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We report on the calculation of second-order vacuum-polarization contributions to the sixth-order elec-
tron and muon anomalous magnetic moments. With these results the diGerence of muon and electron mo-
ments has now been completely calculated through sixth order in quantum electrodynamics. The only re-
maining sixth-order contributions to the electron moment which have not been completely calculated are
those graphs without fermion loop insertions,

I. INTRODUCTION
' 'N view of the recent measurement by Wesley and
. . Rich' of the anomalous magnetic moment of the
electron, a, =—,'(g, —2), to a precision of 6 ppm and the
expected precision of future measurements of the muon
anomalous magnetic moment a„=', (g„—2),' a com-plete
calculation of the sixth-order quantum-electrodynamic
contributions to a, and a„ is awaited with increasing
urgency.

The status of the sixth-order calculations for the
electron moment is as follows: The contribution arising
from the insertion of fourth-order vacuum-polarization
graphs into the second-order vertex' [Fig. 1(a)] as well
as the photon-photon scattering contributione [Fig.

*Supported in part by the National Science Foundation, in
part by the U. S. OK.ce of Naval Research, and in part by the U. S.
Atomic Energy Commission.

t Avco Visiting Associate Professor.
f. Present address.
' J. C. Wesley and A. Rich, Phys. Rev. Letters 24, 1320 (1970).' E. Picasso, in Proceedings of the International Conference on

High Energy Physics and Nuclear Structure, Columbia Univer-
sity, 1969 (unpublished); F. J. M. Farley (private communica-
tion).' J. A. Mignaco and E. Remiddi, Nuovo Cimento 60A, 519
(1969).

1(b)] has been evaluated. The graphs which have not
been evaluated consist of all those obtained by insertion
of the second-order vacuum-polarization graphs into the
fourth-order vertices [Fig. 1(c)] and all sixth-order
vertices with no electron loop insertion [Fig. 1(d)].
In addition there is a dispersion-theoretical estimate of
the sixth-order electron magnetic moment. ' '

The quantum-electrodynamic contributions to the
difference of the muon and electron moments u„—a, in
sixth order arise from the insertion of electron loops of
the vacuum-polarization type [Figs. 1(a) and 1(c)] in.

the muon vertices of the second' "and fourth orders"
4 J. Aldins, T. Kinoshita, S. J. Brodsky, and A. Dufner, Phys.

Rev. Letters 23, 441 (1969); Phys. Rev. D 1, 2378 (1970).' S. D. Drell and H. R. Pagels, Phys. Rev. 140, B397 (1965).' R. G. Parsons, Phys. Rev. 168, 1562 (1968).' T. Kinoshita, Nuovo Cimento 51B, 140 (1967);and in Cargese
Lectures in Physics, edited by M. Levy (Gordon and Breach, New
York, 1968), Vol. 2, p. 209.' S. D. Drell and J. Tre61 (unpublished); see S. D. Drell, in
Proceedings of the Thirteenth International Conference on High
Energy Physics, Berkeley, 1966 (University of California Press,
Berkeley, 1967), p. 93; and in Particle Interactions at High Ener-
gies, edited by T. W. Priest and L. L. J. Vick (Oliver and Boyd,
Edinburgh, 1966).' B.E. Lautrup and E. de Rafael, Phys. Rev. 174, 1835 (1968).' B. E. Lautrup and E. de Rafael, Nuovo Cimento 64A, 322
(1969).
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(a) Fourth order vacuum polarization insertion

FIG. 1. Four types of sixth-order
Feynman diagrams which contribute
to the anomalous magnetic moment of
the muon and electron.

