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Construction of Veneziano-type amplitudes for the general pseudoscalar meson-meson (PP)
scattering incorporating unitary symmetry is considered. Emphasis is given to the use of
the crossing matrix, both in the SU(3) and in the lower symmetry group SU(2). All the essen-
tial features of the quark-model calculations are reproduced. Eigenvalues of the crossing
matrix are seen to correspond to the symmetry properties of the amplitudes, which in turn
produce the different signatures of Regge trajectories. Incidentally it may be mentioned that
the unwieldy tensorial decomposition in the internal symmetry space has been done away with.

INTRODUCTION

Suppression of exotic resonances in the construc-
tion of dual amplitudes has become a problem of
prime importance in recent times. ' It has been
observed in many cases that the absence of exotic
resonances has strong implications on the dynam-

ical structure of hadrons. ' In the case of m-m

scattering the absence of I= 2 particles predicts a
degenerate p f' traje-ctory. Other similar infer-
ences have been made in the case of mq, qg, m~,

and various other scattering processes. In the
usual method of construction of Veneziano-type
amplitudes, use is made of the symmetry property
of the invariant amplitudes under the interchange
of Mandelstam variables. ' Incidentally, it may be
mentioned that sometimes it becomes difficult to
obtain such symmetry properties of the amplitudes,
Even the proper writing of the invariant structure
(in internal-symmetry space) of the amplitudes be-
comes difficult when higher symmetries than
SU(2) are invoked. Several authors have already
made some observations regarding the structure
of the meson-baryon resonances by combining
SU(3) symmetry and duality. In this respect
Capps ' has deduced some important consequences
about the spectrum of Regge trajectories, which
follow from the absence of exotic resonances in the
crossed channel. In this paper we have tried to
visualize the implications of the inferences made by
Capps and others more clearly, through the explicit
construction of the amplitudes on the basis of the
duality hypothesis. The degeneracy of two octet and
singlet trajectories is seen to follow both from
meson- meson and meson-baryon scattering.

Recently, a successful attempt has been made by
Yahil, ' from the standpoint of the permutation
group, to obtain a method for suppressing the
exotic poles in all channels. In his method it i:s
necessary to know the representation of the permu-
tation group on the Mandelstam variables s, t, u,
and to use the properties of crossing matrices. It

is also worth noticing that in his method one must
work with unphysical amplitudes rather than with
the physical one.

Mention can also be made of the work of Neville, '
who has constructed the amplitude for PP- PV
with the help of the quark model for the pseudo-
scalar and vector mesons. In his approach, the
exotic resonances do not occur owing to the proper
orientation of the intermediate quark lines in the
box diagrams. His amplitudes have also the proper
dual nature and signature for all the trajectories
mentioned before.

We now describe a method which utilizes only the
property of the crossing matrix and no other math-
ematical and physical assumptions. It is known

that the eigenvalues of the crossing matrix can be
only +1, from which we have constructed eigen-
amplitudes having the correct symmetry properties.
These eigenamplitudes, when supplemented with

the ansatz that the exotic channels do not contain
any poles, give unique solutions for all the physical
amplitudes. Our amplitudes demand the degener-
acy of 8„8„and singlet trajectories of different
signature. In the following we have first consid-
ered the case of SU(2) symmetry (e~., v-v scat-
tering) and then extended it to the case of P-P
scattering in the unitary- symmetry scheme. Last-
ly, we have demonstrated that our SU(3) amplitudes
reproduce those of m-n scattering as a particular
case. One need not construct the Veneziano struc-
tures for the invariant amplitudes and the compli-
cated connections between the invariant and physi-
cal amplitudes.

SCATTERING VfITH SU{2)SYMMETRY

In m-w scattering the isospin crossing matrix is
written as
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As a first step in our construction of the dual am-
plitudes, we invoke the physical content of the
crossing matrix P, given by the equation

Pt, A, =A),
from which we want to find linear combinations of
the isospin amplitudes A, (A, ) which will have a
simple symmetry property under the (s, t) trans-
formation. In order to accomplish this we con-
struct a similarity transformation S, such that
the transformed basis SA, (SA, ) will have the de-
sired property. Then an immediate consequence of
the equation

(SP„S ')(SA, ) =SA,

is that SPS ' is diagonal. But the eigenvalues of
P are found to be (+ 1, + 1, -1), that is, S satisfies
an equation of the type

energy behavior and pole structure (one such am-
plitude is the we11-known Veneziano prescription).
Without any loss of generality, we can now write
the most general form for the symmetric and anti-
symmetric amplitudes obtained above, as follows:

