
Schwinger terms for the quark model. See F. Buccella, G. Venez-
iano, R. Gatto, and S. Okubo, Phys. Rev. 149, 1268 (1960).
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most 2, with the form

8(xo—yo)[D*(x),74*(y)]

62
=0*2(%)6® (x—y)+Zu">(y) W (x—y). (1.2)
0x10%
Second, we have the identities
D (x) =Z5%0(x) = —Zy.09(x) , (1.3)
2228 (x) =Spt(x) —Sube(w) , (1.4)
S0 () = St () = S () — Su(w) (135)
d 92
obe(x) —oo?(x) = —Q, (%) — Zu(x), (1.6)
0%, dx10x%,
Qu¥(@) =—Qu(). (L.7)

These identities reduce to well-known results®™7 when
we set 2;*%(x)=0. To derive more interesting results,
next we assume A#nsaiz V.

Ansatz V

The order of the commutator 8(xo—yo)[D*(x),D?(y)]
is equal to or less than 2;i.e., we can wirte

8(xo—yo)[D*(x),D%(y)]

a
= ()59 (5—9)+Fiet(x)— 5 (z—y)
ayk
62
+Fr20(x) @ (x—y). (1.8)
aykayl
Then, of course, we must have
Fret(x) =Fu (%) = —F*(x),
d
Fyeb(x) —Fibe(x) = —Z—a—sz“”(x) ) (1.9)
X1

19
Fe(@) P (@)= = - [P (@) +F3 ()]
Xk

When we assume A#nsaiz Vin addition, we can prove that
the orders of the commutators 8(xo—yo)[ j:%(x),j1%(y)]
and 8(xo—y0)[D*(x),/x*(y)] are at most 1 and 2,
respectively, and that we can write

8(xo—y0)[71%(x),5x*(¥)]

0
=fzk“”(x)5“>(x—y>—fszk“"(y)g—é““(x—y), (1.10)
Xs
8(xo—y0)[D*(®), 5 (y) ] =01 (x)6® (x—7y)
62
+Gat(y) dW(x—y). (1.11)
X10Xs
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Furthermore, one has the relation

Gotx® (%) = Grax?? (%) = — Gsun() (1.12)
fau®®(%) = fara®() , (1.13)
d

P sk ¥(20) = fu(2) + fra®(%) (1.14)

Xs

[Ks,Su(x) ]
— Lo @S 39 (x) = — faur®®(%) — 2Gs16°(w) , (1.15)
i) i)
F (%) = —Gont(2)+ —2a%(x), (1.16)
axk 6x4

[Ks,09(x) ] — Lss@o¥(x)=Fbo(x).  (1.17)

Ansatz VI

The order of the commutator &(xo—yo)[ j4x%(x),D*(v) ]
is at most 2; i.e., we can write

d(xo—yo)[jar®(®),D*(¥)]

0
= Beo(2)54 (5 —y)+ En (@) —5 (x—y)
ayz
62
NS (x_y) .

+Equt(x) (1.18)

aylays

When we assume A#nsatz VI in addition, we can prove
the existence of a symmetric, traceless Lorentz tensor
H (%) (upr=1,2,34), satisfying

H““ab(x) =0 ) Huyab(x) = Hvuab(x) = —H,.pb“(x) y (1.19)
[KsyHuPab(x)] _Ls4(x)H“pab(x)
= 6;44Hsvab(x)+ 5,,4H,,s“b(x)
- 6"3H4,,"b(x) _6”8H”4ab(x) . (1.20)

Also, we can express G°%(x), Z.%%(x), and E%%(x) as
Got®®(%) = 81 H 1%(%) + 61 H 15°%(x)

Z%8(x) = H ;%% (%) — 851H 14%() (1.21)

0 i}
Eslkab(x) = “Gslkab(x) - -"_zlsab(x) I}

X4 axk

and E;**(x) is given by Eq. (2.28) in terms of ¢%%(x).
Moreover, we can prove that the orders of 8(xo—yo)
XLje®),jub(¥)] and 8(xo—yo)[ja*(x),jur®(y)] are at
most 2. Hence we can write

8(xo—y0)[71%(x),7ax°(y) ]
=Xu(y)6® (x—y)+Xsu>(y)

9

3@ (x—y)
9xs

62

+ X ms1x??(y) d®W(x—y). (1.22)

XmO0Xs

411

We can compute 8(xo—yo)[ 74(x),7u(y)] in terms of
other quantities [see Eq. (2.51)] without introducing
new ones.

Ansaiz VII

The order of the commutator 8(xo—y0)[ 74:%(%), 74x*(¥) ]
is at most 2; i.e., one can write

d(xo—yo)[ju(x),7a*(¥)]

d
= V@5 () V)59 (5—)
Xs

62

+Ysmlkab(y) 5(4)(39—:}’) . (1.23)

X50%sm,

If we assume Ansatz VII in addition,'® we must have a
second-rank  Lorentz tensor,} R,,**(x) satisfying
conditions
Ruuab(x) = Ruuba’(x) y
R¥(%)+ Rybe(x) = Ry, () + Ry 0% (%) ,
2H ,,%%(x) = R,,**(x) — R, %(x) ,

(1.24)

and in terms of this tensor, we can express Su%(x),
fa®(x), and X pmox?®(x) as

S1?t(x) = Riz®®(x) — duH 14%%(x) ,
Four®®(®) = 8R4 () 81 Ru?(x)

2X st (2) = 8miR k(%) + 851 R mi?® ()
- (6mlask+ 6sl6mk)R44ab(x) .

