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We discuss the symmetry breaking in representations of the relativistic symmetry which are generaliza-
tions of the Dirac representation. The symmetry-breaking relation is based on a generalization of the
de Sitter model and leads to fine structure in the mass spectrum.

' 'X the preceding paper' we have discussed irreducible
~ . representations 8'" '1 and 8'" '1'1 of the relativistic
symmetry 6 which are infinite-dimensional general-
izations of the Dirac representation, i.e., whose repre-
sentation spaces are "infinite-dimensional" general-
izations of the space of solutions of the Dirac equation.
In an irreducible representation space of the
"unbroken" relativistic symmetry P, all states have
the same mass; to obtain a realistic mass spectrum,
one has to break 6 by requiring in addition to the
defining relations of 6 a symmetry-breaking relation
among the generators of S. An example of a sym-
metry-breaking relation is the in6nite-component wave
equation' for the Majorana representation. Other
procedures of symmetry breaking for the Majorana
representation have been discussed in Ref. 3. Good
agreement with experimental data was obtained by an
algebraic symmetry-breaking relation which is based
on the de Sitter model. 4

For the representations P &n '& (where the dot denotes
0 or ot) there is, of course, also a vast number of possible
choices for symmetry-breaking relations. We discuss
here the symmetry breaking in the frame of a general-
ization of the de Sitter model of Ref. 4. This will then
lead to an algebraic structure which we want to call M2
and which is a generalization of the algebra ~1 in
Ref. 4.

Instead of 6'M'i"'"'i which was used in Ref. 4, we
have now the representations P'"" and P&~ "'& of P.
The symmetry-breaking relation in Ref. 4 [Eq. (10)
of Ref. 4] ensured that the second-order Casimir
operator

Q= (1/X')B Bo 'I L~"—-
of SO(4, 1), generated by I.„„and

B,=P,+o) (PpP') "&P'L )

was an invariant operator. A, was a new constant of
dimension MeV which determined the strength of the
symmetry breaking.

The generalization M2 of this model consists of re-

1A. Bohm, preceding paper, Phys. Rev. D 2, 367 (1970), here-
after referred to as I.' Y. Nambu, in Proceedings of the 1N7 International Conference
on Particles and Fields (Interscience, New York, 1968), and refer-
ences therein.

A. Bohm, in Lectures in Theoretical Physics (Gordon and
Breach, New York, 1968), Vol. 10B, p. 483.' A. Bohm, Phys. Rev. 175, 1767 (1968);145, 1212 (1966);A. O.
Barut and A. Bohm, ibid. 139, B1107 (1965).
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placing the symmetry-breaking constant X by a sym-
metry-breaking operator A which is an element of the
algebra generated by P„, I'„, L„.=M„„+S,„This s. till
leaves a great variety of possibilities and we will have
to make some assumptions on A.

Thus we consider the representations 6'" '"' and6'" oi derived in I with arbitrary m (m/0) and
po/[ po~ =e)0, and define

B„=P„+,'AM '{P-&,Lp„),
M'=P„P~.

We assume that A is Lorentz invariant,

and
fA,L„„]=0.
[P„,A]=0,

(2)

(3)

but that in general [I'„,h]AO. ' Then, using (2), (3),
and the c.r. (commutation relation) of (P, we calculate

[B„,B„]=th'L, „, (4)

[L„„,Br]=t'(g„pB„g„oB„). —(5)

From (4) and (5) we see that for every 0(X'e of the
spectrum of A.' (1) connects an irreducible represen-
tation of the Poincare group with an irreducible rep-
resentation of a de Sitter group SO(4, 1)+„r.„„t"i,' which
is the group of motion in a de Sitter space of radius
1/X. The difference from the origina, l de Sitter model is
that now we have not only one de Sitter group and one
de Sitter space but rather as many as there are elements
in the spectrum of A.. (We remark that such a con-
nection between an irreducible representation of (P
and of SO(4, 1) '"' does not exist if [M,h]&0.)

For )i'(0, B„and L,„„generate an SO(3.2)n„r.
and, for P =0, B„and L„„generate the original Poincare
group (P~„,1.„,.