2A, —3A, + 7A, =f,(s, t) + [g,(s, u) +g, (t, u)],
2A, —3A, —5A, = [h, (s, u) —h, (t, u)],
2AO+ 3A, + 7A, =f,(s, u)+ [g,(s, t)+ g, (t, u)],

(10)

2A, +3A, —5A, =[h, (s, t)-h, (u, t)].
In Eqs. (10), f(x, y), g(x, y), h(x, y), etc. , are sym-
metric functions of their arguments. When these
equations are coupled with the physical condition
that A,' does not contain any pole in the s channel,
they yield

A=f2=0 g|=g.=hi=h.

So,

(1
SPS'=i 1

ITST $T~T

=B (say). (3)
along with

A,' = g(t, u),

A; =-,' [g(s, t) —g(s, u)],
Ao = —,'[g(s, t) +g(s, u)] —„g(t,u) .

( 2 9 -5}
S=' 2 -3 7

l-4 6 10'
(5)

except for a normalizing factor. This expression
for S implies that the following combinations of
isospin amplitudes,

2A'+ 9A' —5A',

2Ao 3Ax+ VA

are symmetric under the (s, t) transformation,
corresponding to the eigenvalues + 1, and that the
antisymmetric combination is

—4A~+ 6A', + 10A~,

P denotes the transpose of P. The explicit struc-
ture of S can be obtained from Eq. (4) which sug-
gests that the columns of S are nothing but the
eigenvectors of P~. With this simple observation,
we find

These are the amplitudes obtained by Shapiro'
in a completely different manner.

EXTENSION TO THE CASE OF SU(3)

In the previous section we have obtained the dual
amplitudes for different isospin channels in the
case of m-w scattering. The utility of our method
can be seen when it is applied to the case of gener-
al P-P scattering, where P stands for the octet of
pseudoscalar mesons in SU(3) symmetry. The
SU(3) crossing matrix for octet-octet scattering
has been deduced by De Swart, ' Cutkosky, ' and
Gourdin. " We have found that of Gourdin useful
in our analysis. The above-mentioned matrix for
8&& 8-8x 8 can be written as

r
+1 +—' 0 0 0

corresponding to eigenvalue -1. The same steps
can be followed for the (s, u) crossing matrix and
we find the following combinations of the ampli-
tudes with the indicated symmetry properties:

8 10 40

0 0 0

(13)
2Ao —5A,'—9A

symmetric
—2A' —7A' —3A', ,

(8)
8 +s +& 0 2 0 0 0

4AO + 1OA2 6A y anti symmetric ~ (9)

Once Eqs. (6) to (9) are obtained, it is a simple
task to construct amplitudes for each isospin
channel, which will be in conformity with the high-

0 0 0 0 0

o o o o o

0 0 0 0 0
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where the upper signs are for the (st) matrix and
the lower ones correspond to (su); X is a 3 x 3
matrix which stands for

(0 ~ 0)
x= 15 0 0

Io o -Ij
for (s, t)

and

fo o
X= 0 -1 0 for (s, u).

(15 0 oj

The rows and columns of (13) are labelled accord-
ing to the following order:

Alt A898 t 27t A8 9 2(A10+A10)t 2(A10 A10)t

—,'(A, +A, ), —,'(A, -A, ).

Here we also have observed that eigenvalues of
(13) are (111, -1-1, 1, -1, -1, ) and a matrix
similar to S is constructed from the equation

with B=diag (1, 1, 1, -1, —1, 1, -1, -1). It is
interesting to note that the crossing matrix breaks
up into two submatrices 5 && 5 and 3 && 3 and can thus
be dealt with separately. Let us first think of the
5 x 5 one. For this case

and (5') below] containing both physical and exotic
amplitudes and having the proper symmetry pro-
perties. We shall now follow the same technique
a,s in the m-n case in writing down the Veneziano
form for these eigenamplitudes, which are given
below.

4' A, —5A, +A8 +A», antisymmetric
(5 ') gA, + 5A, + 5A,0

—9A„,
(4") A, —5A, +A8 +17A» —6A,7,

symmetric
(5") 9A, +5A, +25A»+21A„.

