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Assuming constant but unequal asymptotic total cross sections for particle-particle and
particle-antiparticle collisions, it is proved within axiomatic field theory that the scattering
amplitude must have infinitely many zeros in a certain narrow angular region of the t plane
containing the physical region t 0. It is shown further that this region cannot be made nar-
rower without additional assumptions. These results are also valid for a more general class
of scattering amplitudes, including those saturating the Froissart bound.

I. INTRODUCTION

The data on high-energy total cross sections ob-
tained at Serpukhov' have raised the possibility of
experimental violation of the Pomeranchuk theo-
rem, and have led several authors to investigate
its implications and to propose models of scatter-
ing amplitudes incorporating such a violation. '4
Some of these models' have the feature that they
predict an oscillation of the differential cross sec-
tions at near-forward angles. If such an oscillation
were an intrinsic feature of all these amplitudes,
it would of course be of considerable experimental
interest. More recently, however, other models
have been proposed in which such an oscillation
does not appear in the cross section, although it
still appears in the derivative of the cross section
with respect to t (momentum transfer squared).
In any case, in all these models, the scattering
amplitudes have infinitely many zeros, all collaps-
ing onto the origin t = 0 at the rate (lns) ' as s- ~,
either along the negative real axis, ' or through the
complex region. Thus it will be interesting to see
to what extent the properties of zeros of the Pom-
eranchuk-theorem-violating amplitudes can be de-
termined in a model-independent fashion. The main
purpose of this paper is to give an answer to this
question within the framework of axiomatic field
theory.

The first useful information on the zeros of the
scattering amplitude was obtained several years
ago by Bessis, ' who showed that, within axiomatic
field theory, any scattering amplitude E(s, t) (not
restricted to the Pomeranchuk-theorem-violating

one), which does not become purely real in the
high-energy limit, cannot have zeros within a cir-
cle of radius C,('lns) ', where C, is a positive con-
stant determined by the asymptotic behavior of
E(s, t) for s-+~, ~t~&t, . By adapting Bessie's re-
sult to the Pomeranchuk-theorem-violating ampli-
tude, Eden and Kaiser' have recently shown that
such a constant C, can be found in this case, too.
They have shown further that one can find another
constant C„which is a finite multiple of C„such
that E(s, t) has at least one zero within the ring

(lns)' (lns)' '

Their proof is based on the observation that, if the
domain (1) has no zero of E(s, t) for arbitrarily
large C„one inevitably runs into contradiction with
unitarity. They have shown further that the number
of zeros in (1) will increase as C, increases. Un-
fortunately, this result does not tell us in what part
of the t plane these zeros are located. By sharp-
ening the technique of Ref. 6, however, we have
been able to show that some of these zeros must
lie on the left half t plane. "

Through these investigations it has become in-
creasingly clear that the requirement that the scat-
tering amplitude violates the Pomeranchuk theorem
is so restrictive that it determines the analytic
property of E(s, t) to a considerable extent. For
example, as was shown by Arafune and Sugawara, '
in the 0& t& t, region, lmE(s, t) has a lower bound
which is qualitatively very similar to the well-
known upper bound.

The most striking manifestation of this strong re-
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striction, however, is that the function defined by

F(s, —t,T(lns) ')
7 =lims-+- E(s, 0)

where ReE(s, 0)-C'sins, ImF(s, 0)-C"s, is not only
analytic in 7 but is actually an entire function of
order —,'. (The precise meaning of lim, ,„will be
specified later )T. his result is derived from ana-
lyticity and unitarity of axiomatic field theory and
does not require any extra assumption. As far as
this point is concerned, Casella's guess' has there-
fore been justified. It is an immediate consequence
of the nonintegral order that f(T) must have infinite-
ly many zeros. " Thus we have recovered (and gen-
eralized) in a very simple way the result of Eden
and Kaiser. '

Actually these results are not restricted to the
amplitudes that violate the Pomeranchuk theorem.
The function f(r) defined by (2) is entire for any
scattering amplitude that satisfies the condition"

, ImF(s, 0)s(lns)'
I

I,
const for s&s, .E s, 0 (3)

In particular, scattering amplitudes saturating the
Froissart bound [i.e, o„,(s)-C(lns)'] belong to this
class.