+ crossed graphs

(b) Photon-photon scattering contribution

+ r ~ r

(c) Second order vacuum

polarization insertion
(d) No lepton loop insertion

and of the photon-photon scattering type4 LFig. 1(b)].
These have been completely evaluated except for cer-
tain nonlogarithmic remainders in the vacuum-polar-
ization contributions [Fig. 1(c)]which have only been
estimated. v

In this paper we report the results of calculations
which complete the evaluation of all the vacuum-
polarization contributions to a, and u„ through sixth
order. In particular, the diGerence of muon and electron
anomalous moments has now been completely calcu-
lated through sixth order in quantum electrodynamics.
As in other calculations which have been recently re-

ported, 4 the 6nal results have been obtained via nu-

merical integration, but to sufficient accuracy for com-

parison with experiments at a precision better than
1 ppm for the electron anomalous moment and 10 ppm
for the muon moment. The 6nal confrontation of ex-
periment with the theoretical results of quantum elec-
trodynamics through order e' will, however, require
the complete evaluation of the contributions of the
graphs of Fig. 1(d) (there are 28 distinct graphs of this
type) to a., a task which, though diKcult, seems tech-
nically feasible with present algebraic and numerical
computation techniques.

II. SECOND-ORDER VACUUM-POLARIZATION
CONTRIBUTIONS TO SIXTH-ORDER

MOMENT

The Feynman diagrams contributing to the fourth-
order lepton vertex in quantum electrodynamics are
shown for reference in Fig. 2. Mass, charge, and wave-
function renormalization counter terms are understood.
The contributions of the individual diagrams to the
fourth-order magnetic moment have been given by

Petermann, " and are listed numerically in column 2 of
Table I. The corner LFig. 2(c)] and. fermion self-energy
)Fig. 2(d)] diagram contributions a,re separately loga-
rithmically infrared divergent for photon mass X ~ 0,
although the sum of their contributions to Ps(0) is
infrared 6nite.

As a check of our computational scheme, we have
Grst reevaluated the fourth-order moment contributions
from Fig. 2. The reduction of these integrals to the
Feynman parametric form has been obtained using
the algebraic techniques and renormalization procedure
described in previous work. 4 "Trace projections, index
contractions, and loop integral replacements were ob-
tained using the algebraic computation program
REDUcE," and also by hand calculation as a further
check. The Feynman parametric integrals could be
reduced in a trivial way to four dimensions for diagrams
(a), (c), and (d) and to three dimensions for the ladder
diagram (b) of Fig. 2. The numerical results, obtained
using the Sheppey program described earlier, 4 agreed in
each case with the analytic calculations to the required
accuracy.

Once the integrals for the fourth-order diagrams
(a)—(d) are written down, the integrals corresponding
to the sixth-order graphs generated by the insertion of
second-order vacuum-polarization electron loops in the

"A. Petermann, Helv. Phys. Acta 30, 407 (1957). This paper
corrected errors in the earlier paper of R. Karplus and N. M.
Kroll, Phys. Rev. 77, 536 (1950}.The results for the total contri-
bution are also given in C. M. SommerGeld, ibid. 107, 328 (1957);
Ann. Phys. (N. Y.) 5, 26 (1958); and M. V. Terentev, Zh.
Kksperim. i Teor. Fiz. 43, 619 l1962) /Soviet Phys. JETP 16,
444 (1963}$.

~2T. Appelquist and S. J. Brodsky, Phys. Rev. Letters 24,
562 (1970); Phys. Rev. A (to be published)."A. C. Hearn, Stanford University Report No. ITP-247
(unpublished); and in Interactive Systems for Experimentct Ap-
Pked Mathematics, edited by M. Klerer and J. Reinfelds (Aca-
demic, New York, 1968).
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(a) Cross (b) Ladder

'(c) Corner (d) Fermion Self-Energy

FIG. 2. Feynman diagrams contribut-
ing to the fourth-order lepton vertex in
quantum electrodynamics. Sixth-order
Feynman diagrams of the type shown
in Fig. 1(c) are generated by insertion
of a second-order vacuum-polarization
electron loop in either one of the photon
propagators labeled A and B.

(e) Vacuum Polarization

photon propagators (labeled A and 8 in Fig. 2) can be
easily obtained by the effective replacement"

1 ~ ' P(1—-', P)

k' —X'+re m. 0 1 t'—
X (2 1)

k' —/4m, '/(1 —P)j+i~

at the expense of one extra integration. The prescription
for the double-loop vacuum polarization contribution
corresponding to Fig. 2(e) is discussed in Refs. 7 and 9.

