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Near q=o,
j& (0)~q

—1/3
)

P (k) ~exp[g' ln'2k']
(46)

In the absence of satellites it is possible to construct
a dual counterterm" because of the power behavior of
I'( &. For k~& 1 the singularity of P(~& dominates that of
I (0)

Although we are unable to show that counterterms
do not exist, we consider their existence to be highly
unlik. ely.

"G. Frye and K. Susskind, Phys. Letters 31B, 589 (1970).
"P. G. 0, Freund and R. J. Rivers, Phys. Letters 29B, 510

(1969); P. G. 0. Freund, Nuovo Cimento Letters 4, 147 (1970).

Finally, we consider the single nonplanar orientable
loop of Fig. 4, which gives the unrenormalized two-

Reggeon cuts and may give some indication of the
nature of the Pomeranchuk singularity. "In the absence
of satellites the loop converges for I& ——,

' because of the
power behavior of P( ). With satellites the singularity
of E'"' [Eq. (46)g would cause the loop to diverge for
all values of N. As a corollary, the s'/' behavior" "as-
sociated with the branchpoints will be destroyed.

In summary, if the one-loop diagrams have any mean-

ing at all, it is only within the restricted context of the
E-point function without satellites. Increasing the level
degeneracy as in Eq. (1) by including satellites seems to
remove any chance of renormalization (in the planar
loop) or convergence (in the nonplanar loop).
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Representation spaces of the relativistic symmetry are investigated, which are "inhnite-dimensional"
generalizations of the space of solutions of the Dirac equation. The representations are extended by the
discrete operators C, P, and T. Application of these representations to the description of baryons and mesons
l,s d&scussed.

I. INTRODUCTION
' 'UDGING from the experience of the past few years,

it appears that Dirac's y's are only some special
cases of more general quantities with physical sig-
nificance. As is well knowri, the usual y„and 0-„„are an
irreducible matrix representation of the generators of
SO(3,2)r„s„„,' and the space of solutions of the Dirac
equation is an irreducible representation space of
the relativistic symmetry' 8=(PI „z,„„t-SO(3,2) s„„,r» '

where P denotes semidirect sum. In the connection
with infinite multiplets the applicability of several
unitary representations of SO(3,2) or 8 has been
investigated, e.g. , the four Majorana representations'
or the oscillatorlike representations of SO(4,2),' ' which
are in fact singleton representations' of SO(3,2).'

' The subscripts X; on the symbol for the group Gz; indicate
that X; are the generators of G. This notation is necessary to allow
us to distinguish between mathematically isomorphic groups,
which have different physical observables.

' P. Budini and C. Fronsdal, Phys. Rev. Letters 14, 968 (1965).' A. Bohm and G. B.Mainland, Fortschr. Physik 18 (1970).
4A. Bohm, in Lectures in Theoretical Physics (Gordon and

Breach, New York, 1968), Vol. 10B, p. 483; Phys. Rev. 175,
1767 (1968).

~ Y. Nambu, in Proceedings of the 1N7 International Conference
on Particles and Fields (Interscience, New York, 1968), and ref-
erences therein.

6 A. 0. Barut, in Lectures in Theoretical Physics (Gordon and
Breach, New York, 1968), Vol. 10B,p. 377, and references therein.

The Dirac representation of 8 has a great advantage
as compared to these representations: It is not only an
irreducible representation of 8, but it is also an irre-
ducible representation of the full quantum-mechanical
Poincare group, including charge conjugation, and also
an irreducible representation of S extended by the
discrete operations, space inversion U~, time inversion
Ay, and charge conjugation Uq. In analogy to the
notation for the Poincare group, we want to call 6
extended by U~, A ~, and Ug the full relativistic
symmetry S~. The infinite-dimensional irreducible
representations of 8 considered so far are not irre-
ducible representations of S~; the discrete operations
will transform out of an irreducible representation
space. Thus the following question arises: Are there
infinite-dimensional generalizations of the Dirac rep-
resentation, i.e., are there infinite-dimensional repre-
sentations of the full relativistic symmetry that remain
irreducible when restricted to PP The answer to this
question will be the subject of the present paper. It
will turn out that there are two classes of infinite-

~ J. B. Ehrman, (a) Proc. Cambridge Phil. Soc. 53, 290 (1957);
(b) thesis, Princeton University, 1954 {unpublished).

These are the singleton representations with the multiplicity
pattern given in Figs. 7-5 and 7-14 of Ref. 7(b). For j; =0 the
SO(4,2) irreducible representation reduces to a sum of two in-
equivalent irreducible representations of SO(3,2) with n; =1
and n; =2.
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dimensional irreducible representations of 6 which are
very siIQilar to cRch othcl ance wI11ch %'c will CRH

8'" "'& and 8&~ '&. 6&"""contains only half-integer
spins Rnd is the infinite-dixnensional generalization of
p~o'"'&. p&" "I contains only integer spins and is the
infinite-dimensional generalization of the representation
of 8 which contains only zero spin Li.e., in which

50(3,2)s„„,r„ is represented triviallyj. The zero-spin
rcpI'escntRtloH. hRs bccn used foI' thc description of
zero-spin mcsons) Rnd thc Dlx'Rc 1cpI"cscntRtloQ has
been used for the description of 2-spin baryons, and it
appears that 6&"'& and S~~'"& are uniquely pre-
destined for the description of the infinite tower of
IIlcsoDS Rnd baryons) 1cspcctlvcly.