In Sec. II we show that f(7) of this class is an en-
tire function of order —,

' and of finite type c 0. The
fact that f (7) is square-integrable (a consequence
of unitarity) enables us to express it in terms of
certain integral representations. One of these rep-
resentations can be readily turned into an eikonal-
like representation. This is studied in Sec. III. We
examine the distribution of (infinitely many) zeros
of f(T) in Sec. IV. In particular we show that f(~)
must have infinitely many zeros in the neighborhood
of the positive 7 axis (i.e. , negative t axis) defined
by

He has found in particular that, if the scattering
amplitude saturates the Froissart bound strongly,
i.e., it is as large as is allowed theoretically, ' all
zeros of the limit function f(7) must lie on the real
7 axis. We shall give an alternative proof of this
result of Roy's at the end of Sec. IV.

In Appendix A we sketch the proof of the "Paley-
Wiener" theorem for the Hankel transform stated
in Sec. II. Appendix 8 gives a derivation of Eq.
(28) needed in Sec. III. Appendix C is devoted to a
sketch of an explicit construction of the entire func-
tions discussed in Sec. IV.

II. AlMLYTIC PROPERTY OF f(r)

In order to avoid unnecessary complications we
shall restrict ourselves to the elastic scattering of
spin-zero particles of equal mass. Let E(s, t) be
the invariant scattering amplitude normalized as

for sufficiently large s. It is shown within axiomat-
ic field theory that"

(i) F(s, t) is holomorphic in the disk ltl & t, for
any s in the cut s plane, where t, is a constant less
than or equal to the t-channel threshold;

(ii) E(s, t) is bounded by Cs for ltl & t, and
S~+~;

(iii) F(s, t) satisfies unitarity in the s channel.
From these properties it follows that E(s, t) sat-

isfies the bound'

IF(s, t)l &[ 4vo(s) /t, ]' ' slnsexp[( tlI/t, )'~'Ins]

(8)

for ltl&t, .
As is well known, the Pomeranchuk-theorem-

violating amplitudes behave asymptotically as'

E(s, 0) = tos+Cs lns, 0 &ICI & (4vc /to)' ',

(»IT I)(»»ITI)" (»»".»ITI) '

where 6 =argv, and the logarithm is taken n times
in the last (nth) fa,ctor, n being any positive integer.
Furthermore we show that it is not possible to im-
prove this domain without making some additional
assumptions. This means that scattering ampli-
tudes which are subject to no condition other than

(3) are not required in general to have zeros on the
negative t axis, or produce visible oscillations in
the differential cross section. Gf course this does
not prevent us from finding oscillating cross sec-
tions for some amplitudes of the class defined by
(3) which are subject to additional constraints. For
instance, Roy" has noticed that, if the ratio
(Ao„,)'/o„ is larger than some critical value, "
oscillations must be present in the cross section.

, ImE(s, 0)s(lns)'
I ( )I, -C, for s s„ (8)

where Co is a, positive constant. As is shown in the
following, this is the crucial relation in determin-
ing the analytic property of Pomeranchuk-theorem-
violating amplitudes in the high-energy limit. In
fact, insofar as (8) is satisfied, the result of this
paper applies to any scattering amplitude, whether
it is of the form (7) or not. Besides the Pomeran-
chuk-theorem-violating amplitudes, the class of

where 0 is the total cross section. Actually we may
weaken this asymptotic behavior and require it only
for some sequence of real points (s,. l s, -+~].dense
at infinity. '6

We note that F(s, 0) with the asymptotic behavior
(7) satisfies also the inequality
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amplitudes defined by (8) contains scattering am-
plitudes that saturate the Froissart bound. In this
case the inequality (8) is satisfied in another way:

F(s, 0) = (to. i tl) s(lns)',

In fact, inserting Eqs. (8) and (10) in (14), we ob-
tain

d~lf(s. , ~)l'&
t

'+e,J 16PC0

0 0

Let us now introduce

F(s, —toT(lns) ')
F(s, 0)

From Eqs. (6), (8), and (10) together with o„(s)
& g„,(s) = s 'ImF(s, 0), we deduce the bound on

f(s, T),

(lo)

4~C, '~'
ff(s, v)l & e "' fv f

& (lns)' —e.
0

(11)
Thus, the set Ce= (f(s, ~)l-s &S) is a family of ana-
lytic functions of 7 uniformly bounded in the disk
IT I

& (lnS)' —e. As a consequence, Ce is a normal
family": it contains at least one sequence

(f(s„,~) In = 1, 2, ...) converging uniformly in lv I

& (lnS)' —e to a function f~(v) analytic in the same
disk. Moreover fe(~) satisfies the bound (11). But
this is true for any S. Hence by choosing, for ex-
ample, S = const &N (N = 1, 2, ...), and using a clas-
sical diagonal procedure, we can extract another
sequence (f(s„', v) In = 1, 2, ...) converging uniformly
to an analytic function in any compact set of the T

plane. An alternative procedure is to use again the
sequence s„and note that Vitali's theorem applies
to the functions f(s„,T) which tend to a limit in IT I

&(lnS)' and a,re bounded in I7 I
&(lnS)'. In both ways

one obtains a function f(T) =lim, „f(s,T) which is
entire and has the properties

f(o) =1, (12)

4&C0 '~'
I f(w) I

& ' e~ for all w.
t0

(13)

1 «IF(s, t) I'«...(e).
167rs' „4m2

(14)

The last property implies that f (r) is of order p
& -,

' (a.ctually p =-,', as is shown below).
Although (12) ensures that the limit we have de-

fined does not vanish identically, there is no need
for this limit to be unique. It must t)e realized that
uniqueness can be obtained only by imposing extra
assumptions which prevent the amplitude from
oscillating indefinitely in s for every t in a fixed
neighborhood of t = 0. We shall not discuss this
point further here since it does not affect the fol-
lowing considerations.

The most important restriction on the property
of f(7) results from the unitarity condition written
in the form

and taking the limit s„-~, we get

J &~Is(~)l*

for arbitrary T &0. Hence

lim supm(r) =~,
P ~00

where m(r) is the minimum modulus of f(T) for
I7'I = r. This aga, in contradicts unitarity. In fact

f(w) must be an entire function of order exactly
equal to -', and of finite type e 0. This last state-
ment on the type can also be obtained from the in-
equalities established by Arafune and Sugawara. '
As was noted already, f(7.) must have infinitely
many zeros, being of nonintegral order. "

The fa.ct that f(v) belongs to L,(0, ~) enables us
to make use of a modified form" of the Paley-
Wiener theorem (see Appendix A): An entire func-
tion is of order p=-', and belongs to L,(0, ~) if and
only if its Hankel transform of zeroth order" has
its support contained in [0, a] and belongs to
L,(0, a), a (the type) being finite. Hence f(7) has
an integral representation

(17)

1

f(T) = duh(u)J,

(veau),

0
where

h(u)EL, (0, 1)

[note that a & 1 according to (13)], and
1

duh(u) =1
0

(20)

dv v '~ '. 15

Thus, for any scattering amplitude belonging to the
class defined by (8), we have f(w) EL,(0, ~). In par-
ticular, f(7') cannot be identically equal to 1. We
shall also need another consequence of unitarity,

I f(v) I
& const for ~ & 0 (16)

(this constant is not necessa, rily unity).
We have already noted that the order p of f(7)

cannot exceed —,
' because of the bound (13). We shall

now show that unitarity requires. that f(7) is at least
of order . To see this, suppose that the order of
f(7') is less than —,'. Then, from (16) and the
Phragmen-Lindelof theorem, "f(7) is bounded
everywhere and hence is a constant. This contra-
dicts Eq. (15).