Finally, we can prove that if we demand that the com-
mutators  8(xo—yo) ju®(x),jub(y)] and  8(xo—2yo)
X[71%(®),ja*(¥)] have orders at most 1, then we
must have R,,**(x)=6,R*(x). This implies f,;°*(x)
= fu®*(x)=0; i.e., the commutation relation
[7u%(®),7,°(y)] must satisfy that of the field algebra.
Therefore, if we demand the validity of the nonzero
space-space current commutators, then we conclude
that at least some of the commutators which we studied
must have the order 2, i.e.,, nonzero second-order
derivatives of the § function.

We remark that for the SU(2) case we have
9,7,*(x)= D*(x)=0. Hence the Ansiize V and VI are
automatically satisfied with H,,**(x)=0. In general,
without assuming Ansafz VII, we can show that, if one
of Zy2%(x), Guxs®?, and F;,%%(x) is zero, then all of them
must be zero with H,,%%(x)=0. As we see from Eq. (1.4),
in this case we have the familiar formula S;93(x)
=S (x). The condition that ¢°®(x) be a Lorentz
scalar is that F,**(x)=0, as we see from Eq. (1.17).

If the Schwinger term S3:%%(x) is a ¢ number inde-
pendent of the coordinate x, then it must be propor-

(1.25)

16 Possibly, the validity of Ausalz VII is most debatable in
comparison to the other postulates. Unfortunately, it is rather
difficult to give a raison d’étre for its validity, except for the fact
that it is necessary to derive some more interesting results and
that it is satisfied in the field algebra.
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tional to &, which leads to H,,**(x)=0. In addition,

if we assume Ansatz VII, then R,,*® is proportional to
du»; then Eq. (1.25) gives the result fo:®(x)=0.
II. DERIVATION OF MAIN RESULTS

We base our calculation on the following identity!’:

[Ks,0(x0—y0)[ 4 (x),B(y)]]

a

= Ls4(x)+Ls4(p)+(xs"‘ys)a—“} a(xO“yO)[A(x)yB(y)]

X4

0
—(xs—yoa(xo—yo)[;x—A (x),B(y)]

+6(x0—yo)[A:4(x),B(y)]
+8(wo—y0)[A(x),A:B()],
where A4 (x) and AB(y) are defined by
AA(@)=[KsA(x)]— LA (x),
AB(y)=[K:,B(y)]—L:s®B().

In the derivation of Eq. (2.1), we used the Jacobi
identity, Ansatz IV.
We also notice the following relation:

2.1

(2.2)

i)
b (5 —y)
Xkom

a d
L@+ Log @+ (2 —ys)—1 o(y)— -
0%y 0%ry

a
.. '-———5(4)(96—3}) R
Xk

i)
(L@ e(y)) 23)

9.3

where ¢(y) is an arbitrary function of y (but not x).
Equations (2.1)-(2.3) are our starting point.

For a while, we shall assume only Ansdfze I-1V. First,
let us set A(x)=j.%(x) and B(y)= 7:*(y) in Eq. (2.1).
Using Ansdize I and 111, we then obtain

(#:—2)8(20—30)[D*(%), 7" () ] ,
={Ssk”“(y)-—Sks“b(y)}g——&“’(x——y). 2.4)

Xk

From this together with the A#usatz 11, we conclude
that 8(xo—vo)[D*(x), 74%(y)] cannot contain derivatives
of 6 (x—y) higher than second order. In other words,
the order of the commutator [D*(x), j4*(v) ] is at most 2,
and one can set

3=y (D), ()] ;
=07 (@)50 (5 3) +31%0)—5 (=)

%

32

2.5)

+Zu(y) 8@ (x—y).

xzaxk

17 The Jacobi identity with the boost operator K, has been used
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Without loss of generality, one can assume

Zuc(y)=Zu(y). (2.6)
Inserting Eq. (2.5) into Eq. (2.4), one obtains
Z°t(y)=0, 2.7)
2255 (y) = S (y) —Sub*(y) . (2.8)
From Egs. (2.6) and (2.8), we find also
I (y)= —Zub(y), (2.9
Su?(y) = Su®(y) = Sut(y) —=Sute(y). (2.10)

These are nothing but Egs. (1.2)-(1.5). To prove
Eq. (1.7), we notice that we must have

Q4ab(x) — _Q4ba(x)

because of Ansatz 1. Then, the Lorentz covariance of
Q.%%(x) (see Ansaitz 11T) gives the desired relation,

0,7(x) = —Q,%(x). (2.11)

In order to derive Eq. (1.6), we note the following
identity:

8(xo—y0)[D*(x),74*(y) ]+06(wo—y0) [ 14*(x),D?(y)]

=<—6—- + i)&(xryo)[ﬁ“(x) 7]
0xs 6)’4 ’

d
+ bl —y0)lj(®), ()]

Xk

3
+ g-y—é(xo—yo)[ﬁ“(x),jk”(y)]- (2.12)

Together with Ansatz I, this yields

2

a
o (x) —obe(x) — —2P(x)+ Zut(x)
1

ax axzaxk

d
=—0u" (), (2.13)
0%,

i)
E;“”(x) +-3,0e (x) +2—2 Zk“”(x)
X

a
= E;[Skl“b(x)—szk"“(x)], (2.14)
2[Zub (%) —Zube(w) ]
=Sut(x) —Sube(®)+ Sk (x) —Swbe(x), (2.15)

where we have used Egs. (2.5) and (2.11). In view of
Eqgs. (2.6)-(2.8), one can easily check that Egs. (2.14)
and (2.15) are automatically satisfied while Eq. (2.13)
gives the desired relation Eq. (1.6). We may remark

by many authors. See Refs. 2, 3, 6, and 7 as well as E. Kazes,
Phys. Rev. 157, 1309 (1967).