' We remark that if we relax (3) and require only
P'„,Ag =0 with P„=P'„M ', (3')

we would obtain instead of (4)
tB„,B„]=~A'L„„+[M,A]P~(P„„L,„P„L,„). (4')—

This is, in fact, only a connection between the irreducible rep-
resentation (s,m} of the Poincare group and an irreducible repre-
sentation of the I.ie algebra of SO(4, 1). The representation given
by B„=P„+(A/2m) {P&,L»} and L„,of the algebra of SO(4, 1) on
3'.(s,m) does not integrate to a representation of the group SQ(4, 1),
because, roughly speaking, the irreducible representation space of
a principal-series representation of SO(4,1) contains twice as
many states as X(s,m). Whether this doubling has a physical
counterpart or whether only the I ie-algebra representation qf
SO(4, 1) is of physical significance is not known at present,
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Using (1), one derives for the Casimir operator

A'Q= B,B~ ,'A—'L-„„L~" (6)

The assumption of the breaking of the symmetry 8
in the de Sitter model of Ref. 4 was to require that Q
is an invariant, i.e., LQ,F),]=0.' Accordingly, we
formulate our symmetry-breaking relation:

LQP j=o (g)

As in Ref. 4, we shall also require here that

LPp, l'),]=0 with Pp M'P ——. (9)

The 6nal problem lies in the determination of the
symmetry-breaking operator As. From (1), (4), (6),
and (7), we see that the easiest situation will arise if
A' is positive definite, and has discrete spectrum X(",

X(~&, . . . . Then to each X('& corresponds a
SO(4, 1)e„r,„„( ') representation with the same eigen-
value us of Q and each SO(4, 1)))„r,„„"'representation
space %so('')i'((r, s) is also an irreducible represen-
tation space K "(r)s,s) of the Poincare group (P) „r,„„
by (1).' Here nz is connected with the invariant (r and
with X") by (7). Thus the irreducible representation
spaces of (P and therewith the elementary particles are
characterized not only by m and s but in addition by a
new label X"' (except for the case that the spectrum
of A' consists of one point). It is clear tha, t in the frame
of the representations 8(" ') and 6(""" X") must be
connected with the new quantum number e.

We therewith come to the question of the possible
forms of the operator A. Since we want the symmetry
breaking to be a generalization of the de Sitter model,
we have to require that in the representation 8(M')"'"')
of the de Sitter model A.' be a constant. That restricts
the possibilities for A. to

A'=mrs —) s'LW/M' —(P„I'~/M)'j, (10)

where X~ and X~ are two constants of dimensions MeV
because in $(Ma)orans)

A.' =Xp+-'-X2' ——const.

Therewith we can summarize the defining relations of

(1) The relations of the relativistic symmetry P(" '(')

and P(~ s) extended by the discrete operations Uc,
r One can prove that in Ref. 4 PQ, I'„]=0 not only follows from

{10)bnt also vice versa; {10)follows from [Q,I'„]=0 if relations
(1)—(11) hold.

8 We remark that (8) is a non-Lie-algebraic relation so that M&
is not the enveloping algebra of a Lie group and the O'Raifeartaigh
theorem does not apply. (The other possibility for the generaliza-
tion of the symmetry-breaking relation in Ref. 4, (A'Q, F7,)=0,
will lead to difiic)rlties. )

of SO(4, 1)(~) or SO(3,2)(") (or (p) after some lengthy
but straightforward calculation

h.'Q =M'+ (9/4) h.' —A'5', (7)
where

m'=X(, „)'s(s+1)+X(,, „)ses. (7//)

{From (7") we see the reason for our choice n'= 9/4+e'.
Then the lowest state o. =fs=O, )s=0$ has the mass
m '=X/~'@0 and, as can be seen, no state with m'=0
appears for which (1) would have been not defined.
From physical considerations m, ' should be chosen of
the order of electromagnetic mass differences, which

cannot be accounted for in this model. )

Ar, Ur (that is, the commutation relations of S
extended by CI'T and the additional relations that
specify S(~'") and 8(n ')) as discussed in I.

(2) The symmetry-breaking relation (8), where Q
is defined by (6), (1), and (10), and the relation (9).

We now investigate the representation of this algebra.
From (3) it follows that h.' and M' can be simultane-
ously diagonalized. We can, therefore, divide the
representation space into two subspaces X+O+BC such
that spectrum M )0 on BC+ and spectrum M (0 on
X and investigate the spectrum of A' on each subspace
separately. We start with spectrum M'&0.

From (10), we obtain for the spectrum of A.'

() "))'=X( )' ——Xt' —)(s'(s'+s —)s') (11)

where the spectrum of (s,)s) is given by the multi-
plicity pattern in Figs. 1 and 2 of I. From these multi-
plicity patterns we know that e&s, so that for su%-
ciently high s (depending upon the value of the
empirical constants PP and X22, which will turn out
to be positive), X(, „)' can be negative. From (4) we
see that in this case B„and I.„„generate a representation
of SO(3,2)(~("")).

