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Inclusive cross sections are discontinuities across certain cuts in the connected parts of
appropriate multiparticle scattering amplitudes. This relationship, which is shown here to
follow formally from field theory, is analogous to the well-known connection between total
cross sections and total discontinuities. It has been used in recent work on the theory of
high-energy reactions.

I. INTRODUCTION

Mueller's recent work' has initiated important
new developments in the theory of high-energy re-
actions. The immediate achievement of that work
was a simple derivation of the main features of the
high-energy cross sections for reactions of the
form a+ b- c+ anything. Three important ideas
have emerged from this achievement. The first is
an understanding of how to obtain by direct non-
dynamical calculations results that had formerly
been obtained from dynamical arguments. The
second is the recognition that scattering functions
have a cluster property in momentum space, with

Regge poles playing a role similar to that played
in the space-time cluster properties by ordinary
particle poles. The third is the realization that
unitarity entails a large set of relations between
theory and experiment that had not formerly been
exploited. This last point is the subject of the
present work.

It is well known that the total cross section for a
reaction a+ b- anything is equal, apart from known

factors, to the "total discontinuity" of the connect-
ed part of the amplitude for a+ b- ++ b. The total
discontinuity is the difference between the function

evaluated above all cuts and the function evaluated
below all cuts. Mueller's work has focused atten-
tion on the similar relationship that connects the
inclusive cross section for the reaction a+ b-c
+ anything to a discontinuity across a certain cut
of the amplitude for the reaction' a+ b+ c a+ b+ c.

The relationships between individual discontinui-
ties and inclusive cross sections are special cases
of the "basic" discontinuity equation represented
in Fig. 3 below. This basic discontinuity equation
was originally studied in connection with an anal-
ysis of the analytic structure of many-particle
scattering amplitudes. ' In that work the basic dis-
continuity equation, and various equations derived
from it by analytic continuation, were shown to be
the fundamental constituents of the unitarity equa-
tions, in the sense that these individual discontinui-
ties added up, in the cases studied, to the total
discontinuity.

The importance of the basic discontinuity equa-
tion in works stemming from Mueller's work has
generated interest in the question of whether it
can be derived from field theory. ' The aim of the
present work is to show that this discontinuity
equation does follow formally from field theory.

II. THE OFF-MASS-SHELL S MATRIX

In field theory the S matrix is related to a time-ordered product of field operators. One defines the T

function as

T(x„x„.. ., x„;y„.. . , y ) =(T(A,(x,) ~ ~ ~ A„(x„)At„(y,) ~ ~ At, (y )}&,, (2.l)

where the operator T on the right-hand side orders the operators A, (x, ) so that their times t, = x', increase
from right to left. Then the 8 matrix element

Sne =
(@ouil@in) = Qiout

' ' 'An ouil An+ xin' ' 'An+m in&n (2.2)

can be written as4

S„s= d x, d xn d gg' ' ' d &m a xy ' ' ~„x~ 8 3 y
' ' '

9 3 m

x(-i)"+ K„.. .K, K ...K~ 7(xi, . . . , x„;yi ~ ~ ~ y ) . (2.2)
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Here

(2.4)

is the Klein-Gordon operator associated with the variable x. The functions f, are positive-frequency solu-
tions to the Klein-Gordon equations:

K„f,(x) =0. (2.5)

To keep things as simple as possible it is assumed that the f's have disjoint supports in velocity space,
and are such that no disconnected processes contribute to 8 z.

The momentum-space v functions are defined by'

T(k) = T.(k„.. . , k„,)
d'x, ~ ~ ~ d'x„d'y, . ~ ~ d'y exp[ i(x-,k, + ~ ~ ~ +y k„, )]7.(x„.. . , x„;y„.. . , y ) .~ ~

~
~ ~

~ ~ ~ ~ ~ (2.6)

In the special case where the space components of all the k; are real,

k;=q;=real,

one can write'

. . . " dqi. dq'n+m V A(t) i (g) i (g)(k) = . " ~ A , (q ,) ( )
, A. , (q ,)

)
. A („,)(q („,))

P j 2X 0

(2.7)

(2.8)

Here P represents a permutation of the set of integers (1, . . . , n+m), and

A ", (q)-=f d'xA ~.(x)e (2.9)

is an operator that has nonzero matrix elements between momentum-energy eigenstates only if the mo-
mentum-energy of the state on the left-hand side is greater than that of the state on the right-hand side
by the amount q:

(2.10)(P~Ap(, )(q) ~P')=0 unless P=P'+q.

