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We consider the spin--, field which satisfies the fully covariant generalization of the Dirac equation. The
metric, which is not quantized, is that of an expanding universe with Euclidean 3-space. The field is quantized
in a manner consistent with the time development dictated by the equation of motion. Consideration of the
special-relativistic limit then provides a new proof of the connection between spin and statistics. In general,
there will be production of spin-2 particles as a result of the expansion of the universe. However, we show
that in the limits of zero and infinite mass there is no spin- —,particle production. For arbitrary mass, we obtain
an upper bound on the creation of particles of given momentum. We treat the case of an instantaneous ex-
pansion exactly (but not taking into account the reaction of the particle creation back on the gravitational
held). For such an expansion, the created particle density, when integrated over all momenta, diverges as a
result of the high-momentum behavior. We also consider the Friedmann expansion of a radiation-611ed
universe, emphasizing the eBect of the initial stage of the expansion. We obtain the asymptotic form of the
created particle density for large momenta, and thus show that the particle density, integrated over all
momenta, is anite, in contrast to the previous case.

I. INTRODUCTION

'N this paper, we consider the quantized spin- —,'Geld.
- ~ As in our previous work, ' ' the space-time interval
is given by the expression

ds'= dt'+ R—(t) '(dx'+ dy'+ ds'), (1)

with R(t) an unspecified positive function of t. The
equation governing the spin-~ field is the totally
covariant generalization of the free Dirac equation. The
gravitational metric is treated as an unquantized ex-
ternal field, and no additional interactions are included.

II. QUANTIZATION OF SPIN- —', FIELD

The totally covariant generalization of the Dirac
equation has the following form for the metric of (1):

relativistic Dirac equation in momentum space. A set of
independent solutions of Eq. (4) with R(t)= 1will—be
denoted by

u' "(y), (5)

where d, as well as u, can take on the values &1.The
index a labels the positive- and negative-energy solu-
tions, while the index d labels the helicity, or spin
component along the p direction. It is convenient for our
purposes to use two indices rather than one. Our nota-
tion, together with the relevant properties of the
u&' +(y), is given in Appendix B.

Since the four-component spinors of Eq. (5) form a
complete set, we can write any solution of Eq. (2) in
the form

g a&., d)(p, t)

t

)&u&' ")(p,t) exp ia p x— a&(p, t')dt' . (6)
$pwhere V is the ordinary gradient, and the 4&&4 matrices

y', y2, y', and y4=iy' are the constant, Hermitian,
Pauli y matrices, which sa,tisfy the relations In Eq. (6), we have, as in Ref. 2, imposed the periodic

boundary condition )p(x+nl. , t) =-)p(x, t), where n is a
vector with integer Cartesian components. The time
dependence of the operators a&, d)(p, t) is det, ermined by
Eq. (2). Further, the quantities co(p, t) and u&~ +(p, t)
are defined by

In Appendix A, we arrive at Eq. (2) using the Barg-
mann-Schrodinger method. '

Substituting R(t) 't' e' &'*A'(p, t) for )p in Eq. (2),
where u can take on the values &1, we find that M(p, t) = (p'/R(t)'+u')'t~ (p= ~y~)

8
7'—+l&(0 'I)(~)7'+&(&) '7 ~+l )4' o, (2)=

(4)

When R(t)= 1, then Eq. (4) is equivalent to the special-

u& ')(y, t) =u&'")(p/R(t)),

where u' ~'(p) was defined in (5). The factors

' L. Parker, Phys. Rev. Letters 21, 562 (1968). (LR) 3)'(ti/(v) "' exp t—a (vdt'—
' L. Parker, Phys. Rev. 183, 1057 (1969).
'This paper is partially based on L. Parker, Ph. D. thesis,

H~~v~rd University, 1966 (unPublished). are included explicitly so that in any interval during4 V. Bargmann, Sitzber. Deut. Akad. Wiss. Berlin, Math. -
Nat)irw. Kl. 1932, 346 (1932). which R(t) is constant, (6) will have the usual special-
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l clatlvlstlc forIQ) with the c(tw, g) then bclng tlIllc-
independent creation and Rnnihi1ation operators. In
accordance vrith their interpretation in specia1 re1a-
tivity, a(i,g) (p,t) is an annihilation operator for a particle
with spin in the pd direction, and a( i,p(p, t) is a creation
operator foI an antipaxticle vrith spin in the —y4
direction. Similarly, a(l,q) creates the particles @which

c(y,g) Rnnlhl1ates) Rnd 0( l,@) Rnnlhllatcs thc Rntl-

particles which a( I,g) cxeates. %C impose the anti-
commutation re1ation6

(a(~ &)(p)t))a(~' @') (p ~t)) =()N o'&& @'&p i' ~

We will show that Eq. (9) is consistent. with the time
development dictated by the equation of motion (2).
Our ploccdulc ls RQR10gous to thc one used ln Rcf. 2 to
show that the boson commutation rules are consistent.