In an irreducible representation of ~~, the eigenvalue
of the invariant operator Q is a constant (r'. By taking
the expectation value of (7) in the basis

~ p, m, s,ss,n)
of I, we obtain

re'=X(, .)'((rs —9/4)+X(, ,„)'s(s+1). (7')

From this we see that for sufficiently high s when

X(, ,
)' becomes negative, m' will also become negative.

Before investigating this situation further, let us
recall the general principle of our approach: An irre-
ducible representation of the algebra describes a
physical system, which consists of a tower of particles
or resonances. The irreducible representations are
characterized by the value o,' and the irreducible
representation of SO(3,2)s„„r„which they contain,
i.e., by (O,R) or (—', ,E). Thus for a particular physical
system (tower), cr' has a definite value which is deter-
mined empirically. Particular physical systems that
we consider are the meson tower for which ns=9/4 and
the baryon tower for which o,'=4.46. For the sake of
definiteness, we will consider in the following discussion
the case (r'=9/4 which is of particular interest for us
(more precisely we consider the case n' —9/4=es, where
e') 0 is arbitrary small but &0).

In the representation space K((r'=9/4, (R,O)), (7')
becomes
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Therefore we have the following situation: In the
representation space K(n'=9/4, (R,O)) we have an
infinite set of states with s and e given by the multi-

plicity pattern in Fig. 2 of I and the states with a given

$s,m] have the mass m&, ,
&' given by (7") and (11).

Thus the operators F; that transform between different

(s,m) states (at rest) also change the mass such that
(7") is always fulfilled. This is a situation with which
we are well acquainted, '4 except that now, owing to
the indefiniteness of the symmetry-breaking operator
A., m' can become negative, so that for a certain
ciritical value for t s,ej, I', transforms from positive
mass-squared states into negative mass-squared states.
It is this point that needs further detailed investigation.

At first one would surmise that these m'(0 states
correspond to the usual unitary representations of the
Poincare group with m'&0 and describe tachyons. ' In
that case, however, the little group would be
50(2,1)s„,s„,s„and the additional quantum number
would not be e but the eigenvalue of I'3, which is con-
tinuous. We know, however, that F; or in general
U(L '(P))I', U(L(P)), where I. '(p) is the boost and

U(L) is its representative in BC( 'o(R,O)), changes the
representation s of the little group SO(3)s,. but not the
little group. Therefore, U(L '(p))P, U(L(p))transforms
between irreducible representation spaces of the
Poincare group which have SO(3)s,. as the little group.
Thus the»&'&0 states in the space 3C(n', (R,O)) must
belong to nonunitary representations (&r&'&0, s) of the
Poincare group.

Because of the unitarity of the representation (R,O)

of SO(3,2)r„,s„„ the generators L&" must be Hermitian
also (see Appendix 3):

L„„t=L„„, (12)

so that in the representations (»&'&0, s) of 6' the
SO(3,1)z,„„subgroup is represented unitarily. In the
representation (»&'& 0, s) the translation group is
represented nonunitarily and (m'& 0, s) are the
imaginary momenta representations" in which P„ is
anti-Hermitian:

(13)

To see that this conclusion is in accord with our
postulate that SO(4, 1)»„,z,,„plays the fundamental
role in our scheme, we investigate the representation
of 8„.

On the subspace 3C'~' ' with X(,,„)'='A'&0 and
consequently from (7") m'&0, (1) gives"

B„=I'„+,'(X/»&)(P, L,„), -(1')
so that from (12) and (13) we obtain B„t=—8„.

~ E. C. G. Sudarshan, Arkiv I'ysik 39, 585 (1969).
'0 This is a subclass of the irreducible representations of the com-

plex Poincare group. See, e.g. , A. O. Barut, in Lectures in Theo-
retical Physics (Colorado U. P., Boulder, 1964), Vol. 7a; E. H.
Rodman, Commun. Math. Phys. 4, 237 (1967).

"We remark that the choice of the sign of the square root of A,
'

and m~ is irrelevant in this consideration.

Because of (4),
t B„,B„j=—

~

&2~ +.„„. (4')

K(n', (R,O)) = P 8p(s) (n', s),
so(4, s) .=o,i, ...

/1V

where the multiplicity p(s) of the representation (n', s)
is p(s) =2s+1 (which follows from the multiplicity
pattern Fig. 2 of I).