3 GENERAL PROPERTIES OF ¢g-NUMBER SCHWINGER TERMS

that Eqgs. (2.13)-(2.15) also follow from the identity

0? a?

T(Gu(®) 50 =

Xu0Yy VyOXpu

T(ju(®)3,* ) -

Next, setting A(x)=74%(x) and B(y)=D%(y) in
Eq. (2.1) and using Ansaiz 111, we find

i)
—{ (@ —y:)8(x0—30) [ 7i*(%),D*(y) 1}
axk

=—{[K:,0*(x) ] = Lot ()} (2 —)
62

—{[Ko,Zube(x) ]— L5 @20 %(x) }

39 (x—y)
xzaxk

] a
—2—3%9(x)—5P (x—y)
X4 8901

+ (% —ys)8(x0—y0)[D*(x),D*(y)]. (2.16)

Therefore, if the order of 8(xo—y0)[D*(x),D?(y)] is at
most 3, then the right-hand side of Eq. (2.16) contains
at most the second-order derivatives of 8 (x—y). Thus,
following the argument of Dashen and Lee,? one con-
cludes that the order of 8(xo—yo)[ 7x*(x),D?(y)] is at
most 2. Hence one can write

3(xo—y0) [D*(x),7x*(¥)] ,
= (@) (5 —3)+Gu(3)—0¥ (v—)
ax;

62

+Glskab(y)

80 (x—y), (2.17)

X10Xs

where without loss of generality one can assume

Glsk"b(y)=G3Uc“b(y) . (218)

Moreover, if we assume A#nsaiz V, i.e., if we can write
the commutator 8(xo—1yo)[D*(x),D?(y)] as in Eq. (1.8),
then Eq. (2.16) gives us

Gour® (%) +Gort®(x)
= _[KS’Elkba(x):l+Ls4(x)2lkba(x) ) (219)
a
2—Guar®*(x) —Gs1?%(xx)
X
i]
= —2—2%(x)+2F o>(x), (2.20)
0xs
d
— —Ga(x)
Xk

= —[K;,0%*(x) ]+ Lss @ate(x)+F:o0(x).  (2.21)

413

Similarly, when we set 4 (x)= 7,%(x) and B(y)= j:(y)
in Eq. (2.1), we get

e
—{(@s—y5)8(wo—y0) [ 71°(%),7x>(») 1}
0x;
0
=—{[K:,Su®(y) 1= Lss VS5 (y) }—5® (x—y)
0x;

+ (@ =95 8(x0—y0) [ D*(%),5x°(»)]. (2.22)
Inserting Eq. (2.17) into this equation, we find that the
order of 8(xo—yo)[7:%(x),7x%(y)] must be at most 1.
We may remark that Eq. (2.22) reduces to Eq. (2.2) of
Dashen and Lee? when we set y=0 and assume the
conservation law De(x)=9,5,%(x)=0. At any rate,
inserting Egs. (1.10) and (2.17) into Eq. (2.22), we
derive

Gu¥(y)=0,

[K,Sunet(y) ]— Lo @Syt (y)= — faur®(y)
—2Gu%%(y).

(2.23)

(2.24)

This establishes Egs. (1.11) and (1.15). Notice that
Egs. (1.13) and (1.14) follow directly from the definition
Eq. (1.10). Again, Eq. (2.24) reduces to that of Dashen
and Lee if Gs1x%*(y)=0.

Interchanging (a,0) and (/,k) in Eq. (2.24) and sub-
tracting, we find

[K o Zu(y) ]— Lot @202 () = Gs11®*(y) —Gs1x*¥(y) ,

where we used Egs. (1.4) and (1.13). Comparing this
with Eq. (2.19), we get

Goi®®*(¥)= —Gst*(y). (2.25)

This result, together with Eq. (2.18), establishes the
validity of Eq. (1.12). Equations (1.16) and (1.17) are
nothing but Egs. (2.20) and (2.21) because of G1;23(y)=0
[see Eq. (2.23)].

Before going into further detail, we remark that
Zu2?(y)=0 leads to Gu*®(y)=0. This is because, if we
have Z;°%(x)=0, then Eq. (2.19) gives us Gy;b(x)
= —Guu®*(x). Then, repeated use of this equation,
together with Gior®®=G.®*(x) [Eq. (2.18)], leads to
Gs112*(x)=0, since

Gs1x®?= —Gs11*= —Gre1®*= G15°®

=Gu:®"= —Gr12°= —Ga®.

Next, setting A(w)=ji*(x) and B(y)=D(y) in
Eq. (2.1), we compute



414

{[K:,0:24(2) ]— Los@a2(x) } 69 (x—y)

62

+{[K8,Glmkba(x)]"‘Ls4(x)G2mkba(x)} 5(4)(9‘;'—3’)

X10Xm

a d
= —=2—G (%) —0 @ (x—y)
0%4 0%y

~+ (x5 —y5)8(x0—y0) [ Jx*(%),D*(y) ]

d
+ ——{ (=) 8(xo—yo) L 74*(x),D*(y) ]}

Xk
d d
= —2—G.ub(%)—0P (x—y)
6x4 6xl

6@ (x—y) 9% (x—y)

d
42— ()

Oxk 6901

(=) 5o —yo)[ju(x), DY) 1.

