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here. " We hope to come back to this problem
elsewhere.
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The modification of B„to eliminate the ghost at &
&

=0 is investigated. The J&J2JS leading
three-particle vertex inB„ is calculated. Using this form, it is shown that no finite number
of term modification of B„without trajectory depression satisfies consistent factorization in
all multipion amplitudes. Allowing trajectory depression, although daughter levels still pre-
sumably do not factorize, a solution is found in which (a) all leading trajectories factorize,
(b) are nondegenerate, and (c) the ppp vertex need not be zero. We believe this to be the
suitable generalization of the Lovelace 4-x amplitude.

I. INTRODUCTION

Since the introduction of the Veneziano 4-point'
and n-point' amplitudes, a great deal of work has
been done deriving the properties of planar dual
amplitudes. From the work of Hopkinson and Chan'
and others, and with the factorization results of
Fubini and Veneziano, ' and Bardakci and Mandel-
stam, ' the function B„appears to be a suitable ap-
proximation for the n-o amplitude with all identical
internal trajectories (o: J=0+'+). Ther'e are a
number of modifications which must be made to B„
to obtain an appropriate form for, say, the n-m

amplitude. Among these are (a) the ghost at o.z
——0,

which would be a tachyon due to the positive inter-
cept of the real p trajectory, must be eliminated,
(b) positivity constraints arising from the require-
ment that all three-particle couplings be real must
be imposed, and (c) the so-called abnormally cou-
pling leading trajectories (&a-A, trajectory in odd
number of pion channels) must be included.

The ~-A, trajectory inclusion has been discussed
in the literature by Dorren et al.' and by Gabarr6
and Gonzalez Mestres' for the 6-w amplitude, and

by Canning and Jacobs' for the 8-m and n-w ampli-
tudes. The p ghost has been discussed by Lovelace
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for the 4-m amplitude. For ammmm, ghosts have
been discussed by Savoy, "Waltz, "and Dethlefsen. "
In the case of 6-m and higher amplitudes, discus-
sions have been given by Dorren et al."and by
Olive and Zakrzewski. " In all of these, the prop-
erties of particles on leading trajectories are con-
sidered. The modifications of B„are accomplished
by multiplication by a simple polynomial in the ex-
ternal momenta and depressing the starting values
of internal trajectories to restore the correct
Hegge behavior (or spin content). In the cases of
4-m and Ommmm, a unique ghost-eliminating factor,
nz of one of the p trajectories present, can be
found which removes all p ghosts and which also
satisfies soft-pion Adler constraints. For six-pion
and higher (even-number) pion amplitudes, the

choice of u factors is ambiguous. In attempting to
write an n-m amplitude which would satisfy factor-
ization constraints, Dorren et al,."and Olive and
Zakrzewski" found that they were forced to depress
certain internal trajectories which would normally
have had leading particles of well-defined parity.
With the remaining smaller number of leading
trajectories (not depressed) they find sets of ghost-
eliminating and trajectory-modifying factors which

require degeneracies on the p ftraject-ory and

possibly on the m-II, A, trajectory. In both models
the p particle is at least doubly degenerate; this
does not seem to be borne out by experiment.
Also, in both models, leading particles are re-
quired to factorize in their couplings both to other
leading particles and to daughter particles.

The purpose of this paper is twofold: First we

assume that the modification of B„to eliminate p
ghosts is accomplished by a finite sum of terms
each of which is a finite polynomial in the internal

p trajectories times B„with the correct Begge be-
havior in all channels. Using factorization only

among leading trajectories, we then show that
simultaneous factorization among all n-m ampli-
tudes cannot occur. This result holds independent
of the degeneracy structure and assumes only the
existence of at least one nonzero mmp coupling.
Thus, if we wish to use only a finite number of
terms for fixed n, we must be permitted to depress
certain otherwise good internal trajectories and
not have them enter into factorization requirements.
A corresponding proof could be given to show that
daughter levels do not satisfy factorization. Second,
we show that the added flexibility of depressing
trajectories is sufficient to allow a factorizing
solution for leading particles. Since nonleading
spins do not factorize themselves, we do not re-
quire their couplings to leading particles to fac-
torize. We show a solution having the m-H Ay and

p ftrajectories nonde-generate at all spins.
Throughout, the main tool we use is the form of

the three leading particle couplings implicit in the
B„reduction on tree graphs. We derive this cou-
pling by straightforward algebraic manipulation in
the Appendix.