The above representation of the broken relativistic
symmetry was induced from the representation
SO(3,2) q„„,r, '" 0& in which SO (2)r,ca 50 (3)q,. is diagonal
and contains, therefore, only those representations of
(P that have SO(3)q,. as the little group. If one wants
to obtain representations of the above algebra that
contains Poincare group representations with
SO(2,1)s„q„,s„as the little group, one has to induce
from the representation. 50(3,2) s„„,r„'~" in which
50(1,1)r,SSO(2,1)s„,F02, s» is diagonal. This has been
discussed in Appendix A and one obtains in both cases
quite distinct representations and not only the same
representation in a different basis. Thus, e.g. , the first
representation contains only unitary continuous series
representations of $0(4,1)&&, , z„„, whereas the second
representation contains only nonunitary representations
of 50(4,1)&&„z„„.Only the representations with SO(3)s,.
as the little group contain the usual particle represen-
tations of the Poincare group, and we restrict ourselves,
therefore, to these representations and shall call them
X(+, cP, (R,O)).

In the above considerations we have only discussed
the representation space with n2 —9/4= ~2 0 and (R,O)
that describe mesons. But it is clear that for the baryon
case (R;', ) and for n' —9/4) 0 all the above arguments
remain valid. We have thus obtained the following
result.

"Or part of it; cf. Ref. 6."See, e.g., T. D. Newton, Ann. Math. 51, 730 (1950);A. Bohm,
in Lecturesin Theoretical Physics (Gordon and Breach, New York,
1967), Vol. 98, p. 327.

Thus L„„and B„generate an SO(3,2)»„z„„&"&, in which
the B„are anti-Hermitian. We define

B„=(1/X)B„,
which obeys

[B„,B.j=iL„„, B„t=8„,
so that 8„, L„„generate a unitary representation of
50(4, 1)&&,,z„„on the subspace K'"'~'& of K(n'=9/4,
(R.,O)). The eigenvalue of the Casimir operator

Q=B B~ 'I. L~—"-
is n', so that this representation of SO(4, 1)~z must be a
class-I or -III representation" characterized by (n', s),
where s is the character of the 50(3)s, little-group
representation. "Therefore the space K(n', (R,O) ) con-
tains only Hermitian class-I and -III representations
of 50(4,1)&&„z„„ independently of sign X' and the
reduction is
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The physical system (particle tower) that is described
by the representation space K(+, n, (R, )) of Ms
(where . stands for 0 or -', ) has the mass spectrum

m(, )' ——{)P —)(ss[s(s+1)—e']) (n' —9/4)

+{XP—)(ss[s(s+1)—ts']) s (s+1) . (14)

The reduction of BC(+, n', (R )) with respect to the
Poincare group representations X(r/s, s) (sgnpp&0) is
given by

mass spectrum

m(, „)'=mes+) Ps(s+1) —),'s(s+1)
X[s(s+1)—n'], (16)

with mp'= 0.
The comparison of the mass formula (16) with the

experimental data has been done in Ref. 15 for the
meson tower that consists of the p, A2, E., and STU
band. The empirical constants have the following
values:

X(+,n', (R ))= P 3C(t)r(, ,„),s),
(p [n, s]

P /=0 30~0.01 BeV'
X22 =0.0061~0.0002 BeV',

) t/), s=7.
(17)

where the summation runs over all [e,s] of the multi-
plicity pattern of Fig. 1 (for =-,') and Fig. 2 (for =0)
of I. For the subspaces that correspond to [rs,s] with

X12/)(22) s(s+1)—ts2 ()(s2)0)

the representation spaces K(m(, „),s) are unitary rep-
resentation spaces of 6' and describe, therefore, ele-
mentary particles. The other irreducible representation
spaces of (p in (15) describe nonunitary representations
with imaginary momenta. The states with quantum
number e and —e have the same mass, as should be the
case according to our considerations in I: To every
particle there exists an "antiparticle" of the same mass.

X~' and XP are empirical constants which must be the
same for every physical system, i.e., in. every K(+, n',

(R )). We see that the appearance of imaginary-
momenta representations of (P depends upon the value
of these empirical constants; if P2'(0, only particle
representations of 6' appear and m' is unbounded. It
appears, however, that the mass spectrum obtained
with any P2'&0 is inconsistent with the experimental
mass spectrum of particles and resonances. Therefore,
our model predicts that there exists a highest spin and
a highest mass of resonances. ' This unexpected result
is, however, strongly dependent upon the model
assumptions about the form of the symmetry-breaking
operator (10).For example, if we drop the requirement
that h.' —+const for the Majorana representation, we

may find a form of A.' that has a positive-definite
spectrum and leads to a mass spectrum not in contra-
diction with the presently known experimental spec-
trum. Adjoining of the intrinsic symmetries could also
change this condition.

The physical interpretation of the imaginary-
momenta representations of (P is not clear, and we only
assumed that they do not represent resonances.