+Els ba(x)

0x10x%

(2.26)

This proves that the order of 8(wo—yo)[ jar®(x),D*(y)]
is at most 3. If we assume Ausatz VI, i.e., that its order
is at most 2, then Eq. (2.26) gives

[K:,Gimi?*(%) ] — Lsa® Gimr?*(x)

=61k23mb“(x)+6mkzzs”“(x) , (2.27)
[Ks,010%(x) ] — Lsa@ate(x) = +Eu*¥(x), (2.28)
I¢] a
E3®(x) = — —Gop® (%) + —21.%%(x), (2.29)
6x4 0xx

where we have assumed, without loss of generality,

Eszk“b(x) = Elsk“b(x) . (2.30)

Now, notice that because of Egs. (2.19) and (2.27), a
set of Gimi®®(x) and Z4°%(x) is closed under commuta-
tion with the boost operator K,. This implies that
Gimr®®(x) and Z1;*(x) form an invariant subspace under
the Lorentz group. To determine their Lorentz-tensor
property, first let us set

Gure(x)=4G,**(x). (2.31)
Then Eq. (2.27) gives us
[Ko,Gi?*(@) ] — Lot @Git*(x) =21 (x) . (2.32)
When we set
G (%) = Gimi*(x) — G n®® (%) — 8, G1¥%(x) ,  (2.33)
Egs. (2.27) and (2.32) lead to
[K o, Gime?®(2) ] = Los@Grmi®e(x)=0.  (2.34)
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This xmphes that Gini*(x) is a Lorentz scalar. However,
Gimi?@(x) is obviously a third-rank tensor with respect
to the spatial rotation subgroup Os. Hence the only
possibility is that we have

Gini? (%)= e1miGe() ,

where G%¢(x) is a Lorentz scalar. But Gimib*(x) is
symmetric with respect to the interchange of I and s,
as we see from Eqs. (2.18) and (2.33). On the other hand,
€1k is antisymmetric with respect to 7 and m. Therefore,
we conclude that we have Gn:2(x)=0 or

Gimk?(x) = G (x)+ 6maG1o(x) . (2.35)

If we do not use this Lorentz-invariance argument then
in order to arrive at the same conclusion we have to
make repeated applications of the Jacobi identity
among K,, K., and Gini?*(x) and note that [K,,K,] is
a purely spatial rotation operator.

Since Guri®*(*)= —Gmri**(x), we find

Gn®(x)= —Gnb(x). (2.36)
Also, Eq. (2.19) is now written as
LK, Zube(®) ] — Loy @230 (x)
= ——6sszb“(x) —6sle”“(x)—25szsb“(x) . (2.37)
Setting
flk”“(x)=2mb“(x) —%5119233”“(%) , (2.38)
we find

[Khilkba(x)]—Ls4(x)21kbu(x)
= - 6skGlbu(x) - 5ssz”“(x) (2.39)

as well as
LK, Zmm® () ] = Los@Zpnb*(x) = —8Gs%(x). (2.40)
If we set
Hybo(x)=Eub(x),
H4z”“(x)=Hz4”“(x)=G;”“(x) , (241)

H (%)= —5Znm®(2)

then the commutation relations (2.32), (2.39), and
(2.40) can be rewritten as a single equation:

(K H (%) ]— Los @ H ()
= Buﬂsvba(x)-i_ 6V4Hllsba(x)
— 6”3H4,.b“(x) _— B,SH,“;b“(x) (2 .42)

for all u,»=1,2,3,4. This implies that H,,%*(x) is indeed
a second-rank Lorentz tensor. From the definition
Eq. (2.41), we find

H,,0(x)=0,

H b (x)=H,,%(x)= (2.43)

—H ;%0 (x).
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In terms of H,,%%(x), one can express

Grs®P(x) = 81 H 1,0 () + 81 H 012 (),

2.44

Esl”b(x)—: Hslab(x) _381H44ab(x) . ( )
These expressions prove Egs. (1.19)-(1.21). In terms
of H,,%(x), we can rewrite F;,*%(x) as

F;s“b(x)——— T4zs“b(x) —%513T444“”(x) , (245)
where a completely symmetric tensor, T.n%*(x), is
defined by

3 3
Tun®®(x) = —H °%(%) + —Hn (%)
dx 3

x T

9
+—Hu%(x), (2.46)
%y

and where we have used Eqgs. (1.16) and (2.44).

From these considerations we first notice that, if we
have Z;%%(x)=0, this leads to H%%(x)= 8,H 1.%%(x).
Because of the Lorentz covariance of H,,*%(x), this is
possible only if we have H,,**(x)=§,H*. However,
since H,,*(x) is traceless, we must have H,2(x)=0
identically and hence Gyux**(x)=Fu**(x)=0. On the
other hand, if we have G.x**(x)=0, then it gives
H 44%(x)=0, which in turn shows H ,,%¥(x) « §,,. Hence
we have H,,%%(x)=0 again; i.e., 252 (x)= Fy;2*(x)=0.
However, if we have Fy**(x)=0, then Eq. (2.45)
implies T415*°=%61sT144°%. Since T is a completely
symmetric Lorentz tensor, this is possible only if T',,,%?
has the form