The application of SI" '& to the description of the
meson spectrum and the breaking of S&~ '& to give the
mass spectrum has already been treated in a previous
letter. ' In the present paper we rvill describe in Sec. II
the construction of the representations S&s OI and
SI"'"' disregarding symmetry breaking. In Sec. III we
will investigate the action of the discrete operations Ug,
Up Rnd A r 1116~@ o1 RIld 8 1+' 121 ' tllls will g1vc 11s some
insight lDto ac physical interpretation. IH. Scc. IV wc
discuss the application of 6&"'& and 8'R I~'& to the
description of hadrons.

II. REPRESENTATION OP RESTRICTED
RELATIVE SYMMETRY

A. Restricted Relativistic Symmetry

The restricted relativistic sy~metry 8 is essentially
tile cllvclopIIlg algebra of tllc PolIlcal'c glollp h((P) 111

ccx'tR1H. I cprcscntRtloHs Rd/oint by R I.ol cQtz-vcctoI'
operator. S is the associative algebra generated by

P„, M = {P„P&}II2,I.„„=M„„+5„„,5„„,I'„, I,P, =0,1,2,3

ln which tlM Inultlpllcatlon ls de6ncd by thc rclRtlons

(1a)

LL"I-"l= (g-L-+g-I-'" g"I-" a"I—")—

LP„,5,.]=0 LP„,I.j=o,
L5"5,-l = —~(g.,5-+a-5.,—g..5"—s.,5,-), (1g)

9 A. Bohm, Phys. Rev. Letters 23, 436 (1969).
'0 A consequence of (j.) is

3ecause of this formal analogy with the commutation relations of
the semidirect sum of the Lie algebra of thc Poincare group
(pl, „„,p„) and the Lie algebra Z(50(3,2) )8„„,1„,8 has been de-
noted (Ref. 2) as the semidirect product I =(PI,„„p„j—50(3,2)g„„,l„j,
which is nrisleading insofar as the parameters of the group
generators I „,. arid 5'.. . are not independent,

LL,...I „j=L5...1 „]=i(g.„l,—g,„I.), {1h)

where p)P)p)0' =0)1)2)3 RDd goo = 1 g] 1=gg2 =g33 =
P„and I.„, are the generators" of the Poincare group
and represent, thexefore, the usual physical observ-
ables momenta and angular momenta. The splitting
I.„„=M„„+5„.is familiar from the space of the solu-
tions of the Dirac equation, which is a special case of
the representation spaces of S. M„„ is called. the
"orbital part" Rnd 5„„the "spin part" of the angular
momentum.

We are not interested in all representations of 6 but
only in representations with the following properties.

(1) 8 is an algebra of continuous" operators in a
dense subspace 4 of the Hilbert space 3C. This assures
us that Rll the algebraic operations are de6ncd.

(2) The subalgebra generated. by P„snd 1.„„8($')
integrates'3 to a unitary representation of the group 5"

with I'„PI'&O.'4

(3) The subalgebra generated by 5„„and I'„;
B(50(3,2)s„„,r„) integrates to a (unitary) represen-
tation of the group 50(3,2).

Requirement (2) is necessary for the physical inter-
pretation; requirement (3) is for mathematical con-
venicncc only.

(4) Tile representation 18 lrrcduclblc, 1.c., 'tllcl c
cxIsts 110 plopcl closed subspacc 111VRIIRllt under
and the central elements of 8 are multiplets of the
unit operator. "

It is easy to see from the defining relations (1} that
there is no operator in S that transforms out of an
irreducible representation of 50(3,2). Similarly one
can see easily that m~, the eigenvalue of I'~I'I", and e, the
sign of thc clgcQVRluc ~ of Io, Rlc lnvaxlRQts. CoDsc-

quently, the irreducible representations of Q are char-

"The same word generator is used for two diferent things:
(a) generator of a group, (b) generator of an associative algebra."Continuous means continuous with respect to the topology of
C. Ke do not, give here the mathematical details but just remark
that the prescription for the construction of such a space 4 has
been given in Appendix 8 of A. Bohm, J. Math, Phys, 8, 1557
(1967).

"This means that the operator hp=E0+P'+N'+M' is essen-
tially self-adjoint in C C3'..

Kith 1cgard to thc futulc 1Qtroduct1on of syIQInctry brcakIQg)
we should replace the requirement of "representations with
I'„I'&&0" by "representations of 5' with the little group SO(3)."

"The unitarity is not fu16lled for the Dirac representation. A
consequence of (2) and (3) is that all the linear symmetric ele-
ments of g are essentially self-adjoint on C.

'~ Secause of the requirement of integrability, the irreducible
representations of 8(50(3,2)) belong, of course, to irreducible
unitary representations of the group 50(3,2) and the same is true
also for 6'.

'7 Conventionally one uses positive- and negative-energy solu-
tions in the space of solutions of the Dirac equation; this is not
only unnecessary but also inconvenient as it has to be supple-
mented by the usual reinterpretation. As shown in Ref. 3, one can
restrict oneself to positive-energy states to obtain an appropriate
description of the spin- —, particie-antiparticle system.
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acterized" by m', c, and the irreducible representation
of 50(3,2)s„„,r, which it contains.

In the present work we restrict ourselves to repre-
sentations of 8 that contain irreducible representations
«50(3,2) of a specific class, which we shaH denote
(&,0) and {Z,—,'). We shall, therefore, Grst give a brief
description of these representations of 50(3,2)s„„,r„,
more details can be found in Refs. 19 and 7.

3)32s3

-4, 2 —0, 2

X
-1,3 —0,3

x
4 —0 4

1, 2 —2, 2

X
2,4 —3,4

K Some Properties of Irreducible Representations
(R,O) and (R,2) of 80(3,2)

The irreducible representation. of 50(3,2)s„„,r„c»
be reduced with respect to the following chains of
sub gI'oups:

X X X X X X
FIG. 2. Multiplicity pattern of the integer-spin representation

(E.,O} of SOC'3, 2}.