For the particular case (n' —9/4) =0, we obtain the

14The existence of an "ionization point" has also been con-
jectured by completely different arguments from the new Ser-
pukhov data: D. Horn, Phys. Letters 31B, 30 {1970).Unfor-
tunately the value for the ionization point obtained from (17)
and (13 is higher (approx. 11 BeV) than the one estimated
from the xp total cross-section data for the baryon resonances
(7.5 BeV) and is approximately the same for baryon and meson
resonances.

f( I) fh.
The experimental masses of these mesons are in agree-
ment with the predictions of the mass formula (16).
This would then predict that S~=2 for the D and the
broad f bump consists of two 2+ resonances; i.e., f is
split like ~~.

Another meson tower Q.ts the representation with
n'=3. 79. This starts with the mesons

(mass= 681 MeV)

f+l ~ f~s

and predicts that 8 has SP=2 and that the broad f*
consists of two resonances with S =2+. ~p is the
J~o=0++ state. The higher masses calculated by (16)
with the value (17) and n'=3. 79 agree with the experi-
mental masses of some charge-zero resonances.

To compare the predictions of our model with the
baryon spectrum, we first calculate the masses of the
E tower. From the experimental value of the nucleon
mass, r/4 —t/s ~ t/P ——0.880 BeV', and the values (17)
for ) P and XP, we calculate from (14) the value of n'
which characterizes the E tower:

n)vs —9/4 =2.21&0.01. (18)

The values of m(, ,„~' that are calculated by the mass
' A. Sohm, Phys. Rev. Letters 23, 436 {1969).

It is in the spirit of our approach that the symmetry-
breaking constants are universal and that the different
physical systems are described by the different repre-
sentations (n'(R, )) and, therefore, characterized by
different values of n and (R, ). We therefore use the
values (17), which were determined from the property
of the p tower, for all meson and baryon towers and
have as the only adjustable parameter for the mass
spectrum of one tower the constant n', which we deter-
mine from the mass of the leading member of the tower.

We shall now compare the predictions of our model
with the experimental particle spectrum.

A candidate for the representation K+(n'(R, O)) with
ns=9/4 is the tower of I=0 mesons that starts with



TABLE I. Calculated values for the mass squared of the nucleon
tower with I=0, V=1. The symbol beneath the m2 value gives
the partial wave in which a resonance that can account for this
mass has been found.

0,0

U 9
2pm-=3

2p

p=+
( BeV')

p —+
(BeV2)

P=+
(BeV')

p
(8eV')

p
(Bev')

2 22s2 0,2s= 0.88
(input)

1.67
r x r x r

1.77
D18
2.84
DIS
3.92
G17

4.39

s=-=3
2

I ) 3
3.12
~15
4.35

PIv (?)
5.04

s=—5
2 2.69

5.02
G17
6.04

3.68
FIv(?)
4.07

s=—7
2

7.36s=-g2

O, l

formula (14) with the values (17) and (18) are given
in Table I.

Except for the discrepancy between the predicted
and measured mass for the s=2 states, the agreement
of our predictions in Table I, with the experimental
data is very good: The D» resonance is the n =2, s =—',
state. The F» resonance consists of two different states,
m=2, s=2 and e=-'„s=2; phase-shift analysis cannot
resolve two F», states with mass square of 2.69 and
3.12 BeV'. The G~7 resonance consists of the two states
PZ 2p s 2 and 6 2p s 2p and thele ls an indication
of an Fr7(1980) resonance, which might consists of the
@=2, S=2 alld s=—„S=2 states.5 7 ~ 1 7

The situation is similar for the other baryon towers.
'tA'e shall give in Tables II and III the m~, ,„)' for the
A tower and the Z tower, respectively. The values of
n' for the A. tower and Z tower, calculated from mq'
and mz', respectively, are

1,2

0,3 2, 3

Fxo. 1(a). Multiplicity pattern of the representation P(~ 'o).
(b) Multiplicity pattern of the representation +&~=2'&. The num-
bers in the box give the values of [n,s]

for the s=2 and s=2 states. Our m=2, s=2 state
might be identified with the Dp3 resonance. The Ppg
resonance and the Gp7 resonance consist again of two
states.

With the values (20) and (17), one calculates for the
Z tower the m&, , &' (in HeV') of Table III.

The error in the calculated mass values of the above
tables, originating from the error in the value (17) of
Xr and P&, is approximately 10%%u~ (9—12'Po). Within
these errors the agreement is very good.

The only disturbing feature for all three towers lies
with the s=-,' states. For the higher-spin states, only
the mass of the e =-2, s = 2 state can exactly agree with
the mass determined from the phase-shift analysis for
the D» or Dp5 wave, because all the other waves con-
tain more than one state with different masses.