Ke assume that vie are given

a(,~)(p ti) =~ (.,~)(y)

(~(.,~)(y),~(",~ )'(y')) = &.,- &~,~ ~p,y' (l1)

%c make the ansat7 analogous to that used in Ref. 2:

~(.,~){p~t)= Z D( )' '(Pit)~(".- ~)(«'p), (12)

where the D(,)( '(p, t) are complex functions of the
momentum magnitude p =

~ p ~, and the time. ' Equation
(12) will imply, for example, that the annihilation
operator at time t of a particle of momentum y/R(t),
vnth spin parallel to y, is a linear combination of the
Rnnlhllatlon opcI'Rtor Rt $l of R pRltlcle of n1OIlleQtum

p/&(ti), with spin parallel to p, and of the creation
operator of an antiparticle of momentum —y/E(ti),
vnth spin paraM to —y. %e novr derive the integral
equation satisfied by D(,)

' ')(P,t).
Substituting Eq. (12) into (6), and regrouping, we

obtain

p(x, t) =LL&(t)]-"'PZ ~(")(y%' "(y t)s'"'* (»)
vifhcx'c

lj2
Z(. ")(p,t) = — — Z D(. ) ('(P,t)~" -'"'(aa'p, t)

~{Pt)

x-pl —' '
(&,~)«') (W

Thc SUIQIQatlons lnvolvlng 6& 8
&

Rnd d RI'c over &j..
»nce P.(,,@t(p), |t (x,t)) must satisfy Eq. (2), it follows
that E('") satisdcs the equation

~0—+~a@(i)-'g p+g)Z~"&(p t) =0

~ See, e.g., F. Mandl, Ie&oduckf'Oe $0 Qmankgte Field Theory
(Interscience, Nevq Pork, 1959), p. 52.

Equation (9) implies, as in special relativity, that g(x, t),
Pt(x', t) f =b(»(x—x').

~ We do not include an index d in the B( )("& because it turns
out to be unnecessary. Note that, as before, the indices e and e'
take the values ~1, so that u' is always unity.

Ol

'—,E' "(y,t) =L ~(t)-' .y+~K«""'(y, t), (»)

where n and p are the usual Dirac matrices, p= y4=- i7',
and e= ~y'y. The boundary condition is clearly

&'"'(yti)= -
I

I"'{yti)
(o(p, ti)/

Xexp —tQ ~,$ dt . 46

where the D(~)(')(P,1) are time-independent coeflj
clents. Ke %'Ill 1RtcI' vent to set D(@~)( ) = /@I+& so that
Zo(' @(p,ti) = E(' ")(p,ti), but for the present it is
advantageous to let the D(, )

' )(p,1) be arbitrary. ' The
erst-order cqURtlon satlsGed by Eo( ' ) ls obtained Rs
follows. Using (17), and the„"equation )obtained from
Eq. (84) by ieplacillg p witll p/E(t) j
a'(u(p, t)N(

' "+(aa'p, t)
= LaR(t) 'n p+t(pjN(" -'")(aa'y t) (18)

b

go(N, &)(p t)4
=( Wt) + y+ap)E. ( ")(p,t)

) i/2

+t Z D(")"(P,1)— —
~

a(" -')(aa'y, t)
dt cv(p, t)J

XexP —40 - M, f d$ . 49

8 For example, it vrill be easier to discuss the matrix G defined
later.

No te that Eq. (14) indicates, according to the pro-
perties of the u("") given in Appendix 8, that E(' + (p, t)
remains at all times an eigenvector of |r~ {de6ned in
Appendix 8) with eigenvalue d. That is consistent with
Eq. (15) because, as is readily confirmed, (r~ commutes
with the operator aR(t) 'n y+pp which generates the
tlIQC disp1accmcnt of E(~' ).

Alternatively, instead of starting with {12),we could
have started with (13), then used (15) and (16) to show
that 8( ~) is abvays an eigenvector of o.~, and thus
arrived at (14) as the most general form of 8(
Substitution of (14) into (13) would then yield. (12)
and (6).

We obtain an integral equation for E(~")(y t) by
comparing Eq. (15) with the first-order equation satis-
6ed exactly by the co1umn vector Zo( "), vrhich we
define by

1/2

@0(~,&)(p t)= Q D(,) (N)(p ])~(e',ae'd)(aa&y t)
(d(p, t)

Xe&P —~C m, t dt, 17
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According to Eq. (817), if we de6ne the row vector Clearly,

p
W& "'(p t) = u' —"'(—p t)

~(p, t)

I/2

(20) ay— — u(' "&(aby,t)
dt (0(p, t)

then

W"" )(abp t)u&" -'"&(aa'y t) =8. (, .

Therefore, Eq. (19) can be written in the form

(21)

Therefore,

q
i/2

= (d)—
~

u"'"&(abp, t)
dt (o(p, t)J

8
i—— a p —t&P+iM('" (y, t) E,('" (y, t) =0, (22)
dt R(t)

G('")(p, t, t)M('+(p, t)=M( +(p,t). (27)

The integral equation for 8( @(p,t), which satis6es
the boundary condition

where M& "'(p, t) is the 4X4 matrix' defined by

/~(pt) "'
M' "'(y,t) = —

I

u

g(~,&)(p ti) = Rz(~, d)(p ti)

can now be written in the form

g(~,&)(p t) —go(~, &)(p t)

(2g)

& 1/2

Xg — —
I

u"'"'(abyt)
( dt co(p, t)i + dt'G(~')(y, t,t')M(' ")(p,t')E(' "&(p,t'). (29)

XW& ' '&(abp t) (23)
We verify that (29) satisfies Eq. (4) by applying the

To obtain an integral equation satisfied by E(' +, we matrix operator )id/dt aR(t) '(&( —p t(P+iM('—")(p,t)j
will compare Eq. (22) with (15). to (29), and using Eqs. (22), (25), and (27). Thus,

For that purpose, we define the 4&4 matrix

( (p, t') "'
G&'"&(y «) =~

ka&(p, t)

XP u&
' "' &(aa'p, t)W&

' ""&(aa'p t.')
a'

8
n p uP+iM—( ")(p t) E( &(p t)

dt R(t)

=iG('")(p t t)M(")(p, t)E( '&(p, t)

a
+ «' i—— (r y —t(P+iM&' "'(p, t)

Bt R(t)

XG ' '(p t t')M' ")(p,t')g( +(p t')

