¹J. Shapiro, Phys. Rev. <u>179</u>, 1345 (1969).
²C. Lovelace, Phys. Letters <u>28B</u>, 265 (1968).
³See Appendix of Ref. 1.
⁴R. H. Capps, Phys. Rev. <u>185</u>, 2008 (1969).
⁵R. H. Capps, Phys. Rev. Letters <u>22</u>, 215 (1969).
⁶A. Yahil, Phys. Rev. 185, 1786 (1969).

⁷D. Neville, Phys. Rev. Letters <u>22</u>, 494 (1969). ⁸J. J. De Swart, Nuovo Cimento <u>31</u>, 420 (1964). ⁹R. E. Cutkosky, Ann. Phys. (N. Y.) <u>23</u>, 415 (1963). ¹⁰M. Gourdin, *Unitary Symmetries* (North-Holland, Amsterdam, 1967).

PHYSICAL REVIEW D

VOLUME 3, NUMBER 12

15 JUNE 1971

Complex Negative-Signature Trajectories and the Pomeranchuk Theorem*

Reinhard Oehme

The Enrico Fermi Institute and the Department of Physics, The University of Chicago, Chicago, Illinois 60637 (Received 18 January 1971)

Within the framework of complex-angular-momentum methods, it is shown that amplitudes which violate the Pomeranchuk theorem require negative-signature trajectories which are of the form $\alpha(t) = 1 \pm \text{const}\sqrt{t} + O(t)$ near t = 0. There must be corresponding positive-signature trajectories. The character of the singular surfaces with negative signature is discussed briefly.

I. INTRODUCTION

In previous papers we have discussed Regge pole and branch-point trajectories $\alpha(t)$ which are complex for real t < 0 due to left-hand cuts in the t plane of these functions.¹ Such trajectories are of interest for the description of diffraction scattering.^{2,3} In particular, pole-cut systems with complex trajectories can be used for the construction of rather general and physically meaningful amplitudes which imply different, constant total cross sections for particle and antiparticle scattering.^{4,5}

It is the purpose of this paper to show that amplitudes which violate the Pomeranchuk theorem⁶ generally require negative-signature trajectories with square-root branch points at t=0. They are of the form $\alpha(t) = 1 \pm \text{const } \sqrt{t} + O(t)$. It then follows that there must be corresponding positive-signature trajectories, a fact which can also be proven directly.⁷ The character of these singular surfaces of the continued partial-wave amplitude will be discussed briefly.

II. *I-PLANE ARGUMENT*

We denote the scattering amplitudes for particle and antiparticle scattering by F(s, t) and $\overline{F}(s, t)$, respectively, and we introduce the combinations

$$F_{\pm}(s,t) = F(s,t) \pm \overline{F}(s,t) . \tag{1}$$

Assuming constant asymptotic total cross sections given by σ and $\overline{\sigma}$, we have for $s \rightarrow \infty$

$$\mathrm{Im}F_{\pm}(s,0) \sim s \frac{\sigma \pm \overline{\sigma}}{16\pi},\tag{2}$$

$$\operatorname{Re}F_{-}(s,0) \sim -\frac{2}{\pi} s \ln s \frac{\sigma - \overline{\sigma}}{16\pi},$$
(3)

with $\operatorname{Re}F_{+}(s,0)$ being of the order $s(\ln s)^{-1}$.² These properties follow from the familar dispersion relations.⁸ From Eq. (3) and the general postulates of dispersion theory or of local field theory, we obtain the bounds

$$(\sigma - \overline{\sigma})^2 / 4\pi^3 a \leqslant \sigma_{el} \leqslant \sigma \tag{4}$$

for the elastic cross section

$$\sigma_{\rm el}(s) \sim \frac{16\pi}{s^2} \int_{-s}^{0} dt \, |F(s,t)|^2 \,. \tag{5}$$

Here *a* is a constant defining the maximal relevant angular momentum $L = \frac{1}{2}\sqrt{as} \ln s$ in the *s*-channel partial-wave expansion of F(s, t) for large values of $s.^{4,9,6}$