(19)na' —9/4 =3.41,
ng' —9/4 =4.00. (20)

The mass formula (14) gives with (19) and (17) the
values of m(, , )' in BeV' for the A tower listed in Table
II.

There is again no disagreement between the calcu-
lated values in Table II and the experimental spectrum

TABLE II. Calculated values for the mass squared in BeV' of
the A. tower. The symbol beneath the eP value gives the partial
wave in which a resonance that can account for this mass has
been found.

TABLE III. Calculated values for the mass squared in BeV2 of
the Z tower. The symbol beneath the m' value gives the partial
wave in which a resonance that can account for this mass has
been found.S

p

5
2 p

=3S 2 p S =7
2p

m-=3
2p S

p

5
2p p

=7
2p$=2 1.24

(input)
2.05 s=—122.13

DO3
3.16
D05
4.28
Gov

4.75

1.41
(input)

2.20
&13
3.12
~15
4.21
~IV

S 3
2

s=—5
2 2.98

~os
4.04
~ov
4.43

3.46
Po5
4.71
~ov
5.40

A (2350) —,
'+

2.30
D13
3.31
D15
4.45
GI7

S=—52s=—7
2 5.38

Gov
6.40

3.63
J'"Is
4.88s 2

s=—92 5.55

SYM MFTRY II'REAKI NG IN REF RESENTATIONS OF THE ~ ~ ~
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S-"2

I
!.8I '

A2
I280,

g(inPIIt j g

+pe
4

2090

0.588'

P

I.7S
AH

ISIS

/ ((apu() g
2.82 540

5
ICOS l840

+S.$8
4+

IIOO

FiG. 2. Predicted particle spectrum for
the representation g&~=' o&. The lef t corner
of each box gives the spin parity, the
number in the right upper corner is the
mass squared in BeV', and the number in
the right lower corner is the mass in MeV.

S=5
4.58

5
8.20

5
2880

For all the meson towers, the experimentally most
uncertain predictions are the existence of the s~=1+
and s"=2 resonances. It is, therefore, reassuring to
kllow tlla't tllele exists a IIlcsoll 1cplcscIltatloll of
which does not contain these states. This represen-
tation is obtained as the limiting case of the represen-
tations $(s oI for R» 2. For R=2 the representation
space K("'I of 50(3,2) becomes reducible and de-

composes into the two irreducible representation (irrep)
spaces K("=2 0) and 3'.("=")whose multiplicity pattern
is given in Figs. 1(a) and 1(b), respectively. ""This
happens because for E» 2, e+» 0 Lcf. Kq. (10) of Ij
and, therefore, the matrix elements of I'; between states
with the same s go to zero, so that the multiplicity
pattern in Fig. 2 of I decomposes into the two multi-

plicity patterns of Figs. 1(a) and 1(b).
From the irrep space K(a=' " of SO(3,2) we induce

an irrep space of &2, which we want to call

K(II, (8=2, 0)). If we choose again I(=+1 Lcf. (23) of

Ij, then R(n=9/4, (8=2, 0)) does not contain
Poincare group representations with s~ = 1+ and s"=2—.

Using the values (24) for the symmetry-breaking

constants X~ and X2, we obtain the same mass spectrum

as in Fig. 3 of Ref. 15, only that the abnormal spin-

parity states (called there p', A p, RI, 2|.'p, 5, T) are not

present.
%e can, however, proceed differently and use the

experimental values of the two A~ masses as input.
Then we obtain for the symmetry-breaking constants

F12=0.298 BCV', X2'=0.005 BCV', (17')

and the predicted mass spectrum is given in Fig. 2.
Though it might appear that experimental data—
especially in the lower-mass region —favor the particle

spectrum of Fig. 2 over that of Fig. 3 of Ref. 15, later

results —in particular in the higher-mass region for the

I=1 resonances —appear to be in better agreement with

'6 J. B. Ehrman, Proc. Cambridge Phil. Soc. 53, 290 {1957);
thesis, Princeton University, 1954 (unpublished).

» L. Joe, J. Math. Phys. {tobe pubHshed).

2+ f' 2+ fA

3-, m= 1840 Me@.