50(3,2)a,„,r„&50(3,1)s„„&50(3),,&50(2) „, (2)

SO(3,2)a,„,r„&SO(3,1}8,, ,1,.&50(3)8,,&50(2)s„, (3)

50{3,2)s,„,r„&50(3)8,,50(2) r,&50(3)s,,
&50(2)s„(p, ) =0, 1, 2, 3; 1, j= 1, 2, 3). (4)

50{3,1)s,„ is the (spin part of the) homogeneous
Lorentz group, 50(3,1)a,,r,. is algebraically equivalent
to 50(3,1)s„„but has a different physical meaning,
and 50(3)s, , is the spin-rotation group.

The irreducible representations (R,O) and (R,—,') have
the following properties.

(1) They contain an irreducible representation of the
maximal compact subgroup 50(3)s,,50(2) r, at most
once (singleton representations"). Therefore, the basis
vectors in the irreducible representation space 3'.(~ ~

(where the dot stands for 0 or -,') are completely char-
acterized by the system of commuting operators

S', Sly, I'0.

VVC denote these basis vectors by

t

2 2 2 2

X
f ~ P» ~ rrsr

2 2 2 2 2 2 2 2

X X X
l 5 l 5 5 5 5 5
2 2 2 2 2 2 2 2

X X X X
FIG. 1. Multiplicity pattern of the half-integer-spin representa-

tion I'8,@} of 50K'3,2}.The numbers in. the boxes give the values
of jl,sf'l.

18 %e shaH see later that they are also completely characterized
by these qUantities.

's L. Ja8e, J. Math. Phys. (to be published).

1'ej s,n,s3) =n(s,n, s3},
S'i s,n, sa) =s(s+1) i s,n,s3),

512~ s,n, s~) =sa~ s,n,si).

(2) They are characterized by one continuous param-
ctcI' E.+2, which ls thc eigcnvaIue of thc second-order
Caslmlr opcratoI'

F„rs+-,'5„„5~"=R

and which ls conncctcd with thc eigenvalue of the
fourth-order CaslInlr opelatol I l= —8 pS @i %1th 8 ~=

2 e„„p,5""I"',by

Pl ——-'„E{R—2) .

(3) The reduction of the irreducible representation
(R,—,') and (R,O) with respect to 50(3)s,,XSO(2)rs is
given by the multiplicity pattern~'9 of Figs. t and 2,
respectively. Each box tn, s) in the 6gures characterizes
the irreducible representation of SO(2}r, XSO(3)s,,
which lt contain, and thc lines conncctlng these boxes
indicate that there are nonzero matrix elements of I';
and 50, between these irreducible representation spaces
of 50(2)XSO(3).

(4) Thc 1'cdllctloll of tile llrcdllclblc lcplcscntatloll
(E,x2) and (R,o) with respect to 50(3,1)s„„Land also
with respect to SO(3,1)s,, ,r,.l is given by

(= means reduction with respect to the subgroup G),

where K(ke, c) are the usual irreducible representation
spaces of tile group 50{3,1).ie Thus g is also an in-

'0 M. A. Naimark, I&sear gePresenIaHons of the Lorene GroNP
(Pergamon, Neer York, 1964). In distinction to the notation in
Naimark's book pre use the notation

s —(s(Nsimsr)r)
( ks —ajgu(&Nsimsr)r)k (Nsimsr)r)
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sc= Ls W —2)1"'. (9)

variant of the 50{3,2) representation; it is connected
with R by

with tlie iiiultiplicity patteiii (see Fig. 2)

Ln=O, s=Oj (13)

As the reduction with respect to 50(3,1) is discrete, we
can introduce into X(@ '& a basis system in which the
noncompact subgroup 50(3,1)s„„is diagonal. This basis
wc denote bv

15 Spvfsoj —(1. &s P 2)fkoj.

S'f"' =i(i+1)f"' Si f"" =i sf s

The transformation coeKcients (&sir)&, &
between the

two basis systems (2') and (4")

ls~»)=Z f"' ' "=(~«=l~)(&

have been calculated in Ref. 19 and are listed in

Appendix II of Ref. 19.
The matrix elements of the generators in the two

basis systems have also been calculated there and are
listed in Appendix III of Ref. 19. For I'3 we have, e.g.,

I'sls&sss) = P ls', ri', ss')(s'ss'I1, 0,s,ss)

g(2J+1)i/sg, n'n (11)

where (s'ss'
I 1,0,s,ss) is the SU(2) Clebsch-Gordan

coefFicicnt and I', ,"" is the reduced matrix element
listed in Eqs. {III15) and (III 18) of Ref. 19.I', ,"'"40
only for 'I =B%1 and 5 =$& j.

~
s.

To iHustrate that the irreducible representation
(R,—,) are infinite-dimensional generalizations of the
four-dimensional Dirac representation" (E= ——,', —,'), we

jist herc its corresponding properties: The reduction of
(R= ——',, —,') with respect to 50{3)s,, XSO(2)r, is given

by thc ITlultlpllclty pattcIn

I n= —-'„s=—.,']+-+
I
&i=-'„s=-,'j. (12)

The reduction with respect to 50(3,1)s„„is given by

X'n="s '"' = P SX(ko, c =-',) . (12')
80(3,1) k0=+~z

Comparing (12) with Fig. 1, we see that the "lowest"
states of (R,—,') correspond to the states of the Dirac
representation. In the same way we can consider (E,O)

as the infinite-dimensional generalization of the one-
dimensional trivial representation (E=O, 0) of 50(3,2),

"The Dirac representation (Ref. 3) is obtained if one requires
in addition to the de6ning relations (1) the additional relation

{i'„I', l =-',g„("representation relation" ). A representation rela-
tion also exists for the Majorana representations. Unfortunately,
for the representations (R ) we couM not 6nd such a simple alge-
braic relation that determines their properties.

and the reduction with respect to SO(3,1)

X&s="& = X(ks ——0, c =1) .
80(3,1)

(14)

and U(1.(p)), the representative of the rotation-free
Lorentz transformation with L(P)P= (m, 0,0,0). Then

lp, =o, t')=U{L(P))lp,i)
and a straightforward calculation gives

U-'(&(P)) U(L(P)) lp, ~-)

= U-'(L(P))S. ip=O, f), (20)

w
I p f )=~ U- (I (P))-',5,,5'

I p =0, f ),
&.F lp, ~)= U- {1-(P))F.lp=O, i).