Let us consider the continued partial-wave amplitudes $F_{+}(t, \lambda)$. These functions have the usual analytic properties in the complex manifold (t, λ) .² In particular, they satisfy the continued elastic unitarity condition for $4m^2 \le t < t_i$ (t_i = first inelastic threshold). This condition forbids certain kinds of singularities. We ask: What are the characteristic features of allowed, isolated singularities of $F_{+}(t,\lambda)$ near $(t,\lambda) = (0,1)$ which are required by the special conditions (2)-(4)? We assume that $F_{\perp}(t,\lambda)$ has a finite number of such singularities at $\lambda = \alpha_{\kappa}(t), \ k = 1, 2, \dots$ Irrespective of the character of these singularities, each one can contribute a term to the asymptotic expansion of $F_{(s,t)}$ for $s \rightarrow \infty$ which, except for logarithmic factors, is of the form $s^{\alpha_k(t)}$. Equation (2) requires then that $\alpha_{k}(0) \leq 1$, with $\alpha_{k}(0) = 1$ for at least one trajectory

of each signature. We assume now that the trajectories $\alpha_k(t)$ are regular functions near t=0, so that the relevant ones are of the form

$$\boldsymbol{\alpha}_{\boldsymbol{k}}(t) = 1 + \boldsymbol{\alpha}_{\boldsymbol{k}}' t + O(t^2) \,. \tag{6}$$

They give diffraction peaks which shrink at most like $(\ln s)^{-1}$. But if we calculate $\sigma_{el}(s)$, we find that *negative-signature* trajectories of the form (6) give rise to a logarithmically increasing contribution to σ_{el} . The logarithmic shrinkage is not sufficient for the bound (4).

We are led to consider negative-signature trajectories which are not regular at t=0, but have a branch point there. A priori, singular surfaces $\alpha(t)$ of the partial-wave amplitudes have only branch points related to certain physical thresholds in the t channel. However, there may be additional branch points due to the cross over of two or more trajectories of the same character.^{1,2} Under these circumstances it is possible to prevent these branch points from being inherited by the continued partial-wave amplitude itself, where they should not occur. In general, a singular surface near t=0 can be of the form¹

$$\boldsymbol{\alpha}(t) = \boldsymbol{\alpha}(0) + \sum_{i=1}^{\infty} \beta_i t^{i/n}, \qquad (7)$$

where *n* is an integer and the β_i are constants. It corresponds to *n* trajectories $\alpha_1(t), \ldots, \alpha_n(t)$ which cross at t=0 and form the branches of the branches of the multivalued function (7).

Suppose that the negative-signature amplitude $F_{-}(t, \lambda)$ has singular surfaces of the type (7) with $\alpha(0) = 1$. These then give rise to terms in the asymptotic expansion of $F_{-}(s, t)$ for $s \rightarrow \infty$ which, as far as the power law is concerned, are of the form

$$s^{1+ct^{\kappa/n}}.$$
 (8)

But since we have assumed constant total cross sections, the amplitude $F_{-}(s, t)$ has the bound¹⁰

$$|F_{(s,t)}| \leq O(s^{1+\sqrt{at}}) \tag{9a}$$

for $s \rightarrow \infty$, $0 \le t < 4m^2$, and⁹

$$|F_{(s,t)}| \leq O(s(\ln s)^2)$$
(9b)

for $s \rightarrow \infty$, $t \leq 0$.

We have seen before that trajectories with κ/n = 1 do not give enough shrinkage for $\sigma_{\rm el} \leq \sigma$; those with $\kappa/n > 1$ give even less shrinkage. Hence we restrict ourselves here to $\kappa/n < 1$. It follows from the bound (9a) that $\kappa/n \geq \frac{1}{2}$. In addition, we find that for $n \geq 3$, $\kappa < n$ there are three or more branches of $\alpha(t)$ corresponding to the roots of $(t^{\kappa})^{1/n}$. The amount of the phase difference between two such roots is at most $\frac{2}{3}\pi$. Hence there is always a root so that for t < 0 and small values of |t| we have

$$\operatorname{Re}\alpha(t) = 1 + \beta |t|^{\kappa/n}$$

with $\beta > 0$. Such a trajectory would violate the unitarity requirement

 $|F(s,t)| \leq \operatorname{const} s(\ln s)^2$ for t < 0.

Our considerations indicate that singular surfaces of the form

$$\alpha_{1,2}(t) = 1 \pm \operatorname{const} \sqrt{t} + O(t) \tag{10}$$

are a characteristic feature of negative-signature trajectories which violate the Pomeranchuk theorem.