There is some good evidence for an I=0 resonance
around 1660 MeV the p(1650)» p'x'

Vote added in pnanuseri pt. Recently I P. H. Stuntebeck
ei al. , Phys. Letters 323, 391 (1970)j, a 4-standard-
deviation dip in the f peak has been reported, which
indicates that there is a structure in the f similar to
that in the M~.
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the spectrum of Fig. 3 of Ref. 15." Thus, e.g., the
representation of Fig. 2 cannot account for the "anoma-
lous" fine structure of the 5 bump or the existence of
more than two I=1 rnesons in the 8 region '5

It could, of course, very mell be that the represen-
tation space X(II'=9/4, (E,O)) with R&2 describes
the I= 1 mesons, whereas the I=0 mesons a,re described
by the representation X(n'=9/4, (8=2, 0)) of Fig.
1(a). In fact, at present this would be the experi-
mentally most. favored situation. The predicted particle
spectrum for the I=0 meson tower would then be
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APPENDIX A

We consider here briefly (the possibility of) repre-
sentations which contain Poincare group represen-
tations with the little group 50(2,1)s„,a» s„.Then for
unitary representations of the spectrum of O' M2(0.

Instead of the reduction 50(3,2)&SO(2)50(3),
we need in this case the reduction

SO(3,2)+SO(1,1)r, I350 (2,1)s„,s„,s». (A1)

The spectrum of the generator F3 of the noncompact
group SO(1,1) is y, with

for the case where SO(3)8,. was the little group.
For the spectrum of A2, we obtain therewith from

(1o)
X'=X&o—7po( —q+y') =X'(q,y). (AS)

Therefore we conclude that the spectrum of A2 is
indefinite and continuous, with discrete points in the
continuous spectra.

From (7) we obtain for the representation with
n'= 9/4

m'= —X'(q, y) q = +(X&'—4'Lo(o+1)+y)) o (o+1)

+op

To find the spectrum of the Casimir operator

Q(50(2, 1))=Sop +Sip —5&o,

(A2)
—P &' —l&o'( —q+y)]q. (A9)

Thus we see that the spectrum of M2 is continuous
and indefinite. For

(koo) = 2
SO(2, 1) @=1/4

XD'9 Z (D &+&63D & &), (A3)
/&;=1, 2, 3, . . . , kp

where D' are the continuous-class integral-type non-
exceptional representations of 50(2,1) with

1(q( (g) (A4)

Dp+ (Do
—

) are the discrete cia,ss representations with
eigenvalue 5»)0 (&0) and

QiDp+=q&p) ——k(1 —k), k=1, 2, 3, . . .
= —o.(o.+1), o.=0, 1, 2, . . . . (A5)

This, together with Kq. (12) of I,

(R,O) = P 8 (kp, cy) (kp, c ), (A6)

we have to reduce the SO(3,2)s„„,r„&"'& representation
with respect to 50(2,1)s„,s„,s„. To do this, we use
the reduction of SO (3,2) s„„r„&~" with respect to
SO(3,1)s„„given in Eq. (12), of I and the reduction of
the (kp, o+) representations of 50(3,1)s„„with respect
to 50(2,1) given in Ref. 19.

Let us denote by q the eigenvalue of the operator
g(50(2, 1)).From the result of Ref. 19, it follows that

B„~=—B„ for X2 ..0, (A11)

i.e., if the little-group representation is of the discrete
series D/, + or D/, , and

B "=X 'P„',m '(P', L,„) fo—r —X')0, (A12)

i.e., if the little-group representation is of the con-
tinuous series D~. For m2&0, the representation of (P

is nonunitary, P„t= P„, and one ob—tains from (A10)

X'(q,y) =7 &o—Zoo( —q+y) )0
and

M(o,y) =X&o—Zoo(o(o+1)+y) &0,

we have unitary representations of the Poincare group
(tachyon representations) and for the other values of

(q,y) or (o,y) we have nonunitary representations of
(P with m')0 and 50(2,1)s„spp s» as the little group.

If we choose again u' —9/4= o with
~

p
~

arbitrarily
small but

~

o
~
&0, we see again that m'&0 except when

X=O, so that (1) is always well defined. For X=O,
B„=P„and B„and L„, generate the mass-zero repre-
sentation of the Poincare group.

For XNO, we obtain from (1)

B„=A 'B„=X 'P„+ m'(P&, L„„—) . (A10)

For m2&0 the representation of (P is unitary, E„~=I'„,
and one obtains from (A10)

SO(1,3) /cp=0, 1,2, . . . B„~=—B„ for A,2)0) (A13)
shows that the spectrum of q in SO(3,2) &s" is given by
(A4) and (A5).

Sy taking the expectation value between states with

po =0 pz =po =0, po = —m, we obtain from this t:he
spectrum of S"=M 2t/t/':

W= —Q= —q, -4&q& ~
(A7)

o(o+1), o.=0, 1, 2, . . .

as compared to

W=S'=s(s+1), s=0, 1, 2, . . .
» N. Mukunda, J. Math. Phys. 9, 50 (1968); S. Strom, Arkiv

Fysik 34, 215 (1967).

i.e., if the little-group representation is of the discrete
series DI,+ or D/, , and

B„t=X 'P„om '(P', L p„) fo—r X'&0) (A14)

i.e., if the little-group representations is of the con-
tinuous series D~.