From the fact that 50(3,2)s„„,r„commutes with I'„, it
follows that the states (19) are transformed into each
other by 50(3,2)s„„r„transformations. Therefore, the
set

I p =0, f) spans a representation space of
50 (3,2)s„„,r„.

Slncc wc rcstl'lct ourselves to lrrcduclMc I'cpI'cscn-

tations of 6, this representation space of SO(3,2)s„„,r„
"To make this statement rigorous we remark that from the

assumed integrabiHty of the representation of 8((P) it follows that
I'; are essentially self-adjoint on 4 and strongly commuting. Let
4 be the suitable constructed nuclear space (see Ref. 12) and Cx
its conjugate such that 4( H( Cx is a Gelfand triplet; then it
follows from the "Dirac spectral theorem" /see, e.g., K. Maurin,
Genera/ Eigeefuectjom ExPgrlsiorIs and Vmt cry EePreserfta&ons of
Topokog'Eccl Gfol ps (Polish Scientific Publishers %arszawa 1968)
Ch. II, or A. Bohm, in Boulder Lectures As Theorehca/ Physics
(Colorado U. P., Boulder, 1966), Vol. 9A, p. 255.j that there
exists [P,l )&4" such that (N) is true. P; is here the extension of
the operator P; of C to a continuous operator in W. Finite group
transformations U(a, A) can be extended to continuous operators
in C and we call them U(u, A) again. Generally, we shall use the
same symbol for an operator in C~ and its restrictions to any
sub space.

C. Representations 8'a'~'& and 8&"'&
of Relativistic Symmetry

To induce the representations (E, ) of 50(3,2)s„„r„
to irreducible representations 8'n '& of 8, we start
with the generalized eigenvectors

(15)

of the system of commuting operators I', " (s=1, 2, 3),

&'I p, f) =P'lp, t ); (16)

here t is a (set of) degeneracy parameter distinguishing
the different generalized vectors with the property
(16). We now define as usual

,'e„p,„L"I'"—=xse, p „5"P" (17)

I
for the second equality we have used one of the defining

relations (1e)j,



must be irreducible. Ke choose it to be the represen-
tation space of (E, ). In this irreducible representation
space of (R, ) we choose the basis (4").So we have

lp=o, 1)= lp=o, s, ~, », (), (23)

where j is a possible further degeneracy parameter, and
we find from comparison of (4'") with (20)—(22) that

P&1'"
l p,s,n, so&&)™Ip, s,n, so, g) ~ (24)

Wl p, s,~, s„~)=mes(s+i)l p, s,~, s„~), (23)

~-'(I-(p))«U(1. (p)) lp, s,~,»,~)
=mso

l p,s,e,so, P) . (26)

From (25) and (26) we see that
l p, s,n, so, e) is the usual

canonical basis of the irreducible Poincare group rep-
resentation (s,m). From this it follows that no operation
of (P or 8((P) can change $, so that $ is redundant and

&' U '(L(p))&&oU(~(p)) +" &P'" (23')

constitute a complete system of commuting operators
for 6'" '&. We now also see that (m, e, (E, )) com-
pletely specify the irreducible representations of 6,
because 8', and therefore the spin s, is no longer an
invariant, but has the spectrum given by the multi-
plicity pattern of Figs. j. and 2. The operators that
change the spin and transform between di6erent-
equivalent or inequivalent —irreducible representations
of + are I';j e.g.,

(I='(p))I'o~(L (p)) lp, s,~,») =2 lp, s',~',»')
y (s'so'l 1,0,sso)1', ."'". (11')

The irreducible representation space of S&„I&" ' which
is spanned by these generalized eigenvectors lp, s,l,so)
is called K~ )

&~ '&.

The multiplicity pattern in Figs. 1 and 2 of
SO(3 2)&s'I'I and SO(3,2)&s o& now extends to the
multiplicity pattern of S&~'"I and SI~'&. To each box
ln, sj now corresponds the set of states (lp, s,so,n),—s&s&s, P such that P„P"=m'}, so that to each box
now corresponds the irreducible representation space
of the Poincare group 3'.(m, s,m), where e distinguishes
here between the equivalent irreducible representations
of (P with mass m and spin s. As an irreducible repre-
sentation space of 5' is the mathematical image of an
"elementary particle, " each box in the multiplicity
pattern corresponds to an elementary particle and each
elementary particle is now not only characterized by
mass m and spin s but in addition by the new quantum
number e.'3 Since 3'.t' 0) contains only integer spins,
and X&s'io& contains only half-integer spins, 6&"'I
describes an infinite tower of mesons and g&~ "'& an
ln6nlte tower of baIyons.

"The introduction of such a new quantum number, corre-
sponding to the principal quantum number of the hydrogen atom,
has been advocated before, in particular, by A. C. Barut (Ref. 6)
and Y. Nambu (Ref. 5); however, the spectrum of their quantum
number n is, owing to their use of a different representation, difer-
ent from that of our nj

So far every particle of the infinite tower of particles
described by X&s '(m) has the same mass m. To obtain
a realistic mass spectrum, one has to break the rela-
tivistic symmetry% by a "generalized wave equation"
such as, e.g., relation (10) in Ref. 4(b) for the Majorana
representation. Results of such a symmetry breaking
for the meson representation 6'" oI have been described
in Ref. 9. Then m will depend upon e and s and
~(m(e, s),s,e) will describe an elementary particle with
spin s, principal quantum number e, and mass
m =m(s, n).