II. FACTORIZATION ON LEADING

TRA3ECTORIES IN B„

From the previous analyses of B„, w'e know that
the leading particles on internal trajectories are
nondegenerate. This means that B„has the follow-
ing property: If we take the residue of the n —3

pole in B„on any tree graph, the portion of this
residue which corresponds to particles of leading
spin on each internal line is given by the propaga-
tors for particles of appropriate spin on each line,
contracted with a unique three-particle vertex at
each three-line junction.

The propagator P
~"' ~"' ~ of the spin-J portion

of a tansor T"'" ~ is given by a form

where P(i) is a permutation of the integers 1, ..., J.
This form must be summed over all distinct per-
mutations, made traceless, and normalized to be
idempotent. If we are not interested in the spin-
less-than-J portion of the product

we can neglect the permutation summation and
tracelessness and equivalently use

In Eq. (1) the index h is summed over the 2J+1
independent T's.

The three-particle vertex of particles with spins
Jy J2 and J, can be given in terms of the expan-
sion coefficients over their well-defined indepen-
dent couplings. When the tensors describing the
spin states are as above, we can define these cou-
plings as follows: There are P» indices of J', con-
tracted with P» indices of J2 (because of the im-
plicit symmetry in the tensor wave function of each
particle, we need give only the number of contrac-
tions); there are P» contractions of J, with J,;
there are P» contractions of J, with J„all re-
maining indices of J» J» and J, are contracted
with the four-momenta (P2 —P,)", (P, —P,)", or
(P, —P,)", respectively. In the Appendix we de-
rive the expansion coefficients prescribed by B„
to be
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Z j J . ( 1/2) 1+ 2 3~~ 12 23 31(j IJ tj t)'~

J12'P23' I 31' (~l 931 I 12)'( 2 I 12 ~23)'( 3 P31 I 23)'
(2)

The possible imaginary character of this form does
not bother us since the actual couplings for states
of given isospin turn out to be real [see Ref. 16
after Eq. (5)].

For an amplitude constructed from B„with Q

factors to eliminate p ghosts, there will be a de-
generate set of leading particles on the m and the p
trajectories with corresponding expansions of the
three-particle vertices. For conciseness, we will
always remove from vertices or tree-graph res-
idues appropriate factors of Eq. (2) which, by
definition, always factor out. The reduced vertices
we eall l.

We now illustrate how factorization is obtained
in these modified amplitudes by considering the
multiperipheral configurations of the 6-p amplitude
for the Q factors Q»Q4, . We look at the triple pole
Q»= J„Q»,=O'„Q„=J,. This pole occurs in the
orderings 123456, 123465, 213456, 213465, 123564,
123654, 213564, and 213654. For cyclic (and anti-
cyclic) symmetry we have the amplitude with the
ordering 123456 given as n»c545B6(- n», 1 —+34,

451 +56) 619 +123) 2 +2349 345}

+ Q$3 Q56B6 + Q34 Q„B",, where B,' and B", have ap-
propriately modified arguments to restore correct
Hegge behavior in all channels. Corresponding
expressions hold for the other seven orderings.
We consider the ordering 123456. A factor Q»,
say, changes the arguments Q»- Qy 1„
Q»3 ~ ™»3)Q 56 Q56 y

but does not change the num-

ber of contractions at any of the four vertices in
the tree graph. Thus Q» contributes a factor
(J, —P») to the residue of the triple pole [remem-
ber that a factor of Eq. (2} for each vertex has
been removed a priori]. When we evaluate the
complete residue from all eight orderings with the
correct Paton-Chan" factors, we find (a) the par-
ticles on the 12 and 56 trajectories alternate in
isospin, i.e., I=0 if J is even, I=1 if J is odd

(Bose statistics), (b) the residue when the 123 tra-
jectory has I= 1, J even or I= 0, J odd, is

and (c) the residue when the 123 trajectory has
I=1, J odd or I=O, J even, is

—4P12P23

[four factors of Eq. (2) have been removed from
Eqs. (3a) and (3b)].