III. s-CHANNEL ARGUMENT

It may be of interest to indicate an alternative but related argument for the presence of singular surfaces of the type (10) in the negative-signature amplitude. For large values of s, we can write F(s, t) in the form of a Bessel transform^{4,5,11}:

$$F(s,t) \sim s \int_0^1 d\xi \psi(\xi,\ln s) J_0(\xi \sqrt{-at} \ln s) , \qquad (11)$$

where *a* is again determined by the maximal angular momentum $L = \frac{1}{2}\sqrt{as} \ln s$. There are corresponding expressions for \overline{F} and for F_{\pm} . If we can show that the function

$$\psi_{-}(\xi, \ln s) = \psi(\xi, \ln s) - \overline{\psi}(\xi, \ln s)$$

has support for nonzero values of ξ in the interval $0 \le \xi \le 1$ and in the limit $s \rightarrow \infty$, then it follows that the asymptotic expansion of $F_{-}(s, t)$ contains terms of the form

$$s^{1\pm i\xi\sqrt{-at}} \tag{12}$$

as far as the power law is concerned. In the complex angular momentum plane, these terms correspond again to negative-signature trajectories of the type (10). As a contrasting example, we mention that a function like

$$\psi(\xi, \ln s) \propto \xi \ln s e^{-\xi^2 \ln s}$$

would give rise to an asymptotic term with the power behavior $\sim s^{1+at}$ corresponding to a trajectory which is regular at t=0.

From Eqs. (5) and (11) we obtain

$$\sigma_{\rm el}(s) \sim \frac{32\pi}{a} \int_0^1 d\xi \, \xi^{-1} \rho(\xi, \ln s) \,, \tag{13}$$

where

$$\rho(\xi, \ln s) \equiv (\ln s)^{-2} |\psi(\xi, \ln s)|^2 \,. \tag{14}$$

Using the inequality (4) we conclude then the following:

(16)

(1) The lower bound implies that the function $\rho(\xi, \ln s)$ must be positive for some values of ξ in the interval $0 \le \xi \le 1$.

(2) The upper bound requires that the support of ρ is not restricted to the point $\xi = 0$ for $\ln s \rightarrow \infty$. Because the integral (5) must converge, we find that ρ has to vanish for $\xi \rightarrow 0$, and hence it must be positive for some nonzero values of $\xi \leq 1$.

It remains to determine the signature of the positive contributions to ρ . From Eqs. (3) and (11) we find

$$\int_0^1 d\xi \operatorname{Re}\psi_-(\xi, \ln s) = -\frac{2}{\pi} \frac{\sigma - \overline{\sigma}}{16\pi} \ln s , \qquad (15)$$

and hence

$$(\ln s)^{-2} |\operatorname{Re}\psi_{-}(\xi, \ln s)|^{2}$$

must make a finite contribution to $\rho(\xi, \ln s)$ for $\ln s \rightarrow \infty$. But then it follows from the previous arguments that $(\ln s)^{-1} \operatorname{Re} \psi_{-}$ has support for $\ln s \rightarrow \infty$ and nonzero values of $\xi \leq 1$. This is what we wanted to show.

The argument described above can also be given in terms of the integrated cross section

$$\sigma^{(-)}(s) = \frac{16\pi}{s^2} \int_{-s}^{0} dt |F_{-}(s,t)|^2,$$

which is proportional to charge-exchange or regeneration cross sections, and which satisfies an inequality corresponding to Eq. (4).

With the dispersive part of $F_{-}(s, t)$ having terms of the form (12) in the asymptotic expansion, it follows from the dispersion relations that the same must be true for the absorptive part. Hence also $\text{Im}\psi_{-}(\xi, \ln s)$ has support for positive $\xi \leq 1$. We can use the presence of asymptotic terms like

 $s^{1+const\sqrt{t}}$

in the high-energy limit of $ImF_{-}(s, t)$ in order to show that also the *positive-signature* amplitude must have trajectories of the type (10): It can be seen from the partial-wave expansions that ImF(s, t) and $Im\overline{F}(s, t)$ are positive for $0 \le t \le 4m^2$. Because $ImF_{-}(s, t)$ has asymptotic terms like (16) for $s \rightarrow \infty$, these positivity constraints require that corresponding terms are present in $ImF_{+}(s, t)$.