Ke have here only introduced the canonical ba, sis

(23), because it is only this basis which we will need
for the further investigations. Better insight into the
concept of the relativistic symmetry can be obtained
from the spinor basis, which is considered in the

Appendix.

UgI'„Vg '=I'„,

UJI';UI ' ———I';,

UgI.„„Ug '=L„„,
Uq unitary

(27)
UpI'OUI '=I'0,
UIL'OUI '= —I-.-o,

U~ unitary;

ArI'oAr I=I'o,
A l„Arr '= —I;;, rA, IroA'= I'o,

(2 )
A ~ antiunitary.

"E.P. signer, in Crogp Iheoretical Concepts and 3IIethods in
Elementary Particle Physics, edited by F. Gursey (Gordon and
Breach, New York, 1964},p. 37."Heirri Goldberg, Nuovo Cimerito 60A, 509 (1N9).

III. PROPERTIES OP MSCRETE
OPERATORS C, P,

Ke shaH now study the representations of the Ml
I'elatlvistlc sylllnletl'y 8 ' wlilcll ls obtained fl'Gill 8 by
adjoining to it the discrete operations of charge con-
jugation Ug, space inversion UI, and time inversion
Ap. This will give us further insight into the physical
interpretation of the sta, tes of the representation space
of g's ""a,nd S&~ '&. The main problem that remained
open in Ref. 9 was the interpretation of the states with
negative quantum number e for the representation
S&~ '&. From the analogy with the Dirac representation,
we would expect that in 6'""" the antibaryons can
be assigned to the negative-n states. In the following
we shaB deriM that the negative-I states are the Ug
transforms of the positive-e states so that the nega-
tive-Ii states in S&s '"' not only can but must be the
antibaryon states. For the meson representation we
shall derive that the negative-m states are not the Ug
transforms but the A~ transforms of the positive-e
states.

The relations of the discrete operations with the
generators of the Poincare group follow from their
physical interpretation and are well known'4'5:
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(~c,(—1)'"r,(—1)"or (—1)"«)= (—+++)
for 8&m "". (31)

It remains to determine the relations between I'„
and the discrete operations. We shall only utilize those
relations which are a consequence of the previous
relations.

If we assume that I'0 and Vp can be diagonalized
simultaneously, as is the case for the Dirac represen-
tation, then, because of the equivalence of the two
50(3,1) subgroups 50(3,1)s„„and SO(3,1)s,, , r,.
the vector character of 5;o as a consequence of (28), it
follows that I"; can be a vector:

(32)

and, as a consequence of these properties, it can be
shown that for all singleton representations of 50(3,2)

U' ~&i){1'0 on the states at rest, (33a)

or, more generally,

U ~ei7r PpI'"/Mg
) (33b)

where 5 is the operation (pop, ) ~ (po, —p~). Ii is an
over-all phase factor. Thus the subspaces BC(m, s,m) are

parity eigenspaces, or to each box in the multiplicity
pattern corresponds a definite parity. We fix the phase
factor if we assign for mesons to [m=0, s=Oj the
parity +1, i.e., the o. states sp= 0+, and for baryons to
[m=-', , s=-,'j the parity +1, i.e., the baryon state
s"=-,'+. Then

for 8'~ " (mesons)
=e ' "for 6'm '"' (baryons). (34)

The equivalent of these relations are relations (2) of
Ref. 25 and (7.9) of Ref. 24.

The relations among the discrete operations Vp, V{.,
and Ap are given in the multiplication table Table I
of Ref. 25 and are derived from their physical
interpretation.

We consider the two representations 6'm" and
S&m II'I simultaneously and assume that the integer-
spin representation P&" oI describes mesons and the
llRlf-llltcgcl-spill I'cplcselltatlo11 Sl ' I I descrIbcs bary-
ons. Therefore, the phase factors will be"

(-.,(-» ".,(-1)"",{-1)"")= {++++)
for SIm oI (30)

UI gpss, m)=( —1)I"Ii—p s s, m) (38)

where [m] is the largest integer which is smaller than or
equal to m. (—1)™is given in the upper right-hand
corner of the boxes of the pattern in Figs. 1 and 2.

For baryons and mesons we obtain from (36)

I'o(UO
~ p =0, s, so, m)) =mIrc (Uc

~ p =0, s, so, m)) . (39)

Because of (27),

U(O, h) Uc i p,s,so,m} =P U, j (hp), ,s,so', m}

XD.;„{R), (27')

U{a)Ua~p, s,so,m} =e' »"Uc~p, s,so,m),

we see that the state Uc~p, s,so,m} has the same trans-
formation properties under the Poincare transfor-
mations as the state ~p, s,s, ,m}. A consequence of (39)
and (27') is

(1/M)P„I'&(Ucip, s,s„m)) =mvrc(Ucip, s,so,m)) (40a)

or

(1/M)P„I'& (Uc i p,s,so,Ircm})

=m(Unzip,

s,s„~am)). (40b)

Comparing (27') and (40b) with the corresponding
equations for

I p, s,so, Ircm}, we see that

~ p, s,s„m) and Uc j p, s,s,p.cm}

have the same transformations under all operations of
S. If we assume that (23') is not only a complete
syste111 of co111111lltlllg opcI'a'tols fol' St ' I but ls also
a complete system for the irreducible representation of
the full relativistic symmetry, then

From the relation"

ozorUpAr A—r—Up [or(—1)"=or(—1)"=1] (35b)

and (33a), it follows (because of the antilinearity of
Ar) that

+ fol rllesolls

—for baryons.