The minimum degeneracy implied by these forms

is a nondegenerate p ftr-ajectory, a nondegenerate
A. , trajectory (I=1, 4 odd or I=O, 4 even, begin-
ning at J = 1), and a doubly degenerate 11 trajectory
(I=1, J' even or I=O, J odd, beginning at Z=O) ex-
cept that the J= 0 and 1 particles on the 7t trajec-
tory are nondegenerate. There is the usual ambi-
guity of spurious degeneracies here, but the impor-
tant restriction of reality of the eouplings bounds
the magnitudes of the couplings. Thus, in the 4-m

Lovelace amplitude' the minimal factorization has
a vertex 1(xllp ) =[J'" times Eq. (2)]. It is also
possible to have a doubly degenerate p(1), p(2)
with vertices I'(limp(1) ) = (J —11'}'", I"(llvp(2) )
= (in')'", but not r(mllp(1)'} = (J'+Z)'", I'(limp(2)')
=(-4'+J)'". This bound on the ambiguity will be
used in the next section.

III. NONEXISTENCE OF FACTORIZATION

In this section we show that factorization cannot
be made consistent among all n-m amplitudes with

only a finite number of terms in each n-m ampli-
tude and without depressing some internal trajec-
tories to below leading contributions. We assume
the existence of at least one m and one p particle
and one nonzero Tr. mp vertex.

In the preceding section we saw how the Q fac-
tors n»n45 (+ cyclic) produced particle sequences
starting at J= 0~ 1, and 2. As an Q, say Q», is
cycled around the tree graph, it produces spin-1
correlations on various internal lines —sometimes
on more than one line at once. Then it is possible
that more than one Q, say J, of them, raise the
starting spin on the same internal line, causing
the existence of a sequence of particles starting
at J,. In addition, the vertex of this sequence with
other particles (I') involves a polynomial in 4 (the
spin of the particle) and J3» and P» (the correlations
with the other two particles) of order J6. Because
of the reality of residues, one can never obtain
this order of polynomial with fewer than J, Q-fac-
tors. Thus we need prove only that there are
sequences of particles starting at increasing values
of J, to show that an infinite-order Q factor is
needed in, say, the 6-m amplitude.

We consider the n-3 pole in trajectories (12},
(123), (1234), ..., (n —1, n}, shown in Fig. 1. For
this tree graph to have a nonvanishing value when

all of the m trajectory poles are evaluated at Q, =0,
there must exist one c5 factor (with its B„)of the
form

Oi 2 i b2 C, C~
~ ~ ~Q12Q23Q14Q45Q16Q67 Qn-l, nQn-2. n-l
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p 7r' p

FIG. 1. Multiperipheral tree graph considered in the
text. 7t and p label the type of trajectory function which
occurs in the indicated channel.

This form must provide a ghost-eliminating mech-
anism for all n(n —2)/4 internal p trajectories; in
particular it must eliminate ghosts on the following
trajectory subset: (2, 5), (4, 7), (6, 9),
(n-4, n-1). This restricts Eq. (4) so that

at+~a~ 1, 5~+c~~ 1, ~ ~ ., X~+zxo 1

From cyclic symmetry there exists an n factor
like Eq. (4) but with all subscripts incremented by
1. On the tree graph of Fig. 1 this new n factor
provides at least a J,=integer part of 2(n —2)
starting value in trajectory (12). Therefore there
always exists an n-m amplitude which starts a new
sequence at a point higher than that at which any
finite polynomial in n's can start in the 6-7t ampli-
tude, and consistent factorization among all n-m

amplitudes cannot hold.

IV. FACTORIZATION WITH DEPRESSION

OF TRAJECTORIES ALLOWED

At this point we have two choices available for
attempting factorization. We can either allow an
infinite number of terms in each n-m amplitude or
permit depressing certain internal trajectories to
below leading behavior (in discrete terms of the
amplitude, although all internal trajectories must
have leading particles in the complete amplitude).
The first choice may involve radical changes in
the basic properties of the amplitude and questions
of convergence of infinite series of functions, so
we shall investigate only the latter. This problem
has been considered by Olive and Zakrzewski, "
and by Dorren et al." Both of these papers re-
quire factorization of leading trajectories contri-
butions with particles of nonleading behavior in
nondual channels. By a process of reasoning sim-
ilar to that in Sec. III, it is obvious that these
daughter particles do not satisfy a consistent fac-
torization. Therefore, in our solution we require
factorization of residues only for all particles of
leading contributions.