The results of our calculations for the second-order
electron-pair vacuum-polarization contributions to the
sixth-order anomalous moments of the electron and
muon are summarized in columns 3 and 5 of Table I.
Af ter the usual self-mass, subvertex, and charge
renormalizations, the contributions of the self-energy
LFig. 2(d) j and corner LFig. 2(c)) diagrams with
vacuum-polarization insertions in the main loop photon
propagator (8) are individually infrared divergent. "
The logarithmic dependence on photon mass X of these
contributions can be readily determined analytically.
In the case of the corner graph, the logarithmic con-

'~ G. Kallen, Helv. Phys. Acta 25, 417 (1952)."In addition, the unrenormalized amplitude for the ladder
diagram )Fig. 2 (b)) and its subvertex renormalization subtraction
term contain canceling infrared-divergent contributions. In the
ladder diagram, the photon A cannot cause the infrared diver-
gence since it is not attached to external lines. Thus the divergence
is associated with the photon B only. On the other hand, the
infrared divergence of the subtraction term arises not from the
photon B, but from the photon A. Hence the infrared divergence
of the ladder and subtraction graphs arise from entirely dif'ferent
parts of the domain of integration. The ensuing computational
problem is resolved by simply symmetrizing the variables associ-
ated with the photons A and B.

—0.115(6) electron
A —2.06(6) muon.

(2.2)

The corner and self-energy diagrams with the vacuum
polarization insertions in the photon propagator (A) of
the internal loop are individually infrared 6nite. I7 The
sum of these contributions is

F (0)j2c(A)+2d(A) j
—0.089(2) electron

A 7l (2.3)—1.96(7) muon.

The error limits correspond approximately to 90% con.—

6.dence limits, and could be improved if necessary.
Further information on the analytic behavior of indi-
vidual contributions as a function of p=m. 2/m„' for
p((1 is shown in Table I.

"J.D. Bjorken and S. D. Drell, Relativistic Quantum Fields
(McGraw-Hill, New York, 1965); P. K. Kuo and D. R. Yennie,
Ann. Phys. (N. Y.) 51, 496 (1969); T. Appelquist, ibid. 54, 27
(1969).' The contributions of vacuum-polarization insertions in the
photon line of type A in the corner' /Fig. 2(c)] and self-energy
I Fig. 2(d)) diagrams are infrared 6nite but contain canceling
ln'p terms for p= (m, /m„)'«1.

tribution can be isolated analytically through the use
of intermediate renormalization. "Ke have also found
and used an even simpler method which applies to both
corner and self-energy graphs. This method is described
in the Appendix. The remaining infrared-6nite con-
tributions were obtained numerically. The combined
numerical result for the corner and self-energy con-
tributions (X/m ~ 0) is

F2(0)P~(&)+2d(&)j
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TABLE I. Second-order electron-pair vacuum-polarization contributions to the sixth-order anomalous magnetic moments of the muon
and electron. The functions used in column 4 are deGned as follows: f(p) =-,'Pln (m„/m, ) —25/12+-', s'm, /m„], g (p) = (2/9) Pln(m~/m, )g'
—(25/27) ln(m„/m, )+7f-'/27+317/324, and h {p)= (119/27 —4'-'/9) ln(m„/m, ) —61/162+m /27, where p = (m, /nz ) .

Graph

Ladder

Cross

Corner

Fermion SE

Vac. pol.

a' vac. pol. (proper)

y-y scatt.

Total

F2(4) (0) (electron)
(~'/~') X

0.778
—0.467

—0.564—ln () /w, )

—0.090+in (P /nz, )

0.016

—0.3285

F2«) (0) (electron)
(~'/~') X

0.0532 (4)
—0.0032 (3)
—0.051(3)—0.0314 ln P /nz, )
+0.0273 {3)
—0.064(3)

+0.0314 ln (~/~g, )—0.1161(14)

0.00255 (2)

O.O5291(6)

0.36(4)
0.26&0.05

F ( &(0) ( =m, '/m„«1)
(o.'/~') X

2f(p) t 0.778)—0.53 (6)