=iM' "'(y,t)R' "'(y t)
For fixed t', each column of the matrix G~ "' is of the
same general form as Eo( "& of Eq. (17). Therefore, which yields Eq. (4).
each column of G satis6es Eq. (22), and we can write Substituting Eq. (14) for E(' ")(p,t) on both sides of

(29), we find that we can write
8

0. p —tip+iM &'"&(p,t)
at R(t)

XG' "'(p,t,t') =o (25)
%hen t= t',

G(~ ~)(y / t) =p u&" -'"'(aa'p, t)W" -"(aa'y, t) (26)
a'

is the projection operator onto the manifold of eigen-

vector of cT~ with eigenvalue d. This can be verified by
making use of (21), and applying (26) to the two spinors
u&" "+(aa'p, t) with a'= &1, which span the manifold

of eigenvectors of 0; with eigenvalue d, and to the two

spinors u(~' ' '~)(aa'p, t) with a'= &1, which span the
manifold of eigenvectors of 0.

~ with eigenvalue —d.

9 Matrix multiplication of a column vector by the row vector
N from the right yields a 4)&4 matrix.

D " "(p t) =D " "(p 1)

+g dt S( ) (p, t )D((') (p, t )

Xexp i(a' —b) co(p, t')dt', (30)

with"
cu(p, t)

&
'"(P,t) =——— W( ' "'"'(aa'y, t)

IJ

1/2

X — u" '"'(aby, t) . (31)
dt co(p, t)

"As will become evident later, S( )( & is independent of the
direction of p, and the values of the indices a and d in (31).



QUANTIZED FIELDS AND PARTICLE CREATION 349

& D(-&'"(P t)D(") '"(P,t)*=~-'

{a(., )(p, t),a(. , )'(p', t)}

In obtaining Eq. (30), we have made use of (17), (21), It follows from (36), (38), and (39) that
(23), and (24).

In proceeding further, it is convenient to work in a
speci6c matrix representation. The representation we
wi'll use, including the matrices representing the Sub stjtutjng (12) jnto (9) gj
u( d)(p, t), are given in Appendix B. After some calcu-
lations, one finds that in our representation

—u('d&(p, t) = —2i', (t)R(t) '[2(d(p, t)g
—'PN( "'(p, t)

=E E D(.) '"D(")"*
c

X(~ ((,.(d&(abp)~~ (.,".d &'(a'('p') }
and

where
S(.&( )(p,t) = a'b. .-'S(p, t}, (32)

=P D(a) D(a') ta&d, ad tp&,
''p()aa'()d, d'bp, p' e (41)

b

S(p,t) =—&(t)~(t) '[2~(p t) 'j 'I P.

Equation (30) now takes the form

D(")"(P,t) =D(- "(P I)+a' «'S(p I')

t

)&exp 2ia' co,s ds D~, )& )

tp

It follows that (for a'= &1 and a= &1)

(33) where we have made use of (11) and (40). Therefore,
the anticommutation relation (9) is consistent with the
time development dictated by the equation of motion.

In fact, if Eq. (9) holds at any particular time, it will
be propagated unchanged by the equation of motion.
In particular, the familiar special-relativistic anti-
commutation relations imposed during any period in
which E(t) is constant will imply that Eq. (9) must
hold for all t, earlier as well as later than the period of
constant R(t). Consequently, Eq. (9) must be the cor-
rect quantization condition when E(t) is not constant.

—D(., ) (p, t) = a,'S(p, t)
dt

III. SPIN AND STATISTICS

If one were to attempt to impose, at time t~, the
boson commutation relation

Xexp 2ia' (ddt' D( &' ' P, t . 35
tp

I "(.,d)(P) (",d )'(P') j= at'..4,d bp, p .

D(")"(P,1)= b-

In accordance with Eq. (10), we impose the boundary
condition

(36)

which is the generalization, in our notation, of the
special-relativistic boson commutation relation, then
(12) would yield

It then follows by considering (35) and its complex [a (p t) a, &(
~ t)]

conjugate, or by iteration of (34), that

D(, )
' (p, t) = a'aD(, .)

—
(p, t)*.

Using (37), we find that

p D(.) ' (p, t)D( .) "(p,t)*=0.

Then, making use of (35) and (38), we obtain

—Z D(. '"(P,t)D(.) "'(P t)*
dt

t

=aS exp 2ia o)dt' D( )'"D(.)'"*
tp b

t

+e'S e*p(—2ee' Ce')
tp

XZ D(.&'"D( .&'"*=o.

(37)

(38)

(39)

=E 2 D(.)'"D(.)"*
c

X [& (b, bd&(abp), A (.,..d &"(a'cp')]

Z D(a) D(a') b()ad, a'd'bp, p ye
b

which does not reduce to a 8, , 6d, p Sp,p Therefore, the
boson commutation relations are generally not pro-
pagated in time by the equation of motion and cannot
consistently be required to hold at all times. As we
showed in Sec. II, the fermion anticommutation re-
lations are consistent with the equation of motion (2).

This is analogous to the situation in Ref. 2, in which
we showed that the boson, but not the fermion, relations
were consistent with the general-relativistic equation of
motion satisfied by the spin-0 Geld. By the same argu-
ment as was used in Ref. 2 to prove that the boson,
rather than the ferrnion, relations should hold for the
spin-0 field in special relativity, our present considera-
tions yield a new and independent proof that the
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fermion, rather than the boson, relations should hold
for the spin- —, 6eld in special relativity.