In the Olive and Zakrzewski" solution, there is
a contribution to the amplitude from each tree
graph. For each internal trajectory line, the inte-
grand of B„ is modified by a factor (1 —U;), where

r, (». „(»2 2(2) =g,(2c —p —y)c '",

(~)' (2) p(2)& = go&(P+ y)c

(5a)

(5b)

~2(2)~ w( )&2z(2p" =g, (2c —)3 —y)c (5c)

[times Eq. (2)], where a particle p(1) has spin g
and isospin I= 1 if J' is even, I=0 if 4 is odd; p(2)~
has opposite isospin assignment. " This form has,
therefore, nondegenerate m and p trajectories. In
the generalization to the n-m amplitudes given by
Dorren et al. for the D-type solution, we find no
increase in degeneracy on the m and p trajectories
and no change in the vertices (5a)-(5c). With only
these terms, the ppp vertices are predicted to be
zero. To correct this they suggest adding a B'-
type solution which, for 6-w, is n$2Q34&5, B,' in
which all trajectories in B,' are depressed except
(12), (34), and (56). This predicts a vertex

I ~(2)a p(p) j)' p(p)(' =g,abc8 y

with p nondegenerate, "and mmp vertices as in
Eqs. (5). Note that the two types of o( factors, D
and B', correspond to contributions in the 6-m

(6)

U, is the conjugate (integration) variable to n, .
This factor has the effect of lowering all trajec-
tories dual to it. They find a solution which fac-
torizes to a finite degeneracy (w trajectory non-
degenerate, p trajectory doubled) when they have
no ppp vertices. Since this implies at least one
v internal line (N&4), some trajectories are de-
pressed. If we take their obverse solution which
has terms arising from tree graphs with only ppp
internal couplings, they claim a factorizing solu-
tion (both 2 and p trajectories have degeneracies
increasing with J). However, with only these
terms, there are no internal pions with spin less
than 2. This is clearly an unphysical solution.

In the Dorren et a/. model, "the dotted lines or
dotted lines with crosses both depress some inter-
nal trajectories. Their solution always involves at
least one of these lines. They find that the n-m

amplitude factorizes with the p trajectory doubled
if the ppp couplings are zero or trebled otherwise.
We shall show that the doubled p trajectory is
actually nondegenerate when factorization is con-
sidered only for leading particles, and that allowing
a nonzero ppp vertex does not further increase the
degeneracy if additional terms are included in the
amplitude.

Their D-type solution for the 6-m amplitude is
u»o. ~ with trajectories dual to (123) depressed.
This turns out to be nothing but the portion to the
left of the plus sign in Eq. (3a) and all of Eq. (3b),
calculated in Sec. II. These triple-pole residues
obviously can be factorized to
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amplitude from the two classes of tree graphs:
(1) two p trajectories, one v trajectory, no ppp
vertices and (2) three p trajectories, no v trajec-
tories, one ppp vertex.

In the 8-m amplitude there are three classes of
tree graphs: (1) three p and two v trajectories,
no ppp vertices, (2) four p and one r trajectories,
one ppp vertex, and (3) five p and no v trajectories,
two ppp vertices. The D-type solution covers
all/only class-(1) tree graphs with vertices given
by Eqs. (5). The 8'-type solution covers all/only
class-(3) tree graphs with vertices given by Eqs.
(5) and (5). The additional degeneracy needed by
Dorren et al. occurs because no class-(2} tree
graph is covered. Thus, the p-trajectory line in
4-m channels couples to an external pion and inter-
nal x trajectory at both "ends" [class (1)] or to
two internal p trajectories at both "ends" [class
(3)], but not to two v's at one "end" and two p's at
the other "end" [class (2)]. It is possible to single
out class-(2) tree graphs by depressing trajectories
dual to the dashed lines of Fig. 2 (notation of
Dorren et al.). The ppp vertices are assured by
the n factors, Q.»n„n„, while the proper mwp

vertices are obtained from the factor a„. One
immediately recognizes this as a "combination"
of a 4-w portion of the 6-m B' solution with a, 4-m

portion of the 6-m D solution. It is easily seen that
this general combination can always be made for
the different classes of tree graphs for higher
n-w amplitudes. Thus, by including these new
terms in the amplitude, we have no degeneracy on
leading trajectories.

Although we do not present the construction here,
it is obvious that other solutions exist which satisfy
factorization. In fact, any degeneracy scheme for
leading particles with vertices 1 polynomial in

J„J„J„P»,P», and P» can be incorporated
(I' must still satisfy certain symmetry require-
ments). The solution corresponding to the Love-

/
/

/ 7
/

I

FIG. 2. Pictorial representation of trajectory depres-
sion in the 8-~ amplitude which depresses all class (1)
and (3) tree graphs to nonleading behavior. Any trajec-
tory dual to a dashed line is depressed. The notation is
that of Ref. 13.

lace' minimal 4-m solution would have the smallest
number of terms and the least modification of B„.
The D-type solution satisfies these criteria but
has the unpleasant property that all ppp vertices
are zero. The simplest solution involving nonzero

ppp coupling is the one we have presented involving
B', D, and combinations of O'D a-factors. There
are no degeneracies and the vertices are given by
Eqs. (5) and (6}.