A more precise result is obtained from the theo-
rem" for a nonconstant entire function f (7) of
growth (';, 0) that
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from Eq. (12). Let us note that Eq. (18) can be in-
verted as the usual Fourier transform,

14(x)l & e ""'. (27)

T

h(u) = lim dr f(~)J,(Wu)
T ~t)o 0

(21)
III. EIKONAL-LIKE REPRESENTATION OF

F(s, t) IN THE HIGH-ENERGY LIMIT

(strong convergence), and that, the Parseval rela-
tion still being true [see Eq. (A. 3)], we have from
Eq. (15)

J
1

dulh(u) l' &
0 0

(22)

It is then easy to improve the bound (16) by apply-
ing the Schwarz inequality to Eq. (18),

l f(2) l

& (8c,/t, )'/'T '/' for 7-+
An equally useful approach is to introduce a new

function

y(z)=f(r), z=D~. (23)

Obviously (C)(z) is an entire function of order 1 (i.e. ,
a function of exponential type) in z and has the fol-
lowing properties:

(a) (t)(z) is even in z,

(e) J Itt(x)l'xgx 'e eeeve ge t,

(e) I (*)I (, ']
The property (b) follows from (15), while (c) is a
general property of even entire functions of order
1 bounded on the real axis." [Another property,
(C)(0) = 1, is not essential in the following. ]

It follows from (b) and analyticity of (t)(z} at z = 0
that

(24)

Thus (tt(z) satisfies all conditions of the standard
Paley-Wiener theorem, "and hence has the integral
representation of the form

Q

g(z) = dp(t(p)e'", (25)

where a is the type of g(z) (= 1 in our case) and

)t'(P)«(-u, u), (t)(p) =0( p)-
It should be noted that the representations (18)

and (25) are not equivalent. Though (18) implies
(25), the converse is not true.

Finally, let us quote a theorem' which is crucial
in our later discussion: For any given real posi-
tive nondecrea. sing even function C(x) such that

Starting from Eq. (1S), we can derive rigorously
an eikonal-like representation of F(s, t) in the limit
s-+~. For this purpose we have only to establish
a relation between the weight function h(u) and the
partial-wave amplitude f, (s). As is shown in Ap-
pendix 8, this relation is given by"

f, (s}I t=(gg/Dg) i/2(lns)/2

, [—,'h(u —0)+ —,'h(u+0)],t, F(s, 0)

(28)

under the additional assumption that h(u) is a func-
tion of bounded variation in [u —e, 1]. Solving (28)
for h(u) and substituting the result in (18), we ob-
tain the eikonal-like representation of F(s, t) We.
shall discuss in particular the two cases of special
interest: (A) the case where the Pomeranchuk
theorem is violated, and (B) the ease where the
Froissart bound is saturated.

(A) In this case, using lImF(s, t)l &ImF(s, 0) for
—s+4m'(t(0, we obtain

ImF(s, —t,~(lns) ')
D~» Cslns

v ImF(s, —t,7(lns) ')
= limD-" Clns ImF(s, 0)

=0 (28)

for all v &0, where C and o are defined by (7).
Thus we have f(7*)= f*(7') and h(u) is a real func-
tion by (21). According to (7), (10), (18), and (28),
we can therefore express F(s, t) in the eikonal form

F(s, t) =„87(s bdb b(b, s)d, (bv' t), -
0

(30)

where b = 2l/)is = (u/to)'/'lns is the imps, ct param-
eter and

b(b, s) = f, (s) = (C to/8ln)(s)h(u).

(8) In this case f(w) is no longer real on the real
axis [even if ti=0, f(T) is not necessarily real
there]. We have

(tp) lns 2i6(b, S)

F(s, t) = 8)(s bdb, J~(bv t), -
0

"C x
x2 dx &eo

1

(26)
with

(31)

one can find an entire function )t)(z), not identically
equal to zero, of the form (25), such that

e"""—t ('e ~ D)t t b*

)h
2i Sv (lns}' (32)
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The unitarity property Im5(b, s) ) 0 implies

o.Reh(u)+plmh(u} o —'(o.'+ p') fh(u) I'
8m

for 0 ~u (1.
(33)