The eigenamplitudes being given by (4')-(5"),
the main problem is now to construct the most
general type of functions (whose arguments are
Mandelstam dynamical variables} which have the
correct symmetry property, and have other physi-
cal requirements built in. Then, proceeding as
before,

(a) A, —5A, —A, —17A„—6A.„
=f(s, t)+ [g(s, u)+ g(t, u)],

(b) A, —5A, -A, +5A,0= [g,(s, u) —g, (t, u)],

(c) A, —5A, +A, + 17A,0 —6A„
=f,(s, u)+ [h(s, t) + h(t, u)],

So,

I'0 0 9

S=1 0 0

i0 9 -9

+1 +2
w2 w5

+5 +5

B=diag (1, 1, 1, -1, -1). (d) A, —5A, +A, —5A„= [h,(s, t}—h, (u, t)],

(e) 9A, +5A, —5A.» —9A27-—[n(s, u) —a(t, u)],

(f) 9A, —5A,,+ 5A,0
—9A„=P(s, t) —P(u, t),

(g) 9A, +5A, +25A„+21A„
= r(s, t)+ [a,(s, u)+ n, (t, u)],

which gives us the following eigenamplitudes:

(1) 3A27 + 2A8 +A»,
(2) A, +A8 +2A, 0 t

(3) A, + 2A8 + 5A»,

(4) A, —5A, +A8 + 5A„,

(5) 9A, —9A27+5A8 +5A,0,
where the upper sign [lower sign] corresponds to
the (s, t) crossing [(s, u) crossing]. Just as in the

t

case of m-m scattering A2 was taken as exotic, sim-
ilarly here —,'(A„+A») (henceforth called A») and

A» have been assumed to be so. In the above five
eigenamplitudes, the first three are symmetric and
the last two antisymmetric. The first three can be
recombined and one obtains a symmetric expres-
sion containing only A„A, , and A, which does
not interest us at this moment, as the amplitudes
occurring here are all physical (none is exotic).
Two more combinations can be formed [see (4')

n= —5h, P= —5g,

along with

(14)2A, =—,
' [a(s, u) —a(s, t)],

2(A, —5A, ) = ,'[2a(t, u) —a—(s,t) —a(s, u)],

18A, = —,'[5n(s, t)+ 5a(s, u) —4a(t, u)].

Exactly the same procedure can be followed for
the remaining 3 && 3 crossing matrix, or we may
think that these three amplitudes are unphysical

(h) 9A, —5A, —25A„+21A,7
= 6(s, u}+[p,(s, t) + p, (t, u)],

which yields

f=ft =r = 5= 0,

h= h„g=g„n = n„P= P„
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and are not excited, so that we may put them iden-
tically equal to zero.

DISCUSSION

Equation (14) gives the final expression for the
dual amplitudes for different SU(3) channels when

all the trajectories are taken to be degenerate. An
interesting observation is that, in spite of this de-
generacy, the trajectories occur with different
signature in different physical amplitudes, which
can be visualized by letting t-'~, s fixed.

We then have

I+ e-isa(s) [+(t)]a(s)
10 sini(a(s) I (n(s))

I+ 8-isa(s) [~(t)]a(s)
A8 =—

18 sin)(a(s) Nu(s))

1+e-isa(s) [&(t)]a(s)
45 sin)iu(s) I"(o.(s))

The f(t, u) term does not contribute as it falls off
faster than any power of t.

Finally, we want to show that our SU(3) eigenam-
plitudes yield the correct dual amplitudes for the
different isochannels of the SU(2)-symmetry case.
%'e illustrate our method in the ease of z-m scat-
tering. Consider the process n'm'- m'n' which has
I= 2, I, =2 as the quantum numbers of the interme-
diate channel:

scattering amplitude is written as

T = U(p')[A(s, t, u)+yQB(s, t, u)]U(P).

The invariant amplitudes have the crossing prop-
erty

A(s, t, u) =X'"A(u, t, s),

B(s, t, u) = X'"-B(u, t, s),

where X'" is given by

(-I -6 15)
X'"= 3 6 5

(3 2 31

Proceeding as before, it is easy to obtain

[I 0 3)
S= 0 1 1

(3 2 -5i
which leads to

A' =015

A;= ——,'A;= —-', a[f(s, t)+f(t, u)] —-', 6g(s, u),
(15)

for the dual structure of the non-spin-flip eigenam-
plitudes. It is worth mentioning here that in writ-
ing the above equations for the eigenamplitudes we
have tentatively assumed the degeneracy of the

Q3 and e,' which are, respectively, the traj ectories
of "3"and "6". Similarly, for the case of spin-flip
amplitudes, we obtain