Tyu)\ab(x) = 6p,vT)\ab(x)+ BﬂXTyab(x)+ 6)\vTu“b(x) )

where T)%*(x) is a Lorentz vector. Setting u=»=\=1,
for example, we get (8/9x1)H11%%(x)= T1%%(x). Again,
due to Lorentz covariance and the tracelessness condi-
tion H ,,°*(x)=0, the solution is given by

a
*"Huvab(x) =%[:5>\nTvab(x) + 5MTﬂab(x)] _%&WT)\M(’C) .
9N

When we notice the integrability condition

9? 9?
anab(x) =
0x\0%,

H,b(x),
XpO0%)\

then it follows that (9/x,)T,**(x)= 8,,0%(x) for some
Lorentz scalar function ¢(x). Therefore, if we further
demand that H ,,%%(x) is a local operator which does not
explicitly depend upon the coordinate x, then the only
possibility is that 7,°%(x)=0 and H,,*(x)=0. There-
fore, summarizing our results, we find that, if one of
Zo®t(x), Gsux®®(x), and Fi;%%(x) is zero, then all of them
must be zero identically.
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Returning to the original problem, let us choose

A(x)= 7x*(x) and B(y)= 7,5(y) in Eq. (2.1). After some
calculations, we obtain

(%s—y5)8(x0—y0) [ ax*(%),5:1%(y) ]

d
= —5lstab(y)_5lsa Smkba(y)

Ym

—[Ks, f1a?®(y) ]+ Lsa® fri¥(y) 6@ (x—y)
+{ 6lsSmkba(y) _6kmsalab(y)
I¢]
FLK o, fmr1®®(¥) 1= Lsa® frnr1®¥(y) }——5® (x—y)

(e

0 d
=1 —81:0x°%(%) — — S (2) + —for1°%(x)
ka 6x4

HLKs, fue(2) ] = Loa® fub(x) 1 5@ (x—y)
- { 5lsSmlc ba(x) - Bkmsslab(x) +[Ks,fmkl“b(x)]

0
—Las® frnia®®(2)}—6 (x—y).
0Ym

(2.47)

From this, we conclude that the order of &(xo—7yo)
X[jaw®(x),7:°(y)] is at most 2. Thus one can write it
as Eq. (1.22), and, inserting the expression, we get

LK, fu®®(y) ] —Lse ™ frr2®(y)

i) d
+ 81088 (y) — —Ss**(y)+ 6*“ sk1°%(y)
k

dy Y4
=—Xu(y), (248)
LK, () 1= Laa® frura®(y)
— 0kmS a1 (y) + 8105 mi?® (¥)
=2Xomu*(y). (2.49)

We observe that we have an identity
8(%0—y0)[Jax®(x), 2* () 6 (00— y0) [jr¢ (%), 70> ()]

0 d
=<-—- + __>5(x0—y0)[jk"’(x),jzb(y>]
0%y 6y4

d
— ——-5(300“)’0) [j4“(x);jlb(y)]
0xx

ad
— —8(xo—y0) [ Jx*(x),742(y)].
dy:
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One can check, however, that this relation is consistent
with Eq. (2.47) and hence will not give any new relation.
We also find another identity,

8(xo—y0)[j*(%),ju"(y)]

a3 d
=<~——+—~>6(xo—yo)[j4“(x):jkb(y)]
0%y 6y4

—8(x0—y0)LD*(%),7x° ()]

a
-+ ——‘5(900'—3’0) [jla(x):jkb(y)]

0%y

i}
— —3(xo—y0)[Js*(x),7° ()],
6yk

(2.50)

from which we can compute 6(xo—yo)[ j4%(x), j4k”.(y)]
completely in terms of other quantities; the result is

8(xo—y0)[74°(%),7:(¥) ]
={Qu®¥(x) —ax°®(x) }6 ¥ (x—y)

a3 9
+{alkqw'(y)——«Szkab(y>+fzkab<y>}——a<4><x—y>
ay4 (9001

2

—{fslkab(y)‘l'Gslkab(y)} 6(4)(70'—3’) ’ (251)

0x10%s

where we have set

b 9 b 9 b )
Q[Av (90“:9;;@» (x)—:,;x—”Q# (x .

In the case of the SU(3) theory Ciccariello ef al.'®
suggest that we may have the following relation:

[ [@i62,3026) | =0u6)= = L.

This is compatible with Eq. (2.51) only if we have
g k""(x)=0. )

Also, if we demand that the order of &(xo—y,)
X[ 7:4(x),714°(y)] is at most 1, then we must have
fsu®®(y)+Gax®®(y)=0. Then one can show, after some
algebra, that we must have H,,%*(x)=0 and that f,;°
is completely antisymmetric under the interchange of
s, /, and k and of ¢ and b.

When we set A(x)= 744(x) and B()= jub(y), we
obtain a relation which is identically satisfied, and it
gives no new relation. But if we choose 4 (x)= j,%(x)

18 8. Ciccariello, R. Gatto, A, Sartori, and M. Tonin, Phys.
Letters 30B, 546 (1969),
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and B(y)= ju(y) in Eq. (2.1), it leads to
LK+, 8(x0—y0)[52*(%),j ()]

d
= Ls4(z) +Ls4(y) + (xs _yx)_}

6x4
Xd(xo—yo)L71%(x),7ax*(y) ]
= (@s—y5)8(xo—y0) [ Fa1(x), x> (¥) ]

l¢]
— —{(@s—y5)6(wo—y0) [ 4*(x), 7 (y) ]}
6xl

oo —yo)Lsi*(%), 42 (¥)].  (2.52)

