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We obtain nonsingular integral equations for the two-body potential scattering problem. In momentum
space our integral equations have square-integrable kernels and require only a 6nite range of integration.
We use our integral equation to obtain bounds on the convergence of the Born series.

mentum are convergent. The second limitation Faddeev
imposes on v is that v satisfy the Holder condition,

I. INTRODUCTION

~ 'HE solution to the nonrelativistic potential-
theory scattering problem is obtained from the

Lippmann-Schwinger equation for the t matrix. Solving
the Lippmann-Schwinger integral equation is difficult
because the kernel is singular. We obtain here a non-
singular Fredholm equation whose solution is the t
matrix (or E matrix). This equation has only a finite
range of integration in momentum space, and the kernel
is square integrable. We then use our equation to give
estimates on the rate of convergence of the Born series.

We begin our analysis by reviewing the known
singularity characteristics of the Lippmann-Schwinger
equation. In momentum space, the Lippmann-Schwinger
equation for the nonrelativistic two-body scattering
problem has the form
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II. NONSINGULAR EQUATIONS FOR
PARTIAL-WAVE AMPLITUDES

In order to illustrate our approach in detail let us
consider the partial-wave-decomposed form of Eq. (1)
valid for spherically symmetric potentials,
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This smoothness in the momentum dependence of v is
required so that the ic prescription in the Lippmann-
Schwinger equation be well defined. The only assump-
tions about the potential that our method uses are the
properties given in Eqs. (2) and (3).

Here p and p' are the c.m. momentum before and after
scattering. The c.m. energy is k'/2m, where m is the
reduced mass of the two-particle system. The potential
(local or nonlocal) is denoted by v, and (p I

t(k2&ie)
I
p')

is the t matrix. The singularity of the kernel of Eq. (1) is
manifest in the ie prescription. Although the kernel
of Eq. (1) is singular, Faddeev' has proved that
for su%cientlyjwell-behaved potentials the solutions

(p I
t (k2&ie)

I p ) are unique and that the i e —+ 0 limit is
well defined. The restrictions that Faddeev imposes on
the potential, to obtain these results, are that the po-
tential have a boundedness property and a smoothness
property. The boundedness property is expressed by

lv(p —p')1&c/(1+lp —p'I)'+', &&2 (2)
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Here t& and v& are the 1th partial-wave projections of t
and v, respectively, and c is a constant dependent on
one's choice of constants in the partial-wave expansion.
Since our approach gives a particularly simple result
when only a principal-value-type singularity occurs in
the integral equation, let us consider the E-matrix
companion to Eq. (4).
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for all p and p', where C1 is a constant. This property is One can recover the t matrix from the E matrix by the
constructed to ensure that all the integrals over mo- Heitler transformation
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The kernels appearing in Eqs. (19) and (20) are easily
determined to be

-4 (p p") = — (V (p p")+V (p. p")
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Another desirable generalization of our method
would be to treat the Lippmann-Schwinger equation for
the t matrix directly. If we start from the partial-wave
form Eq. (4), then this can be done as follows. Expand
the Green's function in Eq. (4) with the representation
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Now Eq. (4) has the form
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We can see how the Holder condition Eq. (3) and the
boundedness condition Eq. (2) will ensure that the 2,
are integrable. The constraint that 0) -', in the bounded-
ness condition will guarantee that terms like V(p„,p,")
= (k'/p'")

I
v (k'/p, k'/p") ]are integrable in the neighbor-

hood of p" =0. If we require pp) -', in the Holder condi-

tion, it follows that the L2 norms of A; will be finite, i.e.,
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III. SOME GENERALIZATIONS

The derivation given above for the partial-wave form
of the E-matrix equation can be applied without change
to fully angularly dependent E-matrix equation,
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where dO„"indicates the angular integration. The only
property of Eq. (5) exploited to obtain the reduction
was that the principal-value singularity was a fixed
singularity in the variable p". If we replace v(p, p") by
v(p, p"; P,P") in the expression (21) for the kernels and
increase the variables of integration in Eqs. (19) and
(20) to 1'dp"dftv, then we have a nonsingular equa-
tion for the angle-dependent E-matrix amplitude
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' F. Smithies, Integral Eqlgtiong (Cambridge U. P., Cambridge,
1965),