The ' ' means that the Hermitian conjugate is taken if and only if Pj is greater than n. The quantity E,(P)
ls

E (P) = kpl( i)+ kP(i 2) + ~ ~ ~ + P( ) j 1 ~ 8 +Bi 1, (2.11}

That is, it is the sum of the energies k',. corresponding to the A's standing to its right. The quantity H is
the energy operator. By virtue of (2.10), the denominator E,(P) -H is

Ef(P) If ~P(f+i) + ' '+ kp(n +m) qi (f+x) qp(n+m). (2.12)

The formula (2.8) is easily derived within the Hamiltonian framework. The factor i/(E II +i@) is the-
momentum-space form of the propagator

p(i fe) ()(i i()e iH(i t')-- (2.13)

that takes the system from the time t' when the operator A standing on its right acts, to the time t when

the operator A standing on its left acts. The operator i/(E-H + ie) can be evaluated in the usual way by
introducing a complete set of energy' eigenstates:

E -H+ie E —E~+ie

The momentum-space form of (2.3) and (2.8) is (see Appendix A)

(2.14}

4 4

ql„8——lim A'
~ ~ ~

(
}A' f~~(k, ) ~ ~ f() (k„,)(-i)"' ([(k,2-M,2) (k„,2-M„,')]T(k„.. . , k„,)j„

(2.15)
where

f; (X) fd xf(x)e" , e=' 0',.
* (2.16a)
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and

f;(0) fd='xf;(x)x"0', &0

= ff, (-k)l*.
The braces with subscript e means that the k~ are to be evaluated at

k', ,= k»0(1 +i c),
where k', , is real. The mass-shell constraint on the f, (k) ca. n be used to write them, if desired, as

f, (k, ) = .y, (k, )2v5(kf2 M-,') e(ko)

Defining the off-mass-shell S matrix

S(k) =S(k„.. . , k„,)
=—(-i)"+ [(k,'-M, ') (k„,'-M„,')jr(k),

we may write (2.15) as

(2.16b)

(2.17)

(2.18)

(2.19)

S„,=lim t,' "d+ f. (k,) f&(k„,.)S(k,). (2.20)

III. STEINMANN RELATIONS

Consider S(k) for fixed real values of the space
parts of the various k;:

k; =q, = real. (3.1)

Then Eqs. (2.20) and (2.8) give, in explicit form,
the dependence of S(k) =S„(k)(2v)45(gk&} on the
energy components k,'. Equation (2.8) shows that
S„(k)is analytic at all points of

(k'„k,', . . . , k„',.)/( Q.k, = O)

space that satisfy

ImE&(P) 000 for all j and P. (3.2)

That is, the singularities are confined to points
where at least one of the sums of energies Ef(P)
defined in (2.11) is real. This type of analytic
structure is called cut-plane analyticity. The func-
tion is analytic at all points that lie on none of
the cuts

C&(P) =(ko:1mEf(P) =0). (3 3)

The variables E&(P) are called the channel en-
ergies associated with S(k). They are the ener-
gies of the various reactions associated with S(k).
The function S„(k)is analytic unless at least one
of the channel energies is real, provided the three-
momenta are all fixed and real.

The cuts Cf(P} divide the space

(Imk'„Imk,', . . . , Imko, .)/(g k, = O)

into a number of cones, which all meet at the
origin Imko=o. The function S„(k)is analytic in
each of these cones. The origin represents the
real boundary point. In general, one expects to
find a different boundary value for each cone:
The value of S„(k)at Imk'=0 will depend on the

cone through which this real boundary point is
approached.

In the case of a four-point function the cones in
Imko space are bounded by the three cuts Im(k, +k,)
= 0, Im(ko+ ko) = 0, and Im(ko + ko) = 0, and the four
cuts Imkfo =0 (j=1,2, 3, 4).

Because the energies of the intermediate states
are non-negative, the singularities that could lie
on these various cuts may be absent for certain
values of Rek. If one considers only the "con-
nected part" (i.e. , if one ignores contributions
associated with the vacuum intermediate state")
and if there is a lower bound on the masses of the
stable states, then there will be a region around
Rek=0 such that the singularities are all absent.
For these values of Rek the functions in the vari-
ous cones are all parts of one single analytic func-
tion. The region in Rek for which this is true de-
pends, of course, on the detailed nature of the
spectral conditions —i.e. , on the masses of the
lowest states in the various channels.