From this, together with Egs. (2.51) and (1.22), we
find that the order of 8(xo—yo)[ ju®(%),7a2(y)] is at
most 3. Moreover, if we assume that its order is at most
2 (Ansatz VII), then Eq. (2.52) gives us

HLK X mstx® () 1= Les Xomsi®(y) }
= —8um[ frsx?°() + fere®®(¥) +2G 12 (v) ]
= SuL frmi®® () + fnr () +2G rmr®?(3) ]
F8rm fs1x®®(y) - rs fmur®®(y)
= Okm s1:°%(Y) = Oks fmurr®(y) ,  (2.53)
LK X e (y) 1= Lrs X s®b(y)

i)
=2V sr11°(y) + 0,:101:04%(y) — sta Sr®®(y)
Y4

F 815 frk®¥(y) — 8rs f1122(y) + S1s f1,°5(y)

i) 1¢]
— —far () + ——fo."%(y), (2.54)
9y, Iy
LK Xue¥(y) ]— L@ X 520(y)
d i)
=Yu*®(y)+ —fu¥(y) — —fu*¥(y). (2.55)
3y, Iy

Notice that a set composed of X,ox®®(x), f1a:%(),
Gimx®®(x), and Su**(x) is closed under commutation
with the boost operator K, as we see from Egs. (2.53),
(2.49), (2.42), (2.44), and (2.24). Therefore, they form
a basis for a representation of the Lorentz group. In-
deed, its solution is given by Eqgs. (1.24) and (1.25).
However, its derivation is a bit involved and too
cumbersome to be reproduced here; therefore, we shall
give a simple sketch of the proof as follows.

In Eq. (2.53), let us successively set m=s, m=I,
m=k, and /= k and sum over respective variables. This
gives four equations. Solving them, we find that one can
write

Jran®®(2)=[K,,442*(x) ]+lower-order terms,
fere®®(x) = [K,,B**(x) ]+lower-order terms,
Sonr®t(x)=[K,,C**(x) J+lower-order terms,

(2.56)
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where “lower-order terms” designates those propor-
tional to either 8., &, or 8, and where A4.%(x),
B.%(x), and Cy**(x) are some operators contracted
from Xnms°®. Now, using the Jacobi identity for K,
K, and fur**(x) in combination with Egs. (2.56) and
(2.49), we can then prove that X ,,x%*(y) must be com-
pletely symmetric under interchange of s, m, /, and k,
apart from lower-order terms which are proportional to
Ssmy Ok, Osk, etc. Completely symmetrizing Eqs. (2.49)
and (2.53) among suitable variables, we see that the
completely symmetric parts of X ux®® and fou2?, to-
gether with some lower-order terms, are closed under
commutation with the boost operator K,; in other
words, they must form a representation space of the
Lorentz group. The completely symmetric part of
X om1x®® must contain parts corresponding to spins 4, 2,
or 0. Since a finite-dimensional representation of the
Lorentz group is always fully reducible and can be
written in terms of tensors, symmetric parts of both
Xomu®® and f515%(x) must be parts of a fourth-rank sym-
metric Lorentz tensor X,n,%%, if the former contains
a part corresponding to spin 4. However, unfortunately,
this assignment suffers from the incorrect sign in one of
the commutators of Egs. (2.49) and (2.53). Thus, we
conclude that X,,;*® must not contain a spin-4 part
and hence it is reducible to lower-order terms. As we
can see from Eq. (2.53), fax*® must also be written as
a sum of § functions involving &, 85z, and x;. If we do
not want to use the representation theory of the Lorentz
group, we have to make repeated use of Jacobi identities
among K, K;, and X ;,1x%*(x) in order to reach the same
conclusion. At any rate, expressing both X ;,,1;%%(x) and
fsu®®(x) as sums of terms containing 8sm, 6k, 8, etc.,
and inserting them into Egs. (2.49) and (2.53), one can
solve the problem with the help of Eqs. (2.24), (2.42),
and (2.44) in a form

ZXmslkab(x) = 6mlSlkab(x)+ 5slSmkab(x)
'+‘ (6ml63k+ 6al5mk)Eab(x) )
fslkab(x) = alekab(x)-’_astlba(x) ’

(2.57)

where X;%%(x) and E%®(x) satisfy

[K o, X 1%%(x) ] — Lot @ X3:2%(x) = Sot®® () 4 851 E2 (%)
[K;,Suct(x) ]— Lot S35 (%)
= — X *%(x) — 6.1 X 1%%(x)

—2016H 45,%%(x) — 28,6 H 1% (x),  (2.58)
(Ko, Eb(x) ]= — X ,%(x) — X ,>%(x) .
When one sets
Too®(2) = LS (2)+Ska"(2) ],
T 4x9%(x) = X12%(x) —H 11**(x) , (2.59)

Tk4ab(x) = Xkb“(x) "‘Hk4ba(x) ’
Tuieb(a)= — B=(x)= — E"(x),
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these equations are combined into a single equation

(Ko, Tu®®(2) ] = Los® T ()
= 6;:,4Tsvab(x) + 6V4Tnsa b(x)

- 6psT4vab(x) - 6vsTp,4ub(x) ) (2 '60)

i.e., T,*(x) is a Lorentz tensor. From Eq. (2.59), we
see that T,,°%(x) satisfies the symmetry condition

Tl“’ab(x) = T"“ba(x) . (2.61)
Moreover, when we set
Ru¥(x)= T (%) +H () , (2.62)

then R,,%%(x) satisfies Eq. (1.24), as can be seen from
Egs. (2.61) and (1.19). Also, Xnmsu?®(x), for®t(x), and
S12%(x) are now expressed in terms of R,,*(x) as in Eq.
(1.25); i.e.,

Su(x) = Rip*(x) — 611 14°*(x) ,
Fsu®(x) = 851 R4 () + 85 R0%%(x)

ZXmslkab(x) = 6mlekab(x)+ 6ismkab(x)
— (6 mibskt 8510mr) Ras®®(x) .