From the relations (33), (34), (36), and (37), we
obtain the actions of Vp, V(;, and Ay on the generalized
basis states (and therewith on every state of the rep-
resentation space) .

For baryons and mesons we have, from (33) with

(34),

From the relation" Uo
~ p, s,s„m) =a

~ p,s,s„~cm), (41a)

VpVg=wgVgV p with x'{..= + for mesons where a=a(P, s,so,m) is a proportionality factor. From
(27') one sees that a must be independent of so and P,—for balyons
so the, t

and froln (33a), it, follows th;lt. a= ( sa). m (41b)

F{jVg —x g V+I {)a (36) From the phase convention Uo'=1 and (41), one
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obtains further
a(n, s)a(zran, s) =1.

For baryons, zrc ———1 and (41a) is

From (29"a) one derives [most conveniently using

(42) the notation (29"b) and proceeding along the same

pattern as in Ref. 24]

Uaips, s»n)=a(n, s) ip, sl ss, —n). (41c)

We assign the baryon (with parity convention +1)
to the states belonging to the box [n= ,', s—=-',] of the
multiplicity pattern. Then it follows from (41c) and
the physical interpretation of Uz that the states corre-
sponding to [n = ——',, s =-',]which have parity —1 must
be antibaryon states in agreement with our experience.
Correspondingly for the baryon resonances, which we

assign to the higher s states of the multiplicity pattern,
we have that the [n,s] with n) 0 represent the baryons
and with e(0 represent the antibaryons.

For meson zrc=+1 we conclude from (41a), (42),
and the unitarity of Ug that

U(A)[g (Ari —p, s, sz, n))C„, ']

=2 [2 (Arl —(Ap)', s, ss' n))C3" ']
83'

XD„„&&(Z), (45)

U(a)[p (A, i
—p, s, s„n))C„„-']

83

=e'~»"[P (Ari —p, s, s„n))C„„—'], (46)

where

C„,= (—1)'+"6„,, —s& r, K&+s.

Also from (44b) one obtains

with
Ue i y, s,s3,n) =a(n, s) i p,s,s3,n), (41d)

a(n, s) =a*(n,s) or a(n, s) =+1 or —1. (41e)

(1/M)1'„P/'[Q (Ar i
—p, s, s3, —z/'n))C„„—']

83

=n[g (A&l —p, s, sz, —r'/n)) C„„-]z. (47)
83

Thus the mesons assigned to this representation are
eigenstates of the charge-conjugation operator and
have C parity +1 or —1.

We remark that (41d) has been derived under the
assumption that (23') is already a complete system of
commutating observables which is at best true for
noncharged mesons and thus a(n, s) is the usual C„. If
the system (23') of commuting observables is incom-

plete, because of the presence of some additional
quantum number like, e.g. , charges, U& may transform
out of an irreducible representation space of S'~ ".
(To obtain Ua eigenstates, we would have to form

ip, s, n, ~)= ip, s,n)~Unzip, s,n), (43)

From this, one calculates using (29) and

ArU(I='(P)) = U(I (P))A r, (29')

(1/M)I', P/'(Az ips, s&n)) = z/zn(Arip, s—,s,n)). (44b)

(29') is a consequence of the general relation (7.9b) of
Ref. 24:

(29"a)ArU(a, B)= U( /ra*o, B"o)A—r,
where

which are, however, unphysical because they are not
charge eigenstates. )

From (37) we obtain for meson and baryon rest states

I'o(A ip=O, s, s„n)= —z/'(A ip=O, s, „n.)). (44a)

Comparing expressions (45)—(47) with the expressions
for the action of these operators on the states

i y, s,s3,n),
we see that the vector

Q (A r i

—p, s, ss, —z/'n)) C„„—'

er ——(—1)"n*(s,n)n(s, —z/'n), (49)

from. which, for the case under consideration,
ez (—1)"=1, we obtain

a*( , )ns(ns z/'n) =1. (50)

For baryons, z/z= —1, we obtain from (48) and (50)

A ip, r, , s)s=3nn(s, n) (—1)'+"
i

—p, s, —s, , n), (51)

transforms under these operations just like

iy, s,s, ,n).

Again under the assumption that (23') is a complete
system of commuting observables, we conclude that

A+i —y, s, —sz, z/'n)( —1—)'+"=n'(s,n) iy, s,s„n)

or, with Az'=e& and the new proportionality factor
Ig= ego.

A r i p,s,s3,n) =n (s,n) (—1)'+"
i

—p, s, —ss, —zz'n) . (48)

That the proportionality factor does not depend upon

p and s3 can be shown using, e.g. , (29') and (29).
Applying Ar to (48), one obtains

a=ao+aa,
Dip z/z, a=3/z(Ai

)

P= —02=

(29"b)

with i/z(s, n) i
=1. For mesons, zP=1, we obtain from

(48)

Arip, s,ss,n)=~(s, n)( —1)" 'i —p, s, —s, , n), (52)—
with n (sn)n(s, —n) =1; i.e., time inversion transforms
a meson space X'" '& i@to the meson space ~ " '&,
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Therewith, we have found the meaning of the particle
spaces X'" ' with negative eigenvalue of I'„P'/~.
For baryons, these are the C-conjugated states of the
states with positive eigenvalue of I'„I'&/M, i.e.,'with
the usual interpretation, the antiparticle states. The
meson states are C-conjugation eigenstates, and the
states with negative e are the T-conjugated states of
the states with positive m.