Suppose that R(t) is a function which is constant
only during a limited period of time. As we showed

above, only the fermion anticommutators are consistent
with the generally covariant equation of motion when

R(t) is not constant. The continuity requirement, that
the quantization relations, should not suddenly jump
from the fermion relations when R(&&) is slightly time
dependent to the boson relations when R(t) is constant,
therefore demands that the fermion anticommutation
relations should continue to hold during the period when

R(t) is constant, even though neither quantization
scheme is ruled out solely by the special-relativistic
equation of motion, which holds when R(t) is constant.
Alternatively, one could consider a sequence of functions

R„(t)= 1+«(t), where «„(t)~ 0 as n ~~, as in Ref. 2.
Our method of obtaining the connection between spin
and statistics in specia. l relativity depends only on the
conditions of consistency with the generally covariant
equation of motion, and continuity.

IV. PARTICLE PRODUCTION) ZERO- AND

INFINITE-MASS LIMITS

in the mode p and volume [LR(t)]' at time t is

=2 ID(()' "(p,&')I'

=2 ID(-»")(p ~) I'. (44)

It follows from (37), (43), and (44) that the average
number of particles in each mode equals the average
number of antiparticles.

The average total number of particles present in the
state

~
0) in the volume [LR(t)]' at time t is

x(0~A( 1,—d)'(p)A(. 1,—d)(p) ~0)

=2 ID(»' "(p,&) I') (43)

where we have used Eqs. (12), (42), and the conjugate
of (42). Similarly, the average number of antiparticles
present in the state ~0) in the mode p and volume
[LR(t)]' at time t is

5 (&))o=Z(0I (-, )(p, &) (-. )'(p&)Io)

During any period in which R(t) is constant, the

creation and annihilation operators a(, q)(p, &) are also

time independent, and unambiguously correspond to
the physical or observable spin-2 particles. When R(t)
is not constant, the a(„q)(p,t) still are creation and
annihilation operators because they satisfy Eq. (9).
However, it will be recalled that in Ref. 2 there existed

many sets of creation and annihilation operators when

R(t) was not constant. It is not clear whether a similar

situation exists in the spin-~ case, or whether the

u(, ,z)(p, t) are unique. Therefore, we will only assume

that the particles corresponding to the a(, , q)(p, t) and

the physical particles are identical during periods in

which the (&,(, , z&(p, t) are time independent. They may
possibly not be identical when the a(, ,g(p, t) are time

dependent. "
Working in the Heisenberg picture, as before, we

define the state ~0), which contains no particles or
antiparticles at tq, by

A((,~)(p) I0)= o

(42)

A( q, qP(p) ~0)=0, for all p and d.

The average number of particles present in the state
~
0)

"We call the excitations annihilated by a(I, &) particles, and
those annihilated by a( I,z)~, antiparticles. When the a(, ~) are
time dependent those excitations may not necessarily be the
physically observable particles. When the a(,&) are time inde-
pendent, we assume that they correspond to physical particles,
even when Z(t) is not constant.

In the limit L —&~, when p&, —+ (L/2m)'J'd«p, the
average partcile density is

lim [LR(&!)] '(Ã(t))(& ——[~'R(&')']—'

X (fp p'I D(r) '-"(p,&')
I

' («)

Suppose the state of the universe is described by a
statistical mixture of pure states, each of which con-
tains definite numbers of particles and antiparticles at
t». Then the statistical density matrix p is diagonal in
the representation whose basis consists of the simul-
taneous eigenstates of the operators A((, z) (p)A(g, g)(p)
and A( (,q)(p)A( (,q) (p) (the tr representation), and p
must contain equal numbers of corresponding creation
and annihilation operators. The average number of
particles in mode p and volume [LR(t)]' present at
time t is

P'&(&))=E»[~o(1,d) (p &)~(1,d) (p, &)]

=2 2 2 D(r) "'(p ~)*D(»"(p ~)
d b c

XTr[pA (Q, bg) (bp)A (...z) (cp)]. (47)

By taking the trace over the basis of the t& representa-
tion, and noting that p has equal numbers of creation
and annihilation operators, it becomes evident that
only those terms in which f)=(; do not vanish in (47).
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Then using (11), (37), and (40), we find that

+'~(t)) = (A'.(ti))+ ID(2) ' "(P t) I
'L2 —&AT.(ti))

—P-,(t))], (48)
where

(Xi (ti)) =p Tr[pA (i,g) (P)A (2,„)(P)]

and

The above series are the iterative solutions of (34), and
can be confirmed by direct substitution in (35).

To obtain an upper bound on iD( &('&i, which
appears in (43) and (48), we note that

«'ls(t')
I

&&—2 (ti) )=Z Tr[p~ (—2,~) (—P)~ (-i,~&'(—P)] X dt"
i
S(t")

l
~ dt("&

i
S(«"))

i

7. SERIES EXPANSION AND UPPER BOUND

The solution of Eq. (35) satisfying the boundary
condition (36) can be written in series form as follows
(suppressing the label p for convenience):

and

D( .&( &(t) =g (—1)"+'[2m+1, a, t]
n=o

(49)

where

and

D(.) "(t)=2 (—I)"[»,a,t]*,
n=o

[O,a,t]= 1

[22,a, t]= dt'aS(t')

(
Xexp~ —2ie. ris)[e —1, e, r') . (21)

are, respectively, the average number of particles in
the mode p and. antiparticles in the mode —p at time t1.
Comparison of (48) with (43) shows that the initial
presence of fermions tends to decrease the number of
fermions created by the expansion of the universe
between times t1 and t. For bosons, as we found in Ref. 2,
the situation is reversed.