IV. DISCUSSION

We see that amplitudes which violate the Pomeranchuk theorem and which instead satisfy Eqs. (2) and (3) must have complex trajectories of the form $\alpha(t) = 1 \pm \text{const}\sqrt{t} + O(t)$ in the negative- and the positive-signature partial-wave amplitudes. Although our arguments are not completely rigorous from the mathematical point of view, they are sufficient as far as the usual complex-angularmomentum methods are concerned. There remains the question of the character of the trajectories (10) as singular surfaces of $F_{\pm}(t,\lambda)$. We restrict ourselves here to a few remarks. It is well known that simple-pole surfaces in F_{-} lead to an increasing elastic cross section (~lnlns),¹² and hence violate the bound (4). Logarithmic branch points are possible near t=0. But in order to be effective, they generally must appear in forms like

$$\ln[(\lambda - \alpha_1(t))(\lambda - \alpha_2(t))],$$

so that $F_{-} \rightarrow \infty$ for $\lambda \rightarrow \alpha_{1,2}$. Terms of this type are incompatible with the continued elastic unitarity condition for $4m^2 \leq t < t_i$, because branch-point trajectories usually do not have thresholds at $t=4m^2$ as do pole trajectories.^{2,5} As we have pointed out in previous papers,^{2,5} this conclusion can be circumvented by introducing very special shielding cuts.

We had found earlier that rather natural polecut systems with square-root branch points can give rise to acceptable amplitudes^{1,5}; these branch points are given in terms of the poles $\alpha_{1,2} = 1 \pm \text{const } \sqrt{t} + O(t)$ by

$$\alpha_{c_{1,2}}(t) = n\alpha_{1,2}(t/n^2) - n + 1 = \alpha_{1,2}(t) + O(t) .$$
(17)

In the neighborhood of $(t, \lambda) = (0, 1)$, they degenerate to forms like

$$F_{-}(t,\lambda) \propto \int_{0}^{1} d\xi \, \frac{\rho_{-}(\xi)}{\left[(\lambda-1)^{2}-a\xi^{2}t\right]^{1/2}}.$$
 (18)

We must impose the subsidiary condition

$$\int_{0}^{1} d\xi \, \frac{\rho_{-}(\xi)}{\xi} = 0 \,, \tag{19}$$

in order to prevent a singularity at t=0. The terms (18) may be considered as a superposition of Regge poles and associated square-root branch points which only coincide near t=0 as indicated in Eq. (17). At $t=4m^2$, the pole trajectories must develop a threshold, while the branch points do this only at $t=t_i$. The pole-cut relationship can be such that the unwanted branches of the pole trajectories are removed from the physical sheet for $t>0.^{1,5}$ In Eq. (18) we assume that the weight function $\rho_{-}(\xi)$ is sufficiently well behaved so as not to introduce unwanted singularities.

In the s channel, the amplitude (18) gives rise to expressions like Eq. (11) with

$$\operatorname{Im}\psi_{-}(\xi,\ln s) = \rho_{-}(\xi),$$

$$\operatorname{Re}\psi_{-}(\xi,\ln s) = \frac{2}{\pi} \ln s \left(\int_{0}^{\xi} dx \, \frac{\rho_{-}(x)}{x} \right).$$
(20)

Of special interest is the question of oscillations in the differential cross section, which can be present with amplitudes of the type discussed here.¹³ We hope to come back to this problem elsewhere.

We would like to thank Professor T. Kinoshita for some helpful comments.

*Supported in part by the U. S. Atomic Energy Commission under Contract No. AT.(11-1)-264.

¹R. Oehme, Phys. Letters <u>30B</u>, 414 (1969); <u>31B</u>, 573 (1970); Phys. Rev. D 2, 801 (1970).

²R. Oehme, in *Strong Interactions and High-Energy Physics*, edited by R. G. Moorhouse (Oliver and Boyd, London, 1964), pp. 129–227. This article contains further references.

³F. Zachariasen, in *Proceedings of the Coral Gables Conference on Fundamental Interactions at High Energy II*, edited by A. Perlmutter *et al.* (Gordon and Breach, New York, 1970), pp. 103–122. This article contains further references.