The Steinmann relations are a set of properties
that greatly simplify the analytic structure of the
functions S„(k). They arise from the fact that S„(k)
is a sum of terms corresponding to the different
orderings of the A' s,

s„(k)=g s„,(k), (3.4)
P

together with the fact that a given energy denomi-
nator Ef(P) Hwill occur o-nly in certain terms of
this sum.

To make this precise let E(P',j ) denote the set
of P's such that Ef(P) is identically equal to Ef(P'):

E(P', 1) =(P:E,(P) =E,(P')). - (3.5)

Here E,(P) =E,(P') means that E-,(P) consists of
identically the same sum of energies ko as Ef(P')
Each of the Sp with P in E(P',j) have the common
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energy denominator E&(P') H-.

The set E(P',j) evidently consists of all P such
that P equals P' modulo permutations that per-
mute the elements of the sets f Pl, P2, . . . , Pj}
and [„P(j+1), . . . , P(n+m)] among themselves.

Let CJ(P') be the part of C&(P') that lies at
ReE,.(P')&0. And let C,'(P') be the set of points
that lie on C,'(P'), but on no other cut:

C,' (P') = C; (P-') & C, (P) ..
PaS(P', q)

Ol' 4 &g

Here C;(P) is the complement of C,(P). The only
terms S„p(k)that can have singularities on C& (P')
are those such that P belongs to E(P',j ).

The set

(3.8)

(3 7)

is the set of P's such that S„pcan have singulari-
ties on both C,'(P') and C,' (P"). This set is clear-
ly empty if the channels defined by (P',j) and
(P", i) are "crossed"; i.e. , if the four sets

8 =(P'1, P'2, . . . , P' ') 8 (P"1)P"2, . . . , P" ),
8 =(p'1, p'2, . . . , pj')A[p"(z+ I), . . . , p"(p+nz)],

S "=[P (1+1),. . . , P'(n+m)]

n (P"1,P"2, . . . , P"f),
= [p'(j + I), . . . , p'(n+m) ]

n [P"(i+1),. . . , P"(n+~)]

(3.8)

E(P',j)AE(P", i)—=(P:E;(P)—= E (P'), E;(P)=E,(P")-)

IV. FIRST BASIC DISCONTINUITY EQUATION

The above derivation of the Steinmann relation
leads directly to an important basic discontinuity
equation. Let DiscS represent the discontinuity
of S across some fixed cut C] (P'). Inspection of
(2.8) shows that this discontinuity is obtained by
making the replacement

g Z

E,(P) -H +i@ E,(P) H +is E—,(P) -H +is

= 27(6(Eq(P) H)- (4.1)

in all terms S~ such that P belongs to E(P',j ),
and dropping all other terms Sp.

The retained terms Sp are those corresponding
to all permutations of the A's within the two sepa-
l a'te se'ts ]Ap k

' Ap, j and (Apgy+k) ' 'Ap( )J.
Thus Eqs. (2.1S), (2.8), and (4.1) give

are all nonempty. In this case there can be no
permutation P such that both E,(P) =E—&(P') and

E;(P) =E (P").
The important consequence of this result is that

if the channels defined by (P',j) and (P",i) are
crossed, then there is no Sp that has singularities
on both C,'. (P) and C,'(P"). Consequently, the

discontinuity of S(k) across the singularity sur-
face C,' (P') c.an have no discontinuity across the
singularity surface C( (P"). This is the Stein-
mann relation. '

d'
D' s(k)=(-i)"'" n(k,.' —kk, ') n 'gQ D A, . A, o t. ),7T g p

p' Zp, —Il +is

out, n Ap (';+,~E &, Ap-~„+~& o
pit (~+y) + SE

(4.2)

( out, o) =Q
~
in, P) S '()„,

8

(4.4)

one obtains, after simple manipulations with the
reduction formulas, ' the discontinuity formula

DiscS, (k) =S,(k')S, 'S,(k"). (4 5)

The variables in (4.5) are linked in the manner
shown in Fig. 1.