When the A; are square integrable, then the integral
equations given by Eqs. (19) and (20) are the simplest
kind of Fredholm integral equations. '

D+ (k) = 1+-,'icv-kv (k,k) (27)

and division by D+(k) is always permitted since for
v(k, k) real D+(k) will have no zeros. Substituting Eq.
(26) into Eq. (25) gives us an integral equation for t

involving only a principal-value integration, viz. ,

t(P,P'; k'ai0) = U(p, P'; k'+i0)
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This driving term is just a unitarized first Born term.
This is easily seen by setting E(p,p'; k') equal to

v(p, p') in Eq. (6). We note the discontinuity structure
associated with unitarlty in Eq. (28) is quite different
from the conventional Lippmann-Schwinger equation.
Here all the discontinuity in going from t (p, p'; k'+i0)
to t(p, p'; k' —iO) arises from the discontinuity in the
unitarized Born term U(p, p'; k'&i0). The principal-
value Green's function is of course continuous across the
scattering cut. Expanding the right-hand side of Eq.
(25) in a Born series gives a simple picture of how the
scattering amplitude t is built up. The nth Born term

If we set p=k, we obtain

v(k, p') c
t(k p' k'ai0) =
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consists of a product of the e unitarized interactions U
connected by free principal-value Green's-function
propagators.

With Eq. (28) we can now derive a nonsingular
equation for t(p, p';k'&i0) C.learly the appropriate
integral equation for to and to is given by Eqs. (19) and
(20) if we replace i((p,p') by U(p, p'; k'&i0) everywhere.
Before leaving this subject we observe that the method
of getting rid of the 8 function in going from Eq. (4) to
Eq. (28) is simple only for the partial form of the
Lippmann-Schwinger equation. To use the same method
on the angle-dependent Lippmann-Schwinger equation.

I Kq. (1)]would require inverse operators involving the
potentials. So, although the method here allows us to
extract the principal-value singularities in Eq. (1), the
8-function singularities will still be present.

(f,g) = f(p)g(p)dp, (30)

and let us denote by K the Hilbert space that is as-
sociated with this inner product. The space X'. consists of
all functions with finite norm,

I I f I I
= (f,f)'('. In defining

our Hilbert spaces, it is convenient to have the same
space for all values k of the incoming momenta. So when
we study the reduced representation Eqs. (19) and (20),
we shall treat it as an equation over the entire domain of

PQLO, ~]. This is done by rewriting the right-hand
integral term as

A (P,P")&(P",P') dP"

A (P,p")&(P",P')dp", (31)

where Eq. (31) is valid for any of the four integral
terms in Eqs. (19) and (20). On the Hilbert space X,
each kernel A (p,p") generates a bounded linear operator
.4 defined by g=Af, where

IV. NORMS AND BORN-SERIES CONVERGENCE

In this section we want to show how to exploit the I.~

characteristics of our nonsingular equations. Ke wi11.

imbed our equation in a Hilbert space and then use the
norms the space induces to give an estimate of the rate
of convergence of the Born series. Let us define an inner
product for functions of the momentum variable as

The natural Hilbert space to analyze our coupled
equations in is a product Hilbert space, 3'.I33'., con-
taining two-component vector-valued functions, i.e.,

fi(P)
f(p)=, fE3'.0+Bc,

f1(p)
(34)

(36)

and the matrix elements of A; of I. are operators on X
111 tile seilse of Eq. (32).

Given bounds or the values of IIA,II„it is straight-
forward to bound the operator norm of I.. Using the
matrix structure of l. given in Eq. (36) and the defin-
itio of operator norm, ' lt follows that

IILII&max((IIAill'+IIA3II')"' (IIA2ll'+IIA4li')'") (»)
The operator norms ffA;ff are bou~ded by the Hilbert-
Schmidt norms so that

IIIII&max((IIAill '+IIA3II')"'
(IIA2ll '+IIA4ll 'P'} (38)

The Hilbert-Schmidt norms needed in Eq. (38) can be
obtained from doing the integrals in Eq. (33) nu-
merically or estimating them analytically.