⁴V. N. Gribov, I. Yu. Kobsarev, V. D. Mur, L. B. Okun, and V. S. Popov, Phys. Letters <u>32B</u>, 129 (1970); A. A. Ansel'm, G. S. Danilov, I. T. Dyatlov, and E. M. Levin, Yadern. Fiz. <u>11</u>, 896 (1970)[Sov. J. Nucl. Phys. <u>11</u>, 500 (1970)]; J. Finkelstein, Phys. Rev. Letters <u>24</u>, 172 (1970).

⁵R. Oehme, in Lectures delivered at the International Summer Institute for Theoretical Physics in Heidelberg,

July, 1970 (unpublished); Springer Tracts in Modern Physics, edited by G. Höhler (Springer-Verlag, Berlin, 1971),

Vol. 57. This paper contains further references. ⁶I. Ya. Pomeranchuk, Zh. Eksperim. i Teor. Fiz. <u>34</u>,

725 (1958) [Soviet Phys. JETP <u>7</u>, 499 (1958)]. ⁷J. Arafune and H. Sugawara, Phys. Rev. Letters <u>25</u>, 1516 (1970).

- ⁸M. L. Goldberger, H. Miyazawa, and R. Oehme, Phys. Rev. 96, 986 (1955).
- ⁹M. Froissart, Phys. Rev. <u>123</u>, 1053 (1961); A. Martin,
- *ibid.* <u>129</u>, 1432 (1963); Nuovo Cimento <u>44</u>, 1219 (1966);

R. Eden, Phys. Rev. Letters 16, 39 (1966); G. G. Volkov,

A. A. Logunov, and M. A. Mestvirishvilli, Serpukhov Re-

- port No. STF 69-110 (unpublished); S. M. Roy and
- V. Singh, Phys. Letters <u>32B</u>, 50 (1970).

¹⁰K. Bardakci, Phys. Rev. <u>127</u>, 1832 (1962).

¹¹R. Blankenbecler and M. L. Goldberger, Phys. Rev. 126, 766 (1962).

¹²J. Finkelstein, Phys. Rev. Letters <u>24</u>, 172 (1970); <u>24</u>, 432 (E) (1970).

¹³T. Kinoshita and A. Martin (private communication).

PHYSICAL REVIEW D

VOLUME 3, NUMBER 12

15 JUNE 1971

Ghost-Eliminating Modifications in Multipion Amplitudes: Factorization on Leading Trajectories

Matthew A. Jacobs

Department of Physics and Astronomy, Tel-Aviv University, Tel-Aviv, Israel (Received 11 February 1971)

The modification of B_n to eliminate the ghost at $\alpha_{\rho} = 0$ is investigated. The $J_1 J_2 J_3$ leading three-particle vertex in B_n is calculated. Using this form, it is shown that *no* finite number of term modification of B_n without trajectory depression satisfies consistent factorization in all multipion amplitudes. Allowing trajectory depression, although daughter levels still presumably do not factorize, a solution is found in which (a) all leading trajectories factorize, (b) are nondegenerate, and (c) the $\rho\rho\rho$ vertex need not be zero. We believe this to be the suitable generalization of the Lovelace $4-\pi$ amplitude.

I. INTRODUCTION

Since the introduction of the Veneziano 4-point¹ and *n*-point² amplitudes, a great deal of work has been done deriving the properties of planar dual amplitudes. From the work of Hopkinson and Chan³ and others, and with the factorization results of Fubini and Veneziano,⁴ and Bardakci and Mandelstam,⁵ the function B_n appears to be a suitable approximation for the *n*- σ amplitude with all identical internal trajectories (σ : $J^{PIG} = 0^{+0+}$). There are a number of modifications which must be made to B_n to obtain an appropriate form for, say, the *n*- π amplitude. Among these are (a) the ghost at $\alpha_{\rho} = 0$, which would be a tachyon due to the positive intercept of the real ρ trajectory, must be eliminated, (b) positivity constraints arising from the requirement that all three-particle couplings be real must be imposed, and (c) the so-called abnormally coupling leading trajectories (ω - A_2 trajectory in odd number of pion channels) must be included.

The ω - A_2 trajectory inclusion has been discussed in the literature by Dorren *et al.*⁶ and by Gabarró and González Mestres⁷ for the $6-\pi$ amplitude, and by Canning and Jacobs⁸ for the $8-\pi$ and $n-\pi$ amplitudes. The ρ ghost has been discussed by Lovelace⁹

3220