In the spin-0 case, we found that the annihilation and
creation operators were time independent in the zero-
and infinite-mass limits only for certain forms of R(t)
corresponding to particular Friedmann expansions of
the universe. In the present spin- —,'case, the a~„q) are
time independent in the zero- and infinite-mass limits,
regardless of the forms of R(t). This conclusion follows
from consideration of the expression (33) for S(p,t),
which clearly vanishes in each of the limits when p, —+ 0
and when t(~~. It then follows from (34) and (12)
that the a~, , @~ are time independent in those limits.
Thus, there is no creation of physical spin- —, particles in
the zero- and infinite-mass limits, for any form of R(t).
In Sec. H of Ref. 2, the two-component, rather than
four-component, spin-~ equation was considered, and
the same result was obtained for zero mass. The present
result for the inhnite-mass limit was mentioned in Secs.
F and G of Ref. 2.

Therefore,

n

« IS(t)l (52)

which gives the upper bound

t

[22r .rer(p 1)
~

(eieir rlr'
~
S(p ') r~).r

tI
(53)

Using (33), one finds that for a monotonic expansion
with B(t)&0

« ls(pt)l

= — tan ' —tan ' . 54

Since P/[t2R(t)] is positive, it follows that the right-
hand side of (54) is always less than or equal to x22r (this
holds even if the expansion is not monotonic). There-
fore, using (53), we obtain

iD, „"(P,t) i'&sinh'(-, ' )=0.4. (55)

This is consistent with the exclusion principle, which
follows from the anticommutation relation (9), and
requires

i D( »'
i

' to be smaller than unity.
As p approaches ~, (54) and the right-hand side of

(53) approach zero as p '. Therefore, the integral which
results from substitution of the right-hand side of (53)
into (46) diverges. Consequently, although (53) pro-
vides an upper bound on the particle production in each
mode, it does not provide a 6nite upper bound on the
particle production integrated over all modes. As we
shall show in Sec. VI, the integrated particle density
resulting from an instantaneous expansion of the uni-
verse diverges. Since (54) is independent of the form of
the monotonic R(t) between times ti and t2, one would
therefore expect (45) to lead to a divergent upper bound
on the integrated particle density.

ID(.)
(.&(»I & Z i[2~+I, , t]l

n=o

1 t 2n+1

( ~si(r)~1 '

8
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R(t) =
Rg for t) t*. (56)

This problem is not realistic, since R(t) is not a solution
of Einstein's field equation, and since the large amount
of particle production which occurs in this type of
expansion would have a significant effect, which we do
not take into account, on the form of the expansion.
Nevertheless, the problem is interesting as an exactly
soluble example.

For t&t*, we put

D(.) "(P,1)=~.". (57)

The 1 in the argument of D&,)
( )(p, 1), or in that of any

similar quantity, indicates the value of that quantity
for t C t*. Similarly, a 2 will indicate the value for t) t*.
By considering (56) as the limiting case of rapid but
not instantaneous expansions, it is clear that E(p, t) of
Eq. (4) remains continuous in the limit of an instan-
taneous expansion, whereas )P in Eq. (2) will jump
discontinuously because of the appearance of a 6 func-
tion in Eq. (2) (i.e., the time derivative of )P becomes
infinite at the time t*, indicating a discontinuity in )P)

Continuity of E""of Eq. (14) at time t* yields the
following equation (we have put to t* for conve-n—ience):

LM(P, )1 "'I""(p, )
= I:M(p 2)l '"I:D(i)'"(P»)t("'"(p»)

+ — '"(P, ) '-'-"(p, )]. (5 )

Using the matrices for the u&'+(p, t) given in Appendix
8, and solving the resulting pair of equations for
D&» '"(p,2), yields the result

D(-» '"(P»)

g(p, 1)g(p,2)b'" p/R p/R
, (59)

(P, 1) (P,2)& a(P, 2) g(P, 1)

where g(P, t) =M(P, t)+t(, and we have made use of the
identity

( P'/Rm' ' a(P, 2)

K(P,2)2 2M(P, 2)

As p approaches ~, (59) approa, ches zero as p '.
Therefore, as for the upper bound discussed in Sec. V,
the integrated particle density obtained by substitution
of (59) into (46) diverges. It can be checked by direct
calculation that (59) is smaller in absolute value than
the upper bound (54) for various values of p/t(Ri and
p/t(R2. We now turn to an example in which the
integrated particle density is finite.

VI. INSTANTANEOUS EXPANSION OF
THE UNIVERSE

A relatively simple case, in which we can obtain
the exact solution for D( ~) '", is the instantaneous
expansion

R~ for t(t*

VII. FRIEDMANN EXPANSION

The Friedmann universe in which radiation is pre-
dominant, and in which the 3-space is flat, is de-
scribed by

R(t) =Kt'" (t&0), (60)

where K is a positive constant. We assume that at t=0
there are no spin- —,

' particles or antiparticles present.
Therefore, we let ti=0 in Eq. (10) and the subsequent
equations involving t~, and we let the state of the
universe be the state IO) of Eqs. (42)." Our main
object will be to show that the total integrated particle
density which results from the expansion is finite.

This example is more realistic than the previous one.
However, we do not tak.e into account the reaction of
the particle production back on the gravitational field.
That should not affect our result as to the finiteness of
the particle density, since the reaction will probably
tend to reduce the particle production.

It will eventually be important to take that reaction
into account because only in that way will it be possible
to introduce the Newtonian gravitational constant into
the various quantities pertaining to the particle pro-
duction. That constant appears in the Einstein field
equations which determine the interaction between the
gravitational metric and the particle production, but it
does not appear in the original linear equations govern-
ing the quantized fields. One would expect the gravita-
tional constant to be of importance in determining such
quantities as the period in the early expansion during
which significant particle production will occur, and
therefore in determining the final particle density.