2f (p) P —0.467(+0.76(1)

(f(p) f—0.564—ln (X/m„) ]—0.18(3)
f(p) t —0.654$—0.53 (7)

f{p)t
—0.090+in (A, /m„) )—0.45 (3)

~ ~

(included with corner result)

g (p) ao.o2
h (p) +o.oo2

—,
' ln (nz„/m, )+-,'| (3)—5/12 —0.03 (2)

6,4(1}ln (ns„/nz, ) —16(1)

Fs &'& (0) (muon)
(~'/7 ') X

2.88(6)
—1.28(1)

—4.02 (13)

2.82 (2)

1.49 (2)

18.4(11}
20.3+1.3

0.05536 electron (Ref. 3)
Q (2 7)

4.34+0(m,/m„) muon (Refs. 9,10).
F,(0)32a—d(A and 8)]

The combined result for second-order vacuum-polar- Fs(0) («urth-order V P )
ization insertions in the fourth-order ladder, cross,
corner, and self-energy diagrams is

—0.154(9) electron
Q X' (2.4)—2.42(20) muon,

which is the main result of this paper. The previous
estimate' for this contribution to the sixth-order muon

moment was

4Q m„25 3x' m, Q—ln + (—0.3442 )—
3m m, 12 4 m„ 7r'

= (—1.506)—. (2.5)
7r3

We have also checked numerically all previous calcu-

lations' ' ' " of fourth-order vacuum-polarization con-

tributions to the sixth-order moments of improper

double vacuum-polarization loop contributions [in-
cluding the mixed electron-pair and muon-pair con-

tribution from insertions in Fig. 2(e)] and. the proper
fourth-order vacuum polarization (V.P.) insertion as

given by Kallen and Sabry. "The total result is

III. COMPARISON WITH EXPERIMENT

The total contribution to the electron moment in
sixth order, calculated thus far from quantum elec-
trodynamics, is

a, =Fs'(0) = (ns/w') L
—0.154(9)+0.055+0.36(4)]

= (n'/~') L0.26&0.05]. (3.1)

The three terms correspond to (1) the second-order
vacuum-polarization contributions evaluated in this
work LFig. 1(c)], (2) fourth-order vacuum-polarization
contributions' which we have checked [Fig. 1(a)], and

(3) the photon-photon scattering contribution ob-
tained in Ref. 4 LFig. 1(b)].

If we combine" these contributions with the Drell-
Pagels'-Parsons' dispersion-theory estimate of the re-
maining sixth-order contributions, we obtain

a ' "'=n/2z. —0.32848n'/vr'+ "0.39"ns/mrs (3.2)

for the current (preliminary) theoretical estimate of
the sixth-order electron moment. This can be compared
with the preliminary results of the recent measurement
by Wesley and Rich' " (W.R.):

0.05546(8) electron
Q X'

4.31(4) muon,

Fs(0) (fourth-order V.P.)

(2.6)

a ' '(W R ) = 1 159 644('/) X 10 '
=n/2s- —0.32848n'/s'

+ (0.54+0.58)n'/z', (3.3)

'9 The contributon of second-order vacuum polarization to the
dispersion estimate (Refs. 5 and 6) of the sixth-order electron
moment is negligible, so there is little difhculty with double count-
ing here.

"Previous measurements of the electron moment and com-
parisons with theory are summarized by S. J. Brodsky and S. D.
Drell, Ann. Rev. Nucl. Sci. (to be published).

in excellent agreement with previous analytic results:

' G. Kallen and A. Sabry, Kgl. Danske Videnskab. Selskab,
Mat. -Fys. Medd. 29, No. 17 (1955); see also J. A. Mignaco and
E. Remiddi (Ref. 3).
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using n '=137.03608(26)." Of course, a complete
evaluation of the non-lepton-loop contributions LFig.
1(d)j is required for the 6nal confrontation of experi-
mental results with quantum electrodynamics through
order & .