When we assume that the order of
d(@o—yo)L71%(%),jur ()]
is at most 1, i.e., X,nex*?(x) =0, then Eq. (2.63) implies
R%0(x) = 8,1 R44%(x) .

(2.63)

Since R,,**(x) is a Lorentz tensor, this leads immediately
to
Ryuyt(x) = 8, R?(xc) . (2.64)

Then Eq. (2.63) gives fox*®(x)=0. Also, R,,**(x)
=R,,*%(x) [see Eq. (1.24)] implies R**(x)= Rb%(x); it
follows that H,,%*(x)=0 [again by Eq. (1.24)], and
hence Slk“b(x) = 511¢R“b(x).

If we assume that the order of

8(xo—y0)[ju(x),ju"(¥)]

is also at most 1, i.e., ¥Vuar®®(x)=0, then Eqs. (2.54)
and (2.48) imply that X,**(x) and fi**(x) are closed
under commutation with K,. In that case, a similar
calculation proves that we must have

e)
fuet(x) = —Rayb(x) ,
9

a
X () = 331{——[1344”“(90) —H ()]
axk

9
———R4k""(x)—Qk“b(x)} . (2.65)
6x4

So, if the order of both commutators 8(xe—yo)
X[L7*(®),ja()] and 8(xo—yo)[ju(x),jub()] is at
most 1, we must have f1;**(x)=0, because of Eq. (2.64).
This implies that §(xo—yo)[/1%(x),7x*(¥)]=0; i.e., the
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space components commute as in the field algebra.
Therefore, if we do not wish this type of commutation
relation, at least one of 8(xo—yo)[7:%(%),ja®(y)] and
8(xo—y0)[ ju*(x),jax?(y)] must be of order 2 [i.e., must
contain nonzero second-order derivatives with respect
to 8 (x—v)]. Note that the field algebra is consistent
with R,,%%(x)=C8,,0,3.

We remark that if we repeat our procedure by taking,
for instance, A (x)=D*x) and B(y)= 7.,°(y), we will
introduce quantities involving second-order time de-
rivatives of 7,%(x). Hence our set of relations is maximal
if we do not use terms containing (92/9x49%4) 7.(x).

Finally, we note that since H,,%*(x)=0, we have
(H (%) )="0. Tt follows that (G.x:?*(x))e= (Zr1%*(x))o
= (F1°%(x))o="0 and that Eq. (2.63) implies

<Xmslk“b(x)>0= 0.

Thus the vacuum expectation values of all equal-time
commutators which we have considered so far do not
contain the second-order derivative of 6 (x—7), in
conformity with the Lehmann-Killén representation.
As another application of Eq. (2.1), we notice that the
ordinary canonical commutation relation of scalar
fields, 6(xo—yo)[¢(x),0(y)1=0, leads to the fact that
8(20—0)[(8/dx0)(x),0(y)] must be proportional to
5®(x—y); this result has been noted by Kazes.'

III. COVARIANT TIME-ORDERED
PRODUCT OF TWO CURRENTS

It is well known that time-ordered products of two or
more currents are in general not Lorentz covariant.
Hence it is important to investigate (i) whether it is
possible to construct a covariant 7% product, (ii) how
the seagull, which makes the T product covariant,
should be constructed from the commutators, and (iii)
what additional constraints are placed on the seagull by
the requirement that the Ward-Takahashi identities,
obtained by ignoring Schwinger terms and seagull
terms, be valid.

These problems have been discussed by several
authors?—* under various restrictive assumptions. How-
ever, Gross and Jackiw® have recently solved the
problem under much weaker assumptions. Indeed, they
find that the answer for (i) and (ii) is affirmative while
the condition for (iii) is somewhat model dependent.
Although we have perhaps nothing really new to add to
this subject in view of this fact, nevertheless it may be
instructive to demonstrate explicitly these points in our
case, since we employ an approach entirely different
from the one used by Gross and Jackiw.®

To obtain the Lorentz property of a time-ordered
product, we start from the following identity:

(K T(A(®)B@))]— (L4 Lot ) T(A (%) B(y))
= T(AsA (%) B(y)+T(A(x)A:B(y))

—i(w:—32)8(xo—yo)[A(x),B()], (3.1)
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where A,4 (x) and A,B(y) are defined in Eq. (2.2). Since
d(xo—yo)[ 74%(x),7,°(y)] is not zero, we find that
Eq. (3.1) demonstrates the well-known fact that
T(4.2(x),5,°(y)) is not Lorentz covariant.