IV. DISTRIBUTION OF ZEROS OF P(z)

Turning now to the problem of the distribution of
zeros z; of g(z), let us first show that g(z) must
have infinitely many zeros in the small domain
around the real axis defined by"

1

(lnlzl)(lnlnlz I) "(lnln" lnlz I)
' (34)

Here 0 = argz, and the logarithm is taken n times in
the last (nth) factor, where n is any fixed positive
integer. To prove this, we note that, if g(z) is of
exponential type such that

1 (oo
l«1(inlz& I}"~ (ln "lnlz; I)

(36)

where there are n logarithms in the last term as
before, and the summation is over all zeros out-
side the domain (34}. But this is not compatible
with n(r)-Ar T.hus the domain (34) must contain
infinitely many zeros of g(z). By a standard appli-
cation of Hurwitz's theorem, one then finds zeros
in the amplitude E(s, , —t,7(lns, ) ') for s; large
enough, with locations as close as one wishes from
the limiting zeros within any compact set in 7.

Let us now show that the domain (34) is essen-
tially the best available and cannot be improved
without additional assumptions on g(z). Obviously,
it is sufficient to construct a function $(z) which has
only a finite number of zeros within a domain
slightly smaller than (34), for example, "

lim sup
ln

I g(z) I )0 fOr Z~+2oO (35) (»lz l}(»»lz I)" (lnln" ln fz I)'" '

and
" In'g(x).1""' (36)

e )0. (39)

To achieve this we first construct an auxiliary even
entire function y(z) such that

where

lny for y» 1ln'y =
0 otherwise

[(36) follows from (16)], then the number of zeros,
n(r), in lz I

- r must be of order r [i.e., n(r) Ar, -
Aw 0] as r —~.27 On the other hand, g(z) has the
property th

~ !sine; I

(37)

where the summation is over all zeros of g(z).
Suppose now that the number of zeros in the domain
defined by (34) is finite. This would mean that

Ix(z)l - Ix(0)l (40)

in the domain (39). Once such a function is found,
the desired function P(z) may be defined by

lt(z) =I.X(z) —x(0)]/z'. (41)

Thus the problem is reduced to that of finding an
appropriate entire function )t(z). Since it is suffi-
cient to construct one such example, we shall fur-
ther assume that y(z) is square integrable on the
real axis. Then we can apply the theorem of Ref.
24 mentioned at the end of Sec. II. Namely, if we
choose a nondecreasing function

C,(x) =
/[In(fxf+ic)][lnln(fxI+ic)]" [lnln" ln(fxf+ic)]'"I ' (42)

it satisfies the condition (26), and hence there exists an entire function X(z) such that

lx( )I

for real x. For complex z we have"

fit(z) I
(el™l

A sketch of an explicit method of construction of such a function will be given in Appendix C.
Now, if we consider the function defined by

(z)eie+c2(z)

with

C,(z) =
[ln(z+ic) ——', iv](In[In(z+ic) —zin])" (In "ln[ln(z+ic) —,'iv]}'" '—

(43)

(44)

(46)

(46)
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where the positive constant c is chosen big enough
to avoid singularities of the logarithms, this func-
tion is holomorphic in the first quadrant 0 ~ argz
~ —,'z, and is bounded by 1 on the positive real axis
[from (43)] and on the positive imaginary axis [from
(44)] . Applying the Phragmen-Lindelof theorem"
to the function (45), we therefore find that (45) is
bounded by 1 everywhere in the first quadrant.
This means that

IX(z)I «lexp[-iz -C,(z)][, 0«argz &-',z. (47)

g(u) = —(in + i3)h(u) = , i + ——h(u).tp Ptp
8n. 8rr

(53)

Then we obtain

are on the real axis and there are no complex
zeros.

We shall close this section by giving an alterna-
tive proof of (52). Strong saturation of the Frois-
sart bound means that n =4m/f, in Eq. (9). Let us
put

Similar bounds can be found for other quadrants,
too.