APPENDIX 8
We show here that in a representation of P=p~ r

t SO(3,2)s„„,r„ in which SO(3,2)s„„r„is unitary, the
generators of the physical Lorentz group SO(3,1)r,
must be Hermitian.
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and consequently,

[Lt,S]=iS

[L Lt, S]—=0.

From the c.r. (commutation relation),

[L„„,Sc„]= i—(g„S„.+g„Sc c gu.S p g cSc )

which we abbreviate as

[L,S]=iS,
it follows by taking the adjoint and using

St=S

where
M =3f„„=l.„„—S„„.

we obtain
[Mt,Mt] =iMt,

(1—cc)'[M,M] =i (1—n) M,

which, when compared with

[M,M]=iM,

A consequence of this is

Mt= (1—cc)M.

Inserting this into the c.r.,

Thus L I" is a, —tensor in the SO(3,1)r,„„=~,~s„„repre-
sentation which commutes with S„and, therefore,

gives

so that
1—Q= 1 or (x=0)
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Factorization of the Balachandran Dual-Resonance Model*

D. K. Siwcx, AiR

The Institlte for Theoretica/ Physics, State University of ¹mPork at Stony B~ook, Stony Brook, Nm I'ork J$$9P
(Received 16 March 1970)

The level structure of the Balachandran generalization of the N-point Veneziano model is considered. The
model is shown to exhibit consistent factorization and level structure. Using the harmonic oscillator formal-
ism, expressions are obtained for the vertices coupling one or two excited states to any number of ground-state
particles. The form of the propagator is also obtained. Both vertices and propagators are seen to reduce to the
Veneziano form when an appropriate limit is taken. Asymptotically, the degeneracy of the nth level is shown
to behave like exp (const n ")where the constant is given explicitly. The Gross model of X-point functions is
seen to exhibit a similar asymptotic degeneracy, in contradiction to other results reported in the recent
literature.

I. INTRODUCTION

ECENTLY, much work has been done on dual-

resonance models, ' in particular on those which

form the simplest E-point extension of the Veneziano

(beta function) model. ' The aspects on which we con-

centrate are the factorization and level structure of

dual-resonance models. These properties have been
considered for, the Ã-point beta function model, both
directly from. .'the "integral representation' and also

using a harmonic oscillator formulation. 4

Balachandran' has recently considered a set of dual

*Partially supported by the U. S. AEC under contract No.
AT(30-1)-3ee88.

' K. Bardakci and H. Ruegg, Phys. Letters 288, 342 (1968);
H. M. Chan and T. S.Tsun, ibid. 288, 485 (19e9);M. A. Virasoro,
Phys. Rev. Letters 22, 37 (1969); C. L. Goebel and B. Sakita,
ibid. 22, 257 (1969).

~ G. Veneziano, Nuovo Cimento SPA, 190 (1968).
K. Bardakci and S. Mandelstam, Phys. Rev. 184, 1640 (1969).

4 S. Fubini, D. Gordon, and G. Veneziano, Phys. Letters 29B,
679 (1969); G. I'rye, Phys. Rev. D 1, 1194 (1970); L, Susskind,
ibid. 1, 1182 (1970); D. Amati, C. Bouchiat, and I. L. Gervais,
Nuovo Cimento Letters 2, 399 (1969).

5 A. P. Balachandran, Phys. Rev. D 1, 2770 (1970).

g-point functions which are generalizations of the
1V-point Veneziano (beta) function, nontrivial in the
sense that they cannot be expressed as sums of beta
functions with constant coefficients.

We demonstrate that the Balachandran model can
be factorized and exhibits a consistent factorization and
level structure. Introducing harmonic oscillator nota-
tion, we effectively repeat the Fubini-Gordon-Vene-
ziano4 procedure for this model. The asymptotic degen-
eracy of levels is found to behave as exp(const n'I') for
the Balachandran model.

Before proceeding with the factorization, we will

briefly define the Balachandran Ã-point function. 5 One
first defines a homeomorphism co of the interval [0,1]
onto itself, such that

(i) cu(0)=1, (u(1)=0,
(ii) co((v(x)) = x,
(iii) co(x) is holomorphic on the disks

~
x

~
& 1,

~

1 —x~ & 1. An example of such an co is

1—s
cv(x) = —, —1(X(~. (1 1)

1 —Px