V. SUMMARY

We have presented an analysis of the factoriza-
tion properties of leading particles within the mod-
ified B„amplitude. The advantage of our method
is that we are able to consider three-particle
vertices with all leading particles only, rather
than vertices in which only one particle is known
to be leading and the other two particles may have
leading or daughter status. We show that any fi-
nite-term modification of B„without trajectory

I

depression cannot satisfy factorization simulta-
neously in all n-m amplitudes. It follows by a sim-
ilar proof that the jth daughter level does not
factorize without at least ('j+ 1)-order trajectory
depression. We believe, therefore, that imposing
factorization conditions on vertices of leading par-
ticles (which are made to factorize) with daughter-
level particles (which do not factorize) is overre-
strictive.

Within our model we are able to find the natural
extension of the I ovelace 4-m amplitude to higher
pion amplitudes when trajectory depression is
allowed. It has the properties that no degeneracies
occur at any spin on leading trajectories; no three-
particle vertices need to be zero —although ratios
among the independent three-particle vertices are
fixed; for these two properties the form involves
the smallest number of modified B„terms. We
have explicit expressions for all leading vertices;
in particular, the A. ,pm decay is predicted to be pure
s wave. Using our technique and the results of
Ref. 8, the extension to include leading, abnormally
coupled trajectories (the &u-A, trajectory in an odd
number of pion channels) is straightforward. This
minimal dual model with all three m, p, and ~
trajectories included has three arbitrary constants
which could be fixed from the p-m7j, f—47t, and

A, - pn decay analyses. Nevertheless, because the
daughter levels do not factorize, there are pre-
-sumably important corrections to the amplitude
which come from unitarity. It is possible to in-
clude separate external K particles or the com-
plete SfJ(3) pseudoscalar multiplet into the ampli-
tude.

A significant negative result of this paper is that
the leading trajectories need not be given degen-
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eracies because of duality constraints in n-w am-
plitudes. If the famous splitting of the A, meson
is due to duality at all, it must come from the
strong restrictions of the minimal dual form of
vertices in conjunction with other things, such as
inclusion of the remainder of the SU(3} multiplets
of leading mesons as external and internal par-
ticles; it does not come from n-m factorization
alone, as previously claimed.

Note. During the final stages of preparation of
this paper, the author received a paper by
Balachandran, Chang, and Frampton, "and apaper
by Frampton, "proving a much weaker nonexistence
theorem. They show that a one- or two-term mod-
ification of B, without trajectory depression is not
consistent with a singly (that is, non-) degenerate
7 and p.
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APPENDIX

We describe here the derivation of Eq. (2}. The simplest occurrence of the general J,J',J', vertex is in
the tree graph of Fig. 3 in B,. We use Eqs. (4) and (5) of Hopkinson and Plahte" to reduce B, to

( ),+',",
~i

X„—X„,—I „+X„ i(X„,—X„-X„
i

K, —X„-X„)
l a, a, & a,a j020~=0

x B4(X,2+ a, + a„X»)B,(X„,X» + a, + a, + a,)B,(X„,X„+a, + a,),

where (x) is the binomial coefficient. Poles occur explicitly in B due to the relation

y
residue of B,(X, y)~x

(A1)

The residue of the triple pole of Fig. 3 is polynomial in the X's and contains contributions from particles
of spin 0, ..., J, on trajectory (12}, 0, ..., J, on (34) and 0, ..., J, on (56). On the tree graph of Fig. 3, we
can write

Xj.2 = —J, ,

X»=-,'((P, —P,) V",)(V", V," }(V," ~(P, P,) f+,'((P, P,-) V",j(V-," (P, +-P, —P, —P,)} lo+wer terms,

X3~ = —J2,

X„=—,'((P, —P ) V2)(V2 V,
" )(V," ~(P, —P )) + ~((P, +P, —P, —P ) .V,")(V," (P, —P )) + lower terms,

X 6= —J3

X„=-,'((P, —P,) V",j(V", V," )(V," ( P, P,)$ +1 woer ter-ms,

X = -'((P —P ) V H V," (P +P —P —P )j —y —1,

Xg4= 2((P, —P,).V)(V", (P, + P, —P, —P,))+ lower terms,

Xs~s = 2((P5 —Pe) 'V~)(V& '(P~+ P, —P, —P,)) + lower terms.