According to Eq. (46), the average integrated particle
density at time t will be finite if and only if
ID&i)& "(p,t) I' approaches zero faster than p ', as p
approaches ~. Only the behavior for large p is im-
portant because ID&,&& &I' is bounded by Eq. (55).
Since S(p,t) and

I D&,&

&') (p, t)
I

are very small for large
p, and we are only interested in the limiting behavior
as p~~, we approximate ID&,&&')(p, t)I 2 by means
of the first term in the iterative series of Eq. (49). Thus,
we obtain the approximation

ID(-.) "(P,t)
I

'

dt' S(P,t') exp 2i M(—P,s)ds . (61)
0

We are interested in the particle density given by
Eq. (46) for a time t= t2 equal to the present age of the
expansion. Clearly, most of the particle production will
occur in the very early stages of the expansion (60).
Therefore, the particle density at t2, when R(t)=R&,
should not depend strongly on the form of the ex-

"If one wishes to ensure that the universe is statically bounded,
so that the particles before and after the expansion are physical,
then one can imagine the quantity R(t) to have a very small
constant value for 1&0.
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dt 5(p, t) exp[ —R(t)/Ri]

)&exp 2i —cu(p, t,')d/' . (63)

To find the asymptotic form of I for large p, we first
define the dimensionless quantities

P =p/IiR2, u= IiR(t)/p, B=u(R2/K)'. (64)

The quantity I' is the present physica, l momentum in
units of the mass, for particles in the mode p. It can be
shown, using the current value of Hubble's constant,
that 8 is of the order 10", even for p as small as the
electron mass. We can write

t — g 2 —1/2

(v(p, t')dt' =p P' +1 d1,'. (65)
(t)

Because of the factor exp[ —R(t)/R~] in (63), the
contributions to (63) from t such that R(t)»R~ can be
neglected. Therefore, for P'&)1 the integral in (65),
which appears in the oscillating exponential of (63), can
be replaced by

IiP [R2/R(I')]dt' =2BP'u, (66)

where we have made use of (60) and (64). Then, chang-
ing the variable of integration from t to I, and using
(33), we can write (63) in the following form for P'&)1:

00

I= — du(1+u') —' exp[ —(P+4iBP')u]. (67)
2

Watson's lemma" can be applied to (67), and yields the
result that for P2))1

I ,'(P+4iBP')— (6g)
' The quantity R2 will, in fact, not appear in the result we

obtain for large P, indicating that the main contribution to the
integral comes from the early stages of the expansion,

pansion, except near t=-0. In particular, we can modify
R(t) so that it approaches a, constant value R2 for I& t2,
without greatly modifying the result. The particles
present at t2 are then clearly physical particles. The
main effect of such a modification of R(t) in the inte-
grand appearing in Eq. (61) is that S(p, t) will approach
zero for t&t2.

Rather than modify the form of R(t) in (60), we
introduce a factor exp[ —R(t)/Ri] in the integrand of
(61). Such a factor ensures that the integrand will
approach zero for t& t2, but does not affect the integrand
significantly for small values of t."Thus, we replace (61)
for times greater than or equal to t2 by

I D(-.) "(p,2) I

'=-
I II ',

where

Hence, according to Eq. (62), for P'))1

ID(-.i "(p,2) I'-(gBP') ' (69)

Therefore,
I D~, ~

~'~(p, 2) I

' approaches zero as p 4 when

p approaches ~. Consequently, the integrated particle
density given by Eq. (46) is finite. Note also that

BP'= p'/pE' (70)

is independent of R2, which indicates that the result (69)
is a consequence of the particle production in the early
stages of the expansion. Thus, the highest-energy
particles are mainly produced in the earliest stages of
the expansion.

Equations (69), (70), and (46) indicate that for
p/pR2))1, the particle density increases as Ii, the
mass of the particle, increases. "Thus, if very massive
elementary particles, or particle resonances, are physi-
cally possible, they might perhaps be produced in the
earliest stages of the expansion of the universe. Elemen-
tary particles, or particle resonances, with masses even
of the order of galactic masses might conceivably be
produced in the initial expansion. " It is interesting
to speculate on such a possibility. These massive
"archeons" would rapidly decay into more stable
elementary particles, which might eventually "recon-
dense" into galaxies. '~ Clearly, the reaction of the
particle creation back on the gravitational field would
put a limit on the masses of the particles that could be
produced in significant quantities in the initial stages
of the expansion. Therefore, to subject such speculations
to quantitative test, one must consider the nonlinear
relation between the particle production and the
gravitational Geld.

Two interesting problems involving particle produc-
tion in expanding universes are (a) to study the particle
production in the initial expansion, taking into account
the reaction of the particle production back on the
gravitational field, and (b) to attempt to generalize and
Gnd the deeper implications of the connection found in
Ref. 2 between the spin-0 particle production in the
later stages of an expa, nsion and the Einstein Geld
equations.

"E. T. Copson, Theory of Pgectioes of a Complex Uariable
(Oxford U. P., London, 1935), p. 218.