The region where ~y(z) ~
is less than unity, namely

where the real part of the exponent in (47) is nega, -
tive, is given for large ~z ~ by

1 ~ Img(u) ~ ~g(u) ~'

from (33), and

dug(u) =i+—1 Pt
4m

(54)

(55)

Imz 1

Rez (ln~z()" ~ (lnln" In)z~)'" '

Thus in the region"

(48) 1

du Img(u) = 1
0

(56)

(In/z J)(lninfz/)" (lnln "ln fz/)'" ' (49)

where n « I, X(z) decreases very rapidly as ~z j-~.
Therefore, in the domain (49) the function

X(z) —X(0)
z' (5o)

can have at most a. finite number of zeros. This
completes the proof that the result (34) on the loca-
tion of zeros cannot be improved.

The absence of oscillations of g(z) could also be
shown. But it is most simply seen in the example
proposed by Okun and Popov and independently by
one of us (G.A. ), '"

(51)

2 J,(v 7)
(52)

This means, in particular, that all zeros of f(7)

where, however, the zeros are much closer to the
real axis. Hence the existence of a nonzero differ-
ence between asymptotic particle-particle and
antiparticle-particle cross sections does not nec-
essarily imply oscillations of the differential cross
sections. However, as was mentioned in the Intro-
duction, Roy has noted that too strong a quantitative
violation of the Pomeranchuk theorem induces
oscillations in the cross section. " He has found in
particular that, in the ca.se where the Froissart
bound is strongly saturated [namely, not only

o„,(s)-B(lns)', but B is the largest possible con-
stant' ], the function f (7) is completely determined
and given by

from (20). But (56) and Img(u) «1 imply that
Img(u) = 1 almost everywhere. It follows from (54)
that Reg(u) =0. This means that P =0 and hence
h(u) = 2. This result enables us to evaluate .f (w):

1

f(~) = -', du h(u)do(~7u)
p

1

du Z, (v~u)
0

2 J,(Wv. )

v~
(57)

This proves (52).
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h(u) = lim -', t d7 f (~) &0( Tu ),
g -+oo

(A. 1)

(i) "Plancherel" theorem. If f(v) C L,(0, ~), then
there exists a function h(u) CL,(0, ~} such that (all
limits here are strong-convergence limits)

Let us define G(u, ) by performing a further inte-
gration,

82
G (u, ) =— d'u, H(u, )

0

U

f(7) =lim -', dub(u) Z, (VTu),

and

Ilh(«) II
= llf(T) II.

More generally

(h4, ho) =(fi, f0) ~

(A. 2)

(A. 3)

(A.4)

Q2 oo u
du, d7 7 —' 4, v'7u, . A.8

p 0 j
The repeated integral in (A.8) is now absolutely
convergent [this results from f(~)CL,(0, ~) and

J,(v'7u, );„(2/v)'~'(wu, ) 't'cos(v'Tu, ——', 7) )], and

the Tonelli-Hobson theorem allows us to inter-
change the order of integration:

(ii) Support property If f(r) i.s moreover an
entire function of order —,

' and type & a, then h(u)
=0 for u&a', and vice versa.

The proof of (i) is quite similar to the proof of the
analogous theorem for Fourier transforms, and we
shall omit it. That it must be true is intuitively
clear from the properties of Hankel's repeated in-
tegral" and from the fact that (A. l) takes the form

v v h(v')- (2jv)'t' dxvx f(x')cos(vx ——,')T),
0

if we replace J,(veau) by its asymptotic form. Then

f(~)CL,(0, ~) and h(u)C L,(0, ~) are equivalent to
Dx f(x )C Lo(0, ~) and 4tv h(v )6L2(0, ~), respective-
ly, and (i) is "equivalent" to the Plancherel theo-
rem-for Fourier transforms.

The direct proof of (ii) is more delicate, but we

can start from the standard Paley-Wiener theorem
for the function (J)(z) = f(z'). Let us suppose that

f(w) is an entire function of order —,
' and type ~ a,

such that f(r) CL,(0, ~) on the real axis. Then we

have, from Eq. (25),

G(u, ) =
)

dT du, v u, J,(4wu, )
f(~)

~0 ~ o

u2= 2 d7 f(7) 'J, (v'~u,—).
0 7

(A.9)

"dv
= 4u, t dp g(p) —J,(v'~u, )cos(p)) T ).