Inso'fRI' Rs thc d16ercncc of muon and clcctI'on
moments ls conccrncd, thc I'csults of this pRpcl fol
second-order vRCUUIQ-polarlzatloQ contI'lbUtlons colT1-

plete the calculation through sixth ordex in quantum
electrodynamics. The combined quantum electrody-
dynamics result" is

vacuum polarization beyond the @ resonance x'egion or
possible wca¹interaction contributions" which may
bc of order Ig R . The coITlparlson of thcoI'y %'1th

experiment is presently limited by the ~31&10 ' un-
ccltRlnty ln thc dctclmination of thc Tnuon InoTIlcnt.

AftcI' this w'oI'k wRS completed) wc lcRI'Dcd that R

slrnllar calculation of the second-order vacuum-polar-
ization contributions to the difference of a„and a, has
been carried out by I.autrup, Peterman, and de RafaeP~
Rnd by Lautrup. Their I'csUlt ls ln RgI'ccmcDt with
ours. g e would like to thank Dr. de Rafael for communi-
cating their results to us.

I m„25 3x' m, 18tie 8$a
— ln + +3 3—4ln——
3 m, I2 4 m„ PE g 8$p

"(-.=.):—'. -(,.;'.):-'.

+L
—2.42(20)+4.31(4)+18.4&1.1]n'/s'

=1.09426n'/~'+ (20.3&13)n'/s'

=616(1)X10 ',
including the sixth-order contributions from (1) second-
order vacuum polarization, (2) fourth-order vacuum
polarization ' 'I and (3) photon-photon scattering'
due to the electron current, This result diGers by
(—0.9&0.3)n'/m' from previous compilations4" which
did. Dot include the complete nonlogaxithmic remainder
of thc second-order vRCUUm-polRx'lzRtlon contrlbutlons.
In addition, hadronic vacuum polarization calculated
from the Orsay data for electron-positron annihilation

the p, ~, and @ regions gives the contribution2'

ha„'h"'(hadronic) =6.5(5) &&10 '. (3.5)

a '""=0 001 166 16(31) (3.6)

If we combine this with the result of Ref. 1, we can check
the theoretical result for the di6'erence of muon and
electron moments directly:

a ~"—a.™~'=652(32))&10-',
p, 8 (3.7)

a theor a theor 623(2) X 10-8

The theoretical uncertainty does not take into
account further (positive) contributions from hadronic

21 B. N. Taylor, %. H. Parker, and D. N. Langenberg, Rev.
Mod. Phys. 41, 375 (1969).

~ The fourth-order contribution to the muon-electron moment
difference is the result obtained by H. Suura and K. H. %ich-
mann, Phys. Rev. 105, 1930 (1957); A. Petermann, ibad. 105,
1931 (1957); Fortschr. Physik a, 505 (1958); H. H. Elend, Phys.
Letters 20, 682; 21, 720 (1966); G. W. Erickson and H. Liu
(unpublished).

8 M. Gourdin and E. de Rafael, Nucl. Phys. 103,667 (1969).
~4 J. Bailey, W. Bartl, G. von Bochman, R. C. A. Brown, F. J.

M. Farley, H. Jostiein, K. Picasso, and R. %. %iHiams, Phys.
Letters 283, 287 (1968).
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The ultraviolet, divergence is R familiar problem in
quantum electrodynamics, and there is a well-estab-
lished procedure of renormalization which enables us
to extract the 6nite physically meaningful part of the
dlvcl'gcllt lntcgl Rl 1D RTl Unambiguous manner. How"
ever, the usual prescription of renormalization found
in every textbook of quantum electrodynamics is not
necessarily the most convenient for practical calcula-
tion, in particular, for computer calculation. In this
Appendix we discuss variations of the renormalization
method which RI'c ITlolc Rppx'opx'1Rtc fox' computational
purposes.