(A2)

The V& represent three-vectors under O(3) transformations in the rest frame of the i= (12}, (34), or (56)
channel; the indices h and h are helicity or equivalent indices. Sums over g and g are intended in Eq. (A2)
and can be done with the identity

ZVaP V~v gv P"P"/m 2

h



3226 MATTHEW A. JACOBS

Equation (A2) explicitly contains the highest spin correlations needed and the correlations of lower-spin
content are referred to as "+lower terms, " except for X»„where the lower terms are defined to be -y —1.

The terms in the polynomial residue contributing to spin content of J, or J, involve X,» X23, and X,34 or
X4„X„,and X,4 The highest power present is J, or J„respectively, and we extract this spin portion
by evaluating these highest terms in Eq. (Al) with substitution for these X's given by Eq. (A2). The spin
correlations in the (34) channel involve X», X„, and X»,. Spin correlations as high as J, +J,+J, —2a,
can occur in specific terms here although in the final answer, of course, all terms of spin greater than

J, cancel. Nevertheless at this point we must keep all terms in the (34)-channel spin. When we expand our
form we have

(Residue with spin J, and J,)

=zz zzzz
a1 0 a2=0 a =0 b1=0 b2=0 b3=0 b =6

3 4 c1=0 c =0
2 c3=0

~i Jl+ 2+J3+a1+a2+a3+b1+b I~ j~~2J1+2J3-2a -b -b2 b -c -c -c

x Si~~(a, +a, +a, +y) ' 'b, !(J,—a, —b,)!(J,—a, —b,)! OP, —P,) V",j 'f(P, —P,) V,
" j '((P, —P,) V,"")'

J,!(b,—b,)!b,!b, !b,!(J,—a, —a,)!(a,—b,)!(J,—a, —a,)! (a, b,)!c-,!(J, a, b,-c,-)!c—,!(J, a, b,-c,-)!c-,!

IV,"(P,+P, P, P-,)f' -' 'fV,"(P,+P, P, -P,)-j'
(a, —c,)!

(A3)

The upper limits on the a» a„a3 summations, a ~, are given by a, +a2~ J„a,+a3 &J„SJare Sterling
numbers of the first kind"; summations are also intended over h, h', and h". Among other things, this
residue involves a sum over the various J,J,J, couplings defined in Sec. II. The portion of this residue
having n, P, and y contra. ctions as shown in Fig. 3 is obtained by requiring c, = o., c,=P, c, =y, a, =y,
b, =J; —n —P. We now disregard the kinematic couplings and discuss only the coefficient in the residue,
V& Q y On the remaining quintuple sum for V, consider specifically the portion

a ~0 b =0
2 1

If we interchange the a„b, summation order and substitute A2=a2+ b„ the A2 sum can be done symbolically
using powers of the forward difference operator. " A corresponding interchange and substitution on the
a„b2 summations allows the new A.3 sum to be done with further powers of the difference operator.
resulting triple sum is over b„b„and 63 —in that order. Changing the b, summation to a sum over
B 52 + 51 and then bringing the b, sum "inside" of the B sum, we find that the 5, summation can be done

explicitly using binomial coefficient identities. "
The resultant double summation still cannot be done explicitly; however, from it we obtain the recurrence

relation

-XII 7 Jz P(J' ~ y)
&+z 8-z y n8 y (&+ l)(J P + l)

From iteration of this we obtain

z z z (o +P)l(J y)!(J (z P —y)1 E J' J
~!Pt(J.—r -P)t(J, —~ —r)'

(A4)

At this point we use the cyclic symmetry in V which is obscured in our equations because of our originally
nonsymmetric reduction of B,. Then, reusing Eq. (A4), we obtain

Jz J (z+P+y)!(J —& —P —y)tJ!(J —&z —P —y)! 7 J J
o'!P!r' (J, ~ r)'(J. , —~ P)'(J, —P r—)'——

JJJ
For V«,' ', the double sum degenerates to a single term with 53=J„B=J,+J, —0, and we obtain

J'+J +J -n —8 —g

V123JJJ ( lj2) 1 2 3

n!P!r!(J, —n —r)!(J.—& —P)!(J. P —r)! '-
Factorizing this form into contributions from each of the four vertices of Fig. 3, we obtain Eq. (2).
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