So we have seen that the irreducible representations
8'"" and 8'" '"' of the relativistic symmetry

r.„„,r„, are also irreducible representations of

8 =/I'r„r. „„rcr~""g50(3,2)s„„,r„ the discrete oper-
ations U~, Uq, and A~ do not transform out of it. This
is, e.g., not the case for the simpler Majorana repre-
sentations. Since in the above derivation we have only
used properties which are also true in S( 'i"'"'), we

immediately see that for the half-integer-spin Majorana
representations, Ug transforms the representation with
positive spectrum of I'„P«/M into the representation
with negative spectrum of I'„I'"/3/I:

and for the integer-spin Majorana representation, Az

performs this transformation:

Thus we have derived that the charge parity of a meson

and its T conjugate must be the same.
Present experimental data seem to favor for mesons

a charge parity of

a(n, s) = (—1)' (56)

(there are at least three Io = 1+ mesons in the E region).
However, a C parity that alternates like the P parity,

a(n, s) =(—1)" [or also a(n, s) = —(—1)"$ (57)

(58K)UH'0= —I'OU~)

U~r, =l';U~, (58b)

is experimentally not excluded. From the theoretical

point of view, it appears to be very dificult to give a
justification for (56). The C parity that could readily

be obtained is a(n, s) =const; this, however, is definitely

in disagreement with experiment. With suitable assump-

tions about the properties of the operators that trans-

form between different hadron spaces (currents), (57)
can be given a theoretical justification.

The assumption made at the beginning of this section,

that UI and I'0, or more generally U~ and E'„P",
commute, is a natural one, but not the only possibility.
One can easily see from the defining relations (1) and

(28) that

Thus extension of the Majorana representation by the
discrete operations P, T, C will always require repre-
sentation doubling. The same is true for the oscillator-
like representation of 50(4,2).

We calculate the action of a CPT transformation on
the states

~ p, s,s«,n). From (38), (41), and (48) it
follows that for baryons as well as for mesons

is a permissible choice for the relation between I'„and
U) . With (58) we obtain instead of (38)

U~
~ p, s,s«, n) =«(n, s) i

—p, s, s«, n), —(59)

where «(n, s) is a phase factor with «(n)«( —n) =1 (from

U~'=1), «*( n) =«(n—) (from unitarity of U)), and

«= const [from (58b) j, so that

UcUpAr ~p, s,s„n)
=co(s,n)( —1)'+"~p, s, —s«, —n), (53)

«=+1 or «= —1. (59')

with

co(sn) =n(sn)a(sn)( —1)(-").

Thus the negative-e states are the CPT transforms of

the positive-e states with opposite helicity for baryons
as well as for mesons.

There remains an independent relation between the
discrete operations which we have not yet utilized:

For physical reasons we will choose states that span

eigenspaces of U~ rather than eigenstates of P„FI",
because we are used to the assumption that elementary

particles have a definite parity. So we define the new

states

p, s,s3, (n), 2

=(I/v2)(ip, s,s«,n)a«~p, s, s«, —n)), (60)

A gUg ——~g~g~l Ut. A z with ~t. ~y = 1. which are easily checked to have the desired property35c

Applying both sides of (35c) to the state ~p, s,s&,n) and

using (41) and (48), we obtain U„p,s,s«, (n), 2
=& —p, s, s«, (n), 2

(61)1 = 1

a*(n,s)n (s,7rcn) =area (—vPn, s)n (s,n) . and which further obey(54&

For mesons, vP =+1 and 7ro=+1; we have, therefore,

a*(n,s)n(s, n) =n( —n, s)n(s, n),

1 = 2
Z„r& p, s,s«(n), 2

=«nm p, s, s3 (n) (62)

so that we obtain with (41e)

a(n, s) =a(—n, s).

We choose now the parity convention such that the

states with n=0 have parity +1; then we see from

(55) (60) that we have to choose «=1.
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For the representation 8&" '"' the physical content
has essentially not changed. For a given s and each
value of ~e~, we have again a particle-antiparticle
system of opposite parity [because of (35a)] and the
spectrum of s~ in an irreducible representation space
X,&~ 't') is the same as in the previous case. The only
difference is that we now have Eq. (62) for the physical
states instead of Eq. (24).

For the representations 6'~ o& the physical content
for the case (58) is different from that of the case (32).
The parity eigenstates are again charge-conjugation
eigenstates. For a given s we have now one parity equal
to +1 (=~) state for

~

m
~

=0, and for any other value of
~

n
~

we have a pair of states with opposite parity. Thus
the s content in an irreducible representation space
K&~') is different from the one given by Fig. 2, whose
parity assignment came from the assumption (32).

IV. DISCUSSION

The description of the baryons by 8'~ '"' appears
as natural as the description of the electron by the
Dirac representation P '"'=+&~= ~& '&'&. The choice
between the two cases (32) L(33)] and (58) for the
parity operator is easily decided for case (32).This gives
an exact extension of the Dirac case by which the
particle states are eigenstates of P„I'& and therewith
establishes the nice correspondence between the boxes
Lm, s] in the pattern of Fig. 1 and the elementary-
particle spaces. The pattern of Fig. 1 accommodates
the baryons of higher spin with spin degeneracy, as
well as the antiparticles, in a way which is in agreement
with our old ideas about the baryon properties and
with the new experimental data for baryon resonances.
From the physical point of view,

'

the two choices for
the parity operator do not seem to lead to results that
can be distinguished from each other by the experi-
mental data.