'5 For fixed P, the particle density must vanish as p ~ ~. The
result (69) is not relevant to the limit p, ~ ~ with p fixed because
(69) requires that p/pR2 be large with respect to unity."E.R. Harrison {private communication) has suggested the
name "archeons" for such massive elementary particles or particle
resonances. The work of Harrison points toward early large-scale
structure in the universe, as in E. R. Harrison, Monthly Notices
Roy. Astron, Soc. 141, 397 (1968); Phys. Rev. D 1, 2726 (1970)."The "archeons" would presumably have very large spins and
magnetic moments (and might even have large boson or fermion
numbers). The spins and dipole fields might eventually develop
into the angular moments and magnetic fields of the final galaxies.
If one naively extends the p Regge trajectory as a straight line on
a Chew-Frautschi plot, then one finds that an archeon resonance
lying on any nearby parallel trajectory, and having a mass of about
10' g, would have a spin angular momentum of roughly 10' A.
The angular momentum of a typical galaxy is roughly 10' ' It = 10 4

g cm' sec i.
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APPENDIX A: GENERALLY COVARIANT
DIRAC EQUATION

In this appendix we will use the notation of Ref. 4
(except that we set b=c= 1). According to Ref. 4, the
generally covariant Dirac equation can be written as

(A1)

where k is summed from 0 to 3, and V'k denotes the
covariant derivative. Dn Eq. (2), V denotes the
ordinary gradient, but in this appendix we follow
Bargmann's notation. ]The 7" (which are not the same
as the 7" in the text of this paper) are coordinate-
dependent 4/4 matrices satisfying

7k7&+7&7k g4 )

where 7&„.——g&„7&'. The covariant derivative of &P is

V'&,&P
= B&P/Bx~ r&,&—P, (A3)

(A3), (A10), 70= —70, and

7'=g*'7 =R(t) '7'= -R(t) '7'

for i,= 1, 2, 3, we can write Eq. (A1) in the form

+kR(t) 'R(t) 2 7'7'7V=& 4
i=1

which becomes, with the aid of 7i7'= —7'7i and
(7')'=1(i=1, 2, 3),

7'—4+SR(t) 'R(t)7V
Bt

+R(t) ' Q 7' &P+t&&P=O. (A11)

where the I'k are the spinor amenities, which are 4&(4
matrices determined by

B7/Bx' rk'7 +7 r&, —r&,7—=0

This is identical to Eq. (2), if we note that in the text
the 7k are written as 7k.

(A4)
with

r&"= gg"(Bag. '+B g~&
—B.g&') ~ (AS)

APPENDIX 8: PLANE-WAVE SOLUTIONS
OF THE DIRAC EQUATION

The metric of Eq. (1) is given by

gpo= 1, gii= @2=g33= R(t), g'~'= 0
for iW j. (A6)

When R(t) =1, Eq. (4) becomes

7 —+~~'Y 9+v -EP, t =0. (81)

For that metric, a solution of Eq. (A2) is

7o 70 71 R(t)7i

7~= —R(t)7~, 7s ———R(t)73,
(A7)

where

Ok=&7 7 7

The 4)&4 spin matrices are de6ned by

(B2)

where the 7k are the special-relativistic 7 matrices
(denoted by 7& in the text) which satisfy the equations

7i7k+7k7i 2gik )

7'= 7'7'7'7'

It is well known" that a set of four independent solu-
tions of (B1) are given by

7p ——7p ) 71 —71) 72 —72 ) 73 —73 u (a, d) (p) e—(aa (y & ( (B3)

In Eq. (AS), the nonvanishing components of g;, are
gpp= —~, and gl].=ggg=gag= ~.

For the metric of (A6), the only nonvanishing I'ki' are

r, =R(t)R(t)

I'o,'= r;(&'=R(t) 'R(t) (i 1, 2, 3;=n-o sum). (A9)

By writing the I', as linear combinations of the inde-

pendent products of the 7 matrices, and substituting
into Eq. (A4), one determines the r, to within an
additive c-number function, which we set equal to zero.
(The c number pertains to the electromagnetic field, and.

is zero when no electromagnetic field is present. ) The
resulting I'I, are given by

r.=0, r;= 'R(t)707* (i,=1, 2, 3)-, (A10)

where 7 = —7p and 7i=7i for i=1, 2, 3. Then, using

where &(=&I, d=&1, &a(P)=(P'+t&')'&2, and the
u('+(p) satisfy the equations

L
— (P)7'+ 7 p+t] '"'(p)=0 (B4)

where

0 u' ~ (p) = du(' "&(p),

(r»= (r P/P. (B6)

We normalize the u&'"&(p) such that

u' "'(p)'u' "'(p) =~(P)/u

It can be proved that

(B7)

' "(P)' ""(P)=B..-B, ~ (P)/& . (BS)

The u&' "&(p) which we use are related to the u&"&(p)

&' gee, e.g., Ref. 5, pp. 190—194.
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(r= 1, 2, 3, 4) of Ref. 5 (p. 192) as follows: We define u' ~&(p, t) by simply replacing p in u&'~& (p)
by p/R(t). Thus

' "'(p t) =- ' "'(p/R(t)). (818)
I(—1,—1) —I(3) I(-1,1) —I(4)

It can be shown that

I=P au&'"&(p)u' "'(p),

(89)

(810)

Clearly, Eq. (84) and all the equations which follow it
in this appendix remain valid when p is replaced by
p/R(t) wherever it appears, since those equations do not
involve time derivatives. In the text, we generally use
those equations with p/R(t) replacing p.

u' "(p)=u' "&(p)'V' (811)

where I is the 4X4 identity matrix and u' "'(p) is the
row matrix

APPENDIX C: MATRIX REPRESENTATION

We use the standard representation" in which

Also, one can show that

u' "(p)u" "(p)= a~. , "~~,' (»2)
and

We will also require that the following equation holds:

u'"'( —p)=V'u' "'(p). (813)

0 —io-I,
~k (k=1, 2, 3)

ioI, 0
(C1)

It can be directly verified that (813) holds in the
representation given in Appendix C.