0 0

Now, for u2&p', "
—J,(v'ru, )cos(pWr) = 1 —2—,6"dv p'

0 2

so that

0(s,) =s.
I 4J &p 4( (') -

I 4J) 4t' A( D)
(

0 0 )

for u2 &a . (A.10)

At this stage we can insert the representation (A. 5)
and use the Tonelli-Hotaon theorem once again:

u2
a

G(u, ) =4
) d~ —' J,(v'7u, ) dp)l)(p)cos(p/~)

y p 7 p

a

f(s)=4f 4'4(()sss(P&r).
0

Let us consider
lt y

oo

H(u, ) =- du h(u) = du h(u)8(u, - u)
0 0

(A. 5)

(A..6)

But H(u, ) is by definition a continuous function.
Thus,

a

H(u, ) =G'(u, ) =4 dPf(P) =const
0

Since h(u)EL, (0, ~) and 8(u, —u) CL,(0, ~), we can
apply the Parseval relation (A.4) and obtain which implies

for any u, &a', (A. ll}

I44
oo

H(u, ) =, duh(u)8(u, —u) = ) d7 f(v)8(v),
40 ~0

tl tl

H(u") —H(u') = du h(u) = 0
tt'

where

8(v) = lim —,
'
Jt du 8(u, —u) Jo(v vu)

0 As a consequence, "
for any u', u" &a .

Qy u ) 1/2
du Z,(mu) —') Z(=VTu, )

0
h(u) =0 almost everywhere for u &a'. (A. 12)

Thus we have
OO

H(u, ) = )( d~ f(7.) —'
I

J,(v'ru, )
4p

(A.v)

This proves the first part of (ii). The second part
(converse) is trivial.

Finally, we give the formal connection between
h(u) and g(P):
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1 l' h(u)
f(p) = —

Jt du (,),(, ~

w(P)
h(u) ~d dP { 2 u)1/21

1/2
vt, (vx) „-„cos[v(tanp —p) ——,'ii]

ptanP

x[I+0(1/vtanp)], x= 1/cosp (&1),

where 0 & p & a, 0 & u & a'.

APPENDIX B: PROOF OF Eq. (28}

The partial-wave amplitude f, (s) may be ex-
pressed as

J
1

dx vt.(vx) „-„-,'+O(v '~'),
0

t dx vt, (vx) =1.
0

(B.9)

(B.io)

(B.1 1)

1 1

f, (s) = dcos0 E(s, t)Pi(cos8)
ll

Noting that tanho. —ix &0 in (B.8) for 0&x & 1 —e,
it is easily seen that

1 2t,
)32ii s(lns)~

(s/t0) (lns) 2 ti)Tx d~ f (~)P, 1 — ', (B.1)
0 s lns'

limX, =O for any e &0.

To evaluate X4, we may rewrite it as

X, —v v jl dyg(y) cos(vy ——,'ii)

(B.i2)

(B.13)

in the large-s limit where f (~) is defined by (2).
we put I=-,'(us/f, )' 'Ins (0&u & 1), this relation be
comes

taking account of (B.9), where y =tanP —P and

(B.14)

f, E(s, 0)
fi( )

16m s(ins)
S~ac f ~oo

where
4/ /u

X, (u) = I d~ f(7)P, 1 ——,
0

Using Eq. (18), this may be rewritten as"
1 4/2/u

X, (u) =-,' dv h(v) d~ t, (v~v)P, 1 ——,
0 0

(B.2)

(B.3)

Since g(y) is of bounded variation in y by assump-
tion, the integral over y in (B.13) is O(1/v), " and
hence

X, =O(1/fv) for any e &0. (B.I5)