%e shall now show how to obtain estimates on con-
vergence of the Born series. Suppose we have obtained
bounds for IIA, II. and that Eq. (38) ensures us that
ill. ii&1. Then from Kq. (35) the difference between K
and b ls

IIK —bll = ll(1+1) 'I-bll& (1—IIL ll) 'III II Iibli (39)

In order to recover the physical amplitude E from I,
we must use relation (18).However, a norm for K leads
to a bound for the norm of E. From E=E1+&E1it
follows that

llltfl & II& II+II+& ff
& if&ill

+Il(@)lilt ll&L1+~(@)]IIKII, (4o)

&(0)= sup
I 0(p) I

& "
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with the inner product (f,g) = (fi,gi)+(f2,g&). In this
language our equation is symbolically

(35)

where in component form the operator I. on K3'. is

Af= A(,P")f(P")dP".

The operator A is bounded since A has a finite Hilbert-
Schmidt norm

bi='(,P') &2=&o(,p')

(32) For the form of P(p) given after Eq. (18), B(g)=1.
Combining Eq. (40) with Eq. (39) gives us

flit —rll& (1—III-II) 'IILII(1+Ii(e))llbll, (42)

' F. Riesz and B. Sz-Nagy, Functional Analysis (Ungar, New
York, 1955).
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V. COMPARISON WITH OTHER APPROACHES
TO NONSINGULAR SCATTERING EQUATIONS

In this concluding section we contrast the charac-
teristics of our reduced equations with those of some of
the alternate approaches available in the literature.
Probably the formulation closest in spirit to the one

given here for the two-body problem is the Kowalski-
Noyes4 representation. One attractive feature the
Kowalski-Noyes integral equation shares with results

derived here is that its kernel is known' to be a Hilbert-
Schmidt kernel for same weak conditions on the po-

tential given here. However, the Kowalski-Noyes ap-

proach has some drawbacks. The representation for the
partial-wave t matrix has nonphysical poles' (albeit
cancelling) not appearing in I.

Another frequently used technique is to distort (or
rotate) the contour of integration' in Eq. (I). Hy
allowing p" to become complex, we may distort the path
of integration so that p'" —k' never vanishes. This is a
powerful technique and works for higher-dimensional

integral equations as well as equations with moving-

point singularities. The difficulties which sometimes
attend this method are that the analytic structure of the
equation for p" complex may not be easy to determine

so that proving one has not crossed poles or branch

points in distorting the integration contour becomes
troublesome. Clearly if the kernel is only known in

numerical form, then the method is not applicable.
Also, contour deformation requires knowing stronger
analyticity properties than we have needed for our
reduction.

4K. L. Kowalski, Phys. Rev. Letters 15, 798 (1965); H. P.
Noyes ibid. 15, 538 {1965).' T. A. Osborn, Nucl. Phys. A138, 305 (1969).' J. H. Hetherington and L. H. Schick, Phys. Rev. 137, B935
(1965);156, 1647 (1967).J. Nuttall, J. Math. Phys. 8, 873 (1967).

We mention in connection with the contour-deforma-

tion method' a similar approach which treats the ie as
nonzero. For e)0, Eq. (1) is analytic in e. Solutions
obtained for nonzero e are then continued to &=0.
However, the difficulty of this method is that given a
finite number of solutions for nonzero e's, there is no

unique continuation onto the axis. Finally, Sroido and
Taylor' have recently studied the construction of
nonsingular equations for the Bethe-Salpeter equation.
Basically they expand the solution in a Taylor expansion
about the point of the fixed singularity. This procedure
used for the Lippmann-Schwinger equation studied here
will certainly give nonsingular equations, but of a more
complicated construction than the ones we have given
here.

We note obvious applications of our results. If we

expand the operator I. in terms of its eigenfunctions,
then we will be lead to a separable expansion for t (or E).
Fixed-point singular equations in two or more variables
of integration (such as Faddeev's equations) can be
simplified to the extent of removing all of the principal-
value-type integrations, but with 6 functions remaining
the kernels. These 6 functions would prevent us from
carrying out a simple Hilbert-space norm analysis as
in Sec. IV, but may not prove too difficult to handle
numerically. '
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