To find the correct Lorentz-covariant tensor, let us
set

M (,y) = T*(5u%(%) 7,° ()

=T @) 70+ Aw (@)W (x—y)  (3.2)

and demand that M,,*® satisfies the Lorentz-tensor
condition

LK o, M (,9) 1= (Loa ™+ Loa @) M 0 ()
= 8;:4Msvab(x;y)+ 6V4M#8ab(x}y)

- 6!‘8M4"ab(x>y) - 5stu4“b(x,)’) . (33)

Using Ansatz 111, we find that A,,%%(x,y) must satisfy

{ [KsyAyvab(x):l —Ls4(’”)Auu“b(x) } S (x —y)
= {0,uls, (%) — 5usA4vab(x)
+ 5#4Ausab(x) - 6vsAp4a'b(x) } 6 ® (x_y)

+i(ws—y:)8(xo—y) [ 7u°®), *(¥)].  (3.4)

The purpose of this section is to demonstrate the exist-
ence of a A,,%%(x) which satisfies this condition. To this
end, we assume Ansilze I-VI, but we need not assume
the validity of the last Ansafz, VIIL. Setting

Ay (x)=0,
Ape®¥(x)= —1H 4%(x)
Agpo¥(x) =+ iH 40 (x) = —iH 1%(x) ,
An¥(x) = — 5[ S () + Su(x) ],

(3.5)

one can check that Eq. (3.4) is satisfied in view of Eqs.
(1.4), (1.10), (1.15), and (1.19)-(1.21). Hence with the
identification Eq. (3.5), we have proved the existence of
a covariant time-ordered product, T*(j.%(x)4.°(»)).
Also, Eq. (3.5) implies that A,,*%(x) satisfies the sym-
metry condition

Apt(x) = Ayt() , (3.6)

so that we have
T*(ju%(x) 5,° )= T*(5* () 7)) -

Note that, when we have H ,,*%(x)=0, our definition of
A,*%(x) reduces to the one originally given by Dashen
and Lee? [for the case Do(x)=9,7,%(x)=0] and by
Yang,® who generalized the result without the con-
servation law but with the additional assumptions
H,,**(x)=0. Hence we conclude that we can find the
covariant time-ordered product in a much more general
case, although this may not be surprising in view of the
work by Gross and Jackiw.5

Also, one can construct the covariant time-ordered

3.7



3 GENERAL PROPERTIES OF ¢g-NUMBER SCHWINGER TERMS

products, T*(D*(x) 7,°(y)), by the formula

d
—T*(5.(%) 5,2 (3)) = T*(D*(%) j,*())

" —iQ. ()5 (=),
where T*(D%(x) 7,%(v)) is given by
TH(De(%) 142 () =T(D*(x) j4*(¥))

(3.8)

d d
—i(H,Aab(y)g— —H44“b(y)“~>5(4)(x“3’) )

Xu 0x4
(3.9)
T*(De(x) j1*(y)) = T(D*(x) jx*(y))
d ad
+i(Hﬂkab<y>~— —H44wb<y>~)a<4> ().
ax“ 0%

Notice that the sign difference in the two expressions in
Eq. (3.9) implies that 7(D(x) j,*(y)) is not a Lorentz
vector unless we have H,,%%(x)=0. If H,,**(x)=0, then
the validity of Egs. (3.8) and (3.9) may be interpreted
to imply the cancellation of the Schwinger term and the
seagull term in the usual Lagrangian terminology. How-
ever, for the case H,,%*(x)>0, the situation is more in-
volved,® and its physical interpretation is less clear.

Analogously, we can define the covariant time-ordered
product T*(D*(x)D*(y)) by

3
;—T*(D“(x)jv”(y)) =T*(D*(x)D*(y))

Yy

=T(D*(x)D*(y))+io**(x)¥ (x—y)

] d
Hi—H,,*(y)— 3 (3 —y)
9y, 0%,

9 J
—2i—H, () (=)
6y4 6xu

d i}
—i—H 4, (y)—5® (x—y)
Vu %y

i} d
+21:—H44ab(y)"—‘5 ® (x—y) .
4

(3.10)
6y4 ox
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Notice that the second-order derivatives with respect
to §@(x—y) cancel out when we use Egs. (1.2) and
(1.21). We may remark that T(D*(x)D*(y)) is not a
Lorentz scalar unless we have Fr;%%(x)=0 and F;*?(x)
=0, as can be seen from Egs. (3.1) and (1.8).

In concluding this section, we remark that there is no
uniqueness in definining the covariant time-ordered
product. Probably, a reasonable restriction on A,,*?(x)
is that it must satisfy

Aﬂvab(x) = Avnba(x) )

Ause(2)=0, (3.11)

since the first relation is necessary to ensure Eq. (3.7)
while Ay%%(x)=0 is necessary to have T#(j:%(x) 7.%(v))
= T(§4*(x) 7s*(v)). Then the general solution for A,,*?(x)
is constructed by adding an arbitrary Lorentz tensor
A,,*%(x) to the right-hand side of Eq. (3.5); here &,,%%(x)
must satisfy the condition

R (%)= =Rt (x) = —A,,%0(%) , (3.12)

i.e., it must be antisymmetric under exchanges of (a,b)
and (u,). For example, we could have A, (x)
=¢Qu**(x), where ¢ is an arbitrary constant. However,
for the diagonal term e¢=b, we have no ambiguity of
this kind since A,,%%(x)=0 (no summation over a). In
particular, we have no ambiguity for the definition of
the covariant time-ordered product of two electro-
magnetic currents, since we have only one component
n=1 with a=b=1 to start with. Also, for the case when
we have H,,**(x)=0 identically as in the SU(2) case,
it is natural to add the additional condition

T*(D*(%) ,°(y)) = T(D*(x) .°(v))
0
= —T*(7.%(%) 5,(5))
0%,
+iQ,*0(%)8® (x—7y) .
Then this implies &,,%%(x)=0 again.
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