Using the second mean-value theorem, " we may
express the integral X, in the form

cv 1

X, =g(1 —e+ 0) dx vt„(vx) +g(1 —0) dx vt„(vx),
1-e cv

1

= 2I dv t,„,(2l(v/u)'~') .
Quv

If we introduce

x = (v/u)'i', v = 2l, g(x) = 2h(ux'),

then

limX, (u) = limX(v, u),
l~~ v~ oo

where

(B.4)

(B.6)

(B.6)

where 1-c & c, ~ 1. Rewriting this as
1

X, =g(1 —0) dx vt;, (vx)
1-e

cv
+[g(1 —a+0) -g(1 —0)] dx vt, (vx),

(B.i6)

dx g(x) vt, (vx).
1/Wu

X(v, u) = (B.V)
0

In order to evaluate X(v, u), it is convenient to
split the domain of integration into four parts
(0, 1 —e), (1 —c, 1), (1, 1+a), and (I+a, I/vu). We
shall evaluate the corresponding integrals X„X„
X3 and X4 with the help of the fo1lowing formulas":

1/2
vt;,(vx) „-„ ev(t anh cf —n)

2ztanho.

and noting that

1

lim ll dx vt„(vx) = —', for any c & 0
v~oo J 1-6

and

(B.18)

cv

J
dx vt, (vx) is bounded uniformly in e, v,

(B.19)
which follow from (B.8) and (B.10), and that

x [1+0(I/vtanho. )], x = I/coshn (&1),

(B.8)

lim [g(1 —c + 0) —g(1 —0)] = 0,
6~0

we obtain

(B.20)
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lim limX, =-,'g(1 —0).
g~p phoo

In a similar fashion we find

(B.21) In order to prove this, we shall take advantage of
the fact that

= —,'g(1 —0) + —',g(1+ 0). (B.23)

lim limX, =-,'g(1+0). (B.22)
g-+ p 7/~ 00

Putting (B.12), (B.15), (B.21), and (B.22) togeth-
er, we finally obtain

limX(v, u) = lim limX(v, u)
U~ 00 q~p U~oo

(C.3)

for P- +1 and Iarg(1 —P')
I

& w/2n, and shift the con-
tour of integration into the complex path. For in-
stance, one may take the contour made of the seg-
ments

arg(1 —P}= v/4n-, 0 & Rep & 1,
APPENDIX C: EXPLICIT CONSTRUCTION

OF X(~) a.rg(1+ p) = v/4u, -1& Rep &0. (C.4)

Since the theorem of Ref. 24 might not be familiar
to most mathematical physicists, we shall sketch
here one way of constructing the entire function

y(z) explicitly. Our starting point is the Paley-
Wiener theorem, "which guarantees that any entire
function of exponential type square-integrable on

the real axis can be expressed by the formula (25).
This theorem reduces our problem to that of find-
ing a suitable weight function X(P). Since y(P),
if it is discontinuous at the boundaries of its sup-
port, is likely to produce oscillations in X(z) simi-
lar to the diffraction pattern by a disk with a sharp
edge, we should look for a y(P) which vanishes very
smoothly at the boundaries of its support.

As an example of such a X(P), let us take

Fl

y(p)= —', exp —,, -1 &p&1, n»1

It is then easy to show that the maximum of the in-
tegrand takes the form

exp(-C IxI' '), C) 0 (C 5)

0 &argz & -', n, (C.V)

with the help of the Phragmen-Lindelof theorem"
as in the derivation of (4'I).

In order to obtain finer examples, one must take
the weight function to be

on this contour. This result and the property

Ix(z)I«l™~i (C.6)

obtained from (C.2) lead us to the bound

-iC(-iz)'-'
Ix(z) I «xp

COS ~ETC

(C.1}

and show that the entire function y(z), defined by

l /(&-P 2)-

p , etc. ,

p
1 1

y(z) = —,'~ dp exp —,e' ',
-1

(C.2)

is bounded by exp(- Iz I' '), e = 1/(n+ 1), for real z.

and distort the integration contour very carefully.
We note, incidentally, that these examples give

existence proofs for the test functions used in
Jaffe's field theory. "
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