I,et us 6rst consider the problem of vertex xenormal-
lzRtlon. SUpposc M1 ls thc vcrtcx lcnoI'IIlallzRtloD pMt
of a divergent Feynman integral M such that the
physically meaningful part is given exactly by

(A1)

3f, must have the same ultraviolet structure as M. The
vallablcs of lTltcgI'Rtlon cRQ bc chosen so that thc ultI'R-

violet-divergent parts of M and M, cancel out ut every

point in the domain of integration. However, 3f, deined
in the conventional manner Inay cause a computational

difhculty because it frequently has an infrared diver-
gence which may or may not be present in M itself.
Thus, even thoUgh thc UltI'Rvlolct dlvcI'gcDcc ls elimi-
nated by the subtraction procedure (A1), the integral
M —3f, may still be divergent because of the infrared
divergence, In order to avoid this, we may simply
choose a di6erent M, . One such choice is the subtraction

"R.A. Shaffer, Phys. Rev. 135, $187 (1967); S. J. Brodsky
and J. D. Sullivan, ibad. 156, 1644 (1967);T. Burnett and M. J.
Levine, Phys. Letters 248, 467 (1967).

~6 B.E.Lautrup, A. Peterman, and E. de Rafael, CERN Report
No. TH. 1190 (unpublished)."B.E. Lautrup, CERN Report No. TH.1191 (unpublished).
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term obtained by the method of intermediate renormal-
ization. " This term, which we denote by M;,., is free
from infrared divergence. With the help of M;, we m.ay
rewrite the subtraction procedure as

(M —M;,)+(M;,—M,), (A2)

instead of (A1). The advantages in doing this are that
(1) M;, removes the ultraviolet divergence of M with-
out introducing an infrared divergence and tha, t (2)
M;, —M, can be evaluated analytically or reduced to
an integral of lower dimension which can be integrated
much more easily.

A disadvantage of this approach is that an additional
(though less tedious than that of M itself) tra, ce calcula-
tion, etc. , must be carried out to find 3f;, which we
throw away in the end. However, this can be easily
avoided once we realize that it is not M;, itself that in-
terests us and any substitute will do if it satisfies the
two conditions mentioned above. An almost trivially
simple way of obtaining such a substitute is to look at
M itself, locate the domain of Feynman parameters
from where the ultraviolet divergence arises, expand
the denominators (numerators) of the integrand of M
in the neighborhood of this domain to first (zeroth)
order, and use the resulting expression as the integrand
of the new subtraction term Mp. This integral has
precisely the same ultraviolet structure as M (at least
for vertex and fermion self-energy renormalization).
Furthermore, there is a considerable flexibility in the
choice of erst-order terms in the denominator, so that
M p can be made both infrared-divergence free and
reducible to lower-order integrals. (The intermediate
renormalization can be regarded as one of several
possible choices. ) Once we find such an Mp, the re-
normalization proceeds as follows:

be easily applied to both vertex and self-energy
renormalizations.

To show how this new method works, let us take the
fourth-order corner graph as an example. After param-
etrizing [see Fig. 3(a) for assignment of Feynman
parameters] and simplifying this graph according to
the procedure described in Ref. 4, we can write the
corresponding magnetic-moment contribution in the
form"

1 cE

M„,„„=—— dz[2B1,(A4 A4')—
4 x

—B14(8A2A4 —4A1 —4A 4
—Snp)

+B34(2A 1A 2+421+3425+2)]/U'U

A

+ — — dz[2(A4 —A4') (1—A1A2)
4 x

where
+(1—A 4 ) (2ni+422) ]/ U2 V2 (A4)

6 6

dz—=g Cz;5( P z;-1),

U = U1U5+z2(zi+z5),

U1 +34 ~1+S2+~5 )

Up B12 zp+z4+zp y

814— S2 )

v =zi+z2+zp+z4+ (x/m) '(zp+z5)
(A5)—zizp/(zi+z. -) —zp(zp+z4)/Up —U '(zi+zp)

Xz2U2[»/(zi+z5) —zp/Up]',
(M —Mp)+ (Mp —M,), (A3) A i =z5/(zi+z5)+ U 'z2U5[zi/(zi+z5) —zp/Up],

where the first term is now free from any divergence
and can be evaluated numerically on the computer, and
the second term contains the infrared divergence but
can be evaluated analytically or reduced to integrals of
lower order. A further advantage of this method is that,
unlike the intermediate renormalization method, it can

A 4 =zp/Up+ U 'z2(zi+z5) [zi/(zi+z;) —zp/Up],

A2 ——31+34—1,

ni ——2z4z2/U,

np= —2z4U1/U,

X being the photon mass. As is easily seen (A4) is di-
vergent at the corner

zi+z2+z5 (A6)

(b)

FIG. 3. Fourth-order {a) corner and {b) self-energy diagrams.
Feynman parameters s&, s2, . . . , s6 are associated with the lines
1, 2, . . ., 6.