Let us define
where I is the 2&& 2 unit matrix and the o I, are the 2 g 2
Pauli matrices:

ITr'"'(p) = — u' "(—p)
~(p)

We now prove the following equation:

(»4)
f71 —— , o2 ——

, o3 —— . C3

WI'"'(ap)u" "'(a'p) = b. ..II/, d . (815)

As a consequence of (814) and (812), it follows that
the left-hand side of (815) vanishes when a'= —a. For
a'=a, the left-hand side of (815) can be written as

and the matrix a~= iy'y'y~ has the form

(C4)

p
u&' —"&(—ap)u &'"'&(ap)

~(p)

u' "'( ap)'V'—u' "'(ap)
~(p)

oI, 0
o"= (k = 1, 2, 3) .

0 o.g

The matrix a2= e p/p is then

u&'-"'( —ap)tu&'-"'&( —ap) = I',g. ,
~(p)

where we have used (813) and (88). This completes
the proof of Kq. (815).

If follows from Eq. (815) that
Pa Pi —2P2)

(Pl+2P2 PB

(C6)

(C7)

I=+ u&'"&(ap)TF&~ "&(ap). (816)

One can prove that the right-hand side of (816) is the
identity matrix by applying it from the left to the com-
plete set of linearly independent spinors u&" "'&(a'p),
and using (815).

A simple consequence of Kq. (815), which leads to
Eq. (21), is

x&"&(p)
g(pt) (2+&,d))'",

u ti, &&(p t) =
4&2P

pd (C8)
x'"'(p).R(t)g(p, t)

In this representation, the u' "&(p,t) =u&' ~&(p/R(t))
take the form (where d = &1)

IT'"""(Ip) "-'"'( 'p)=4
» M. K. Rose, Eelotkistic Electron, Theory (Wiley, Nevr York,817 t96t), p. 4o.
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and

r(r, &)0+r ~))"'u(—'"~(p t) =d
4ttp

x'"'(p)
X R(t)g(p, t)

&'"'(p)

(C9)

(C12)

One can directly verify that Kq. (B4) and the equa-
tions which follow it in Appendix B [with p replaced by
p/R(t)] hold in this representation. Some additional
equations which hold in this representation are

where

g(p, t) =~(p, t)+u,

~(p, t) = [p'/R(t)'+u']'",
(c10)

(C11)

u' "'(p,t) u'-'"'(p, t) = p/ttR(t)

u' ' '(p t) = d'r'u""'(p t).

(c13)

(C14)
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Vacuum-Polarization Contributions to the Sixth-Order Anomalous
Magnetic Moment of the Muon and Electron*
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We report on the calculation of second-order vacuum-polarization contributions to the sixth-order elec-
tron and muon anomalous magnetic moments. With these results the diGerence of muon and electron mo-
ments has now been completely calculated through sixth order in quantum electrodynamics. The only re-
maining sixth-order contributions to the electron moment which have not been completely calculated are
those graphs without fermion loop insertions,

I. INTRODUCTION
' 'N view of the recent measurement by Wesley and
. . Rich' of the anomalous magnetic moment of the
electron, a, =—,'(g, —2), to a precision of 6 ppm and the
expected precision of future measurements of the muon
anomalous magnetic moment a„=', (g„—2),' a com-plete
calculation of the sixth-order quantum-electrodynamic
contributions to a, and a„ is awaited with increasing
urgency.

The status of the sixth-order calculations for the
electron moment is as follows: The contribution arising
from the insertion of fourth-order vacuum-polarization
graphs into the second-order vertex' [Fig. 1(a)] as well
as the photon-photon scattering contributione [Fig.

*Supported in part by the National Science Foundation, in
part by the U. S. OK.ce of Naval Research, and in part by the U. S.
Atomic Energy Commission.
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' J. C. Wesley and A. Rich, Phys. Rev. Letters 24, 1320 (1970).' E. Picasso, in Proceedings of the International Conference on

High Energy Physics and Nuclear Structure, Columbia Univer-
sity, 1969 (unpublished); F. J. M. Farley (private communica-
tion).' J. A. Mignaco and E. Remiddi, Nuovo Cimento 60A, 519
(1969).

1(b)] has been evaluated. The graphs which have not
been evaluated consist of all those obtained by insertion
of the second-order vacuum-polarization graphs into the
fourth-order vertices [Fig. 1(c)] and all sixth-order
vertices with no electron loop insertion [Fig. 1(d)].
In addition there is a dispersion-theoretical estimate of
the sixth-order electron magnetic moment. ' '

The quantum-electrodynamic contributions to the
difference of the muon and electron moments u„—a, in
sixth order arise from the insertion of electron loops of
the vacuum-polarization type [Figs. 1(a) and 1(c)] in.

the muon vertices of the second' "and fourth orders"
4 J. Aldins, T. Kinoshita, S. J. Brodsky, and A. Dufner, Phys.

Rev. Letters 23, 441 (1969); Phys. Rev. D 1, 2378 (1970).' S. D. Drell and H. R. Pagels, Phys. Rev. 140, B397 (1965).' R. G. Parsons, Phys. Rev. 168, 1562 (1968).' T. Kinoshita, Nuovo Cimento 51B, 140 (1967);and in Cargese
Lectures in Physics, edited by M. Levy (Gordon and Breach, New
York, 1968), Vol. 2, p. 209.' S. D. Drell and J. Tre61 (unpublished); see S. D. Drell, in
Proceedings of the Thirteenth International Conference on High
Energy Physics, Berkeley, 1966 (University of California Press,
Berkeley, 1967), p. 93; and in Particle Interactions at High Ener-
gies, edited by T. W. Priest and L. L. J. Vick (Oliver and Boyd,
Edinburgh, 1966).' B.E. Lautrup and E. de Rafael, Phys. Rev. 174, 1835 (1968).' B. E. Lautrup and E. de Rafael, Nuovo Cimento 64A, 322
(1969).