~)('&~)('& =g C, , [I,I„I,', I,'] 15

B,' = ——,'B,' = —-', a [f(s, t) —f (u, t)].
(16)

)( ~N, 8, 8, I2, I„O& .8 8

I,O I,O IO

If use is made of the proper Clebsch-Gordan co-
efficients and isoscalar factors, "it is easily seen
that

In Eqs. (15) and (16) we have taken "15"to be an
exotic state. The above formulas allow a mixture
of octet mesons to be present in the t channel. It
can be seen that the structure of the A. and 8 am-
plitudes obtained is very similar to that for mN

scattering written by Gupta et al, .

so that the exotic channel in the SU(2)-symmetry
case does not contain any s-channel pole, as re-
quired by the Veneziano model.

In the above discussions, we were primarily in-
terested in the construction of the dual amplitudes
for PP scattering with exact SU(3) symmetry. It
is rather interesting to note that the same proce-
dure is also effective in describing meson-baryon
(MB) scattering. As a prototype of MB scattering
we consider here the interaction of octet of pseudo-
scalar mesons with Sakata-model triplets. The

CONCLUSION

In the light of the above observations, it is seen
that the basic principle underlying our computation
is the diagonalization of the crossing matrix. In
this method the invariant structure of the amplitude
in the internal-symmetry space (which essentially
requires the knowledge of projection operators) is
not required, and the method is general enough to
encompass any higher-symmetry scheme [e.g. ,
SU(6)]. Furthermore, the important feature of our
method is that we deal with physical amplitudes
throughout our calculation.
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Within the framework of complex-angular-momentum methods, it is shown that amplitudes
which violate the Pomeranchuk theorem require negative-signature trajectories which are of
the form 0. (t) = 1+constr+0(t) near t = 0. There must be corresponding positive-signature
trajectories. The character of the singular surfaces with negative signature is discussed
briefly.

I. INTRODUCTION

In previous papers we have discussed Regge
pole and branch-point trajectories a(t) which are
complex for real t&0 due to left-hand cuts in the
t plane of these functions. ' Such trajectories are
of interest for the description of diffraction scat-
tering. " In particular, pole-cut systems with
complex trajectories can be used for the construc-
tion of rather general and physically meaningful
amplitudes which imply different, constant total
cross sections for particle and antiparticle scat-
tering. 4'

It is the purpose of this paper to show that ampli-
tudes which violate the Pomeranchuk theorem'
generally require negative -signature traj ectories
with square-root branch points at t = 0. They are
of the form a(t) =I+const Dt+O(t) It then fo.llows
that there must be corresponding positive-signa-
ture trajectories, a fact which can also be proven
directly. ' The character of these singular sur-
faces of the continued partial-wave amplitude will
be discussed briefly.

II. I-PLANE ARGUMENT

ImF, (s, 0)- s (2)

We denote the scattering amplitudes for particle
and antiparticle scattering by F(s, t) and E(s, t), re-
spectively, and we introduce the combinations

F+(s, t) = F(s, t) + E(s, t) .
Assuming constant asymptotic total cross sections
given by 0 and o. , we have for s-~

2 0' —0'
ReF (s, 0)--—sins

m 16m '

with ReE,(s, 0) being of the order s(lns) '.' These
properties follow from the familar dispersion rela-
tions. ' From Eq. (2) and the general postulates of
dispersion theory or of local field theory, we ob-
tain the bounds

(o —o) /47PQ ~+op% o

for the elastic cross section

o „(s)-,

dt's

F(s, t) P .

Here a is a constant defining the maximal rele-
vant angular momentum I.= —,'Mas lns in the s-chan-
nel partial-wave expansion of E(s, t) for large val-
ues of s."'

Let us consider the continued partial-wave am-
plitudes E,(t, X). These functions have the usual
analytic properties in the complex manifold (t, X).'
In particular, they satisfy the continued elastic
unitarity condition for 4m ~t& t; (t; =first inelastic
threshold). This condition forbids certain kinds of
singularities. We ask: What are the character-
istic features of allowed, isolated singularities of
F,(t, X) near. (t, X) = (0, 1) which are required by the
special conditions (2)-(4)? We assume that F,(t, X)
has a finite number of such singularities at
A. = as(t), k = 1, 2, . .. . Irrespective of the charac-
ter of these singularities, each one can contribute
a term to the asymptotic expansion of F (s, t) for
s-~ which, except for logarithmic factors, is of
the form s &

' . Equation (2) requires then that
a, (0) ~1, with a„(0)=1 for at least one trajectory