In fact this is the only ultraviolet divergence of (A4).
Of course, as it is, (A4) is not well defined, and we have
to perform an appropriate regularization for proper
definition.

'8 Of course, in order to obtain the full contribution of the corner
and self-energy graphs to the magnetic moment, M„, „and M„
must be doubled to take account of the other corner and self-
energy graphs.
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In order to carry out the vertex renormalization ac-
cording to our new prescription, we must first expand

U, V, etc., to first order in si, z2, and s5. This leads us to
the definition

Up= UgU3,

Vp ——s,yspys, +s4+ P,/m)'(so+so)
—sp(s3+s4)/U, —so(s4+sp)/U4, (A7)

A4, o=sp/U3

Then, noting that only the erst term of the first in-

tegral in (A4) is actually divergent, we define

Sf' = ——ln—

iV = — ———ln ———ln—

The integrals 3II and Mp can be written as

834(6A4 6A—3+4A 3A3)

O'V

A g(A g
—1)'(A,+2)-

(A14)

tX

Mo= —— ds 843(A4, o
—A4, o')/Uo'Vp ~ (AS)

2 7r

We can now write down our renormalization procedure
as

M.....,—M, = (M.....,—M,)+(M,—M,),

imp= —— dz

O'V'

-034(6A 3, o
—6Ap, o+4A 4, oAp, o)

Op'Vp

Ar, o(A r, o
—1)'(Ap, o+2)

O 21/r' 2

(A15)

where M„,„„—Mp is free from any divergence and can
be readily evaluated by computer. 3f, is obtained
immediately from the known results of the second-order
calculation

n o; 1 A2 1 m2 9-
M, = ———ln ———ln +—,(A10)

2~ ~ 4 m2 2 X2 8

Mo ——(43/4r)'L'oln (Ap/443') ——,', ], (A11)

where A is the ultraviolet cutoff mass.

Actually the last term sp(sr+so)/U& of Vp in (A7) is
not what we obtain by linearizing V in the neighborhood
of sr+so+so=0. This term can be chosen rather arbi-

trarily insofar as it does not affect the ultraviolet struc-
ture of Mp. The particular choice is made for the con-

venience of analytic evaluation. By simple calculation
we obtain

Li gU2+Z2S5,

s1+s3+s4+so y

U2 —8,4 —S2+S5,
V =sg+sp+s3+s4+ (X/444)'(so+so)

+so(so/U$ 1) spspsop/UrU,

A4 =soU3/U,
A 3 =sos 3/U,
Up ——UgU2,

Vo ——s4+sp+so+s4+ (X/443)'(so+so)

+so (sp/U~ —1)—s,sp/Up,

A4, p ——sp/Ur,

Ap, p ——soso/Up.

(A16)

As before, the integration of 3fp can be carried out
analytically, giving

which leads to
M o ——(u/~) '(-4' ln(A'/4N3) —-', ] (A17)

Mo —M, =( / ) [-; in(~'/~') ——,']. (A12) Mp —M3,.—M„,= (n/7r)'L-,' ——,
' 1n (443'/X3)]. (A18)

Our renormalization procedure for the fermion self-

energy graph )Fig. 3(b)] may be written as"

3f„—iV) —M„,
= (M44 —Mo)+ (Mo M3„M„r), (A—13)—

where M~ and M, are self-mass and wave-function-

renormalization subtraction terms, given by

Finally we note that, in case of the ladder diagram,
it is most convenient to carry out the subvertex re-

normalization in the conventional way because of the
cancellation of infrared divergences between the ladder

and accompanying subtraction diagrams. The only
care we have to exercise is to symmetrize the integrand
with respect to the variables associated with the two

virtual photons. "