The description of the mesons by Q& ", with the
choice (32) [(33)] for the parity operator, was not
quite what we would have expected, due to the appear-
ance of the negative-e states. From the investigation
in the previous section, however, these negative-e
states appear not only perfectly acceptable but even
necessary for a complete description that includes the
discrete operations C, I', and T. The question of how to
distinguish experimentally between the meson states
which di6er only in the sign of the quantum number n
remains open. Since they are the T conjugates of each
other, they can only be distinguished by observables
that do not commute with T and are, therefore, de-
generate in all the well-known quantum numbers. The
problem of the physical interpretation of these T-
conjugated states need not be present, if we choose for
the parity operator relation (58). However, then we will
have for each value of (~n~, s), except for n=0, a
doublet of parity eigenspaces with opposite parity.
After the symmetry breaking' has been taken into

account, this will lead to the prediction of a doublet
of particles with the same mass and spin but opposite
parity, which seems to be strongly disfavored experi-
mentally. It would, e.g., predict that there are two
mesons of the mass of 32~, one with s"=2+ and the
other with s~ =2, which seems to be in disagreement
with latest experimental results. " It therefore seems
that experimental results choose the parity operator
(32) L(33)] for mesons also, which leads to a more
beautiful scheme than (58) but also to more curious
predictions.

Further evidence for the applicability of the repre-
sentations g~ '& and Q&~ '&'& to the description of
hadrons will evolve after the symmetry breaking has
been taken into account. This will be discussed in a
forthcoming work.

APPENDIX

The clearest presentation of the algebraic relations
(1) that define the relativistic symmetry can probably
be given in the spinor basis. The spinor basis of the
irreducible representation space of the Poincare group
is the basis in which the splitting of the I.orentz
transformations generated by I.„„ into an "orbital"
part generated by M„„and a "spin" part generated by
5„„is made explicit.

I.et (P be called the Poincare group generated by I'„
and M„„Lfrom relation (1) it can be seen that P„and
M„„ fulhll the commutation relation of the Poincare
group], then it follows from (1) that the Lie algebra
2 ((P*) and 2(SO(3,2) r„,s„„)commute. Let 3C(m, e =+1)
be the irreducible representation space of 6' )because
of relation (1e), s'=0] and g(p) its generalized basis
vectors, and let K(" ' be the representation space of
SO(3,2)s„„,r„, then as a consequence of the "direct
product, "
(P'SSO(3,2)s„„,r„

=set of global transformations of 8, (A1)

we obtain the irreducible representation space of 8 as
the direct product of the spaces K(m) and K&" '&:

R' '& (1n) =x(1n)33C' (A1')

The spinor basis is then the corresponding product of
the basis systems:

(A2)

"W. Kienzle, Invited paper at the Washington Meeting of the
American Physical Society, 1970 (unpublished); CERN report
(unpublished).
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where f ",, is the basis (2') of K'a '&. Direct product
means the direct product in the usual sense but with
the same parameters for the transforrnations generated
by iV„. and by S„„Li.e., 5'*gSO(3,2) equals the set of
all elements of (P*SSO(3,2) which fulfill n&"=P&",
where e' &"~~ and e'»"8~" are the global transformations
of SO (3,1)sr„„and SO(3,1)s„„, respectively]. From
definition (A2) follows the simple transformation
property of the spinor basis under I,orentz trans-
formations, i.e., A+SO(3, 1)c„„.

U(A)f"";(p) = 2 P"' (~p)D'""". .{A), {A3)

with

U(A) I
psnsi) =p

I (Ap)i, s,n, ss')D„„(R), (AS)
S3

E=L(Ap)AL '(p).

The calculation is as follows:

where D&"'»";,,;,(A) is the represents, tion matrix of h.
in the representation (ko, c= (1/i) L:', (E—2)]'i'). I'„
and S„„act only on the indices of f ";,(p) without
effecting p. It is clear that there is no physical trans-
formation generated by the S„„alone.

In contrast to the spinor basis, the canonical basis
(23) of K'~ '&(m) is obtained from the basis (4") by

lp, s,n,ss)=U(L-'(p))(4(po, p=0) ls I s )), (A4)

where L '(p) is the boost (19).
It is illustrative to check that the basis defined by

(A4) really has the correct transformation properties
of the canonical basis" of (P:

U(it)
I p, s~s, )

= U(»- ")(4(p=0)
I s,~,si))

= U(L '{Ap))UP-)(4(p =0)
I s,l,»))

= U(L '(Ap))(U(~)4(p=0) U(~) Is,~,»))
=U(L '(Ap))6(p=o)3(Z Is, l, »')D.,",'*'(&))&,

which gives (A5) because L '(A.p) is rotation free.
It is from physical considerations that the canonical

basis is preferred over the simpler spinor basis.
As an elementary particle is assumed to have definite

spin and not a definite j equals the "spin part of the
angular momentum, " it is clear that the canonical
basis lp, s,ss,n) is the physical basis and not the spinor
basis, and it also appears that e is the physical quantum
number and not ko. The transformation matrix between
the spinor basis and the canonical basis can be calcu-
lated along the same lines as in the Appendix of Ref.
4(a); it is given by

Ip, s, ~, s,)= g f,,(p)U"», ,(ps, sm)
j3jA:0

where

U'""„(p,»,s,~) =D'" "'
~ (L '(p)) {k.l ~&(.) (A&)

The summation in (A6) goes over all —j&ji&+j,
j=ko, k,+1, . . . , and ko ——a-,', a-,', . . . , for S~~'"'
and ko ——0, +1, +2, . . . , for 8'a". U&+(p, ss,s, m) is
the infinite-dimensional generalization of the Dirac
spinor. ' (kole)i, i isgivenin (10) and D&"&'»'„,(I {p))
is the representation matrix " of L—'(p) in the repre-
sentation (ko, c= —iI -,' {E—2)]'i').

"S. Strom; Arkiv Fysik 33, 465 (1967); R. Delbourgo, K.
Koller, aIId P. Mahanta, Nuovo Cimento 52A, j.254 (1967).