The left-hand side of Fig. 1 represents the dis-
continuity of the connected part S,(k). The two

The quantities E~ can be expressed as

Ep; =-(kp, +g„+ +k~, ),
i = l, . . . ,j —1 (4.3)

which is an alternative form of (2.11).
Introducing

I

plus circles on the right-hand side represent the
connected parts S,(k') and S,(k"). The minus box
represents SI', which acts on the intermediate set
of particles. The shaded strips represent sets con-
sisting of any number of lines. The two plus signs
in the circle on the left-hand side indicate that the
energies of channels that do not "cross" the chan-
nel associated with the discontinuity in question are
all evaluated on the positive or physical sides
of their cuts (i.e. , ReEImE&0). The Steinmann
relations ensure that the equation does not depend
on upon which sides of the remaining cuts it is
evaluated.

The occurrence of S,(k) on the left-hand side of
(4.5) arises from our original restriction to pro-
cesses in which only the connected parts contrib-
ute. The occurrence of the S,(k') and S,(k") on
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FIG. 1. Diagrammatic representation of Eq. (4.5).

the right-hand side is due to the condition that
C&(P') contains no points lying on any other cuts

C, (P} .[See (3.6).] This condition ensures that
various disconnected terms that are potentially
present in the two outer factors on the right-hand
side of (4.2) are in fact absent. This is discussed
further in Appendix B.

'fhe discontinuity equation (4.5) is similar to
one derived earlier within the S-matrix frame-
work. ' The two are identical within their common

domain of definition.

V. HERMITIAN ANALYTICITY

Equations (2.2} and (2.20) give

s '„,=(e(„lc.'„,)

where

d4k 4k

=»m~l (, ' "
(,

"; [f.(k,)" f&*(k...)]*S*(k,), (5.1)

S(k) = (-i)n™[(k,'-M;)" (k„M„,.)] &(k) (5.2)

f dq) .. .dqn+m "(t) & "(t) "(t)~(.)= '"J((m)" '
q, Q „()),)n (p) n„,„(e,),)...)()),)„..))) .

P 1
(5.3)

Here

A~. =AJ for j= l, . . . , n

and

A(.~) =A& for j=(n +1), . . . , (n+m).

Using (2.16) one can write (5.1) as

(5.4a)

(5.4b)

S~s x= lim x4 . "c ~, kx 8 k„+ S* -k
~p+

d4k d4k
= lim t, „'~ ~ ~, "4™f*(k, ) ~ ~ fq (k„,)S(k,)(-1), (5.5)

where the second line follows from (5.2), (5.3),
(5.4), and a relation similar to (2.16b):

[A, (q)]"=At(-q), (5.6)

which follows from the definition (2.9).
Comparison of (5.5) to (2.20) shows that a rever-

sal of the signs of all the ie's changes S(k,) to
minus the corresponding function for S '. This
result, which applies specifically to regions
where only the connected part of S contributes, is
called Hermitian analyticity.

Diagrammatically the connected part of S is
represented by a circle with a plus sign. We shall
represent this same function with a minus i ~ pre-
scription by a circle with a minus sign. Then
Hermitian analyticity is represented by Fig. 2.

VI. SECOND BASIC DISCONTINUITY EQUATION

The second basic discontinuity equation is rep-
resented by Fig. 3. The left-hand side represents
the discontinuity

DiscS(-;;+) —= S(-;+;+)—= S(-;+;+)—S(-; —;+)

across the cut C,'(P') corresponding to the indi-
cated channel (A."+B")-(A'+B') The firs. t argu-
ment of S(o„o,; o, ) is the sign of the ie's associ-
ated with the channel energies of the (A'+B') part
of the diagram. The third argument o, is the sign
of the ie's of the (A" +B")part. The second argu-
ment is the sign of the i~ associated with the en-
ergy of the channel A."+B"-A'+B'.

The derivation of this formula is essentially
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FIG. 2. Hermitian analyticity.

the same as the derivation of Eq. (4.5). The only
differences are that now the ic's of the first vac-
uum expectation value in (4.2) are preceded by
minus signs, and one uses for this factor the
Hermitian conjugate of the reduction formulas.

Notice that if A'= B" and B'=A" then the right-
hand side of this discontinuity formula is, by vir-
tue of Hermitian analyticity and unitarity, propor-
tional to the inclusive cross section for the reac-
tion B"-8"+ anything.

VII. CONCLUDING REMARKS

mrrrrr, Bu
C

A /IrrmI
+

rrrrrrr B
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A

I
I Y//////a 8

I Irrrrrrrrrrrrlrrrl rr 8

FEG. 3. The second basic discontinuity equation.

(a) Analytic continuation of the two basic discon-
tinuity equations leads to other discontinuity equa-
tions. For example, from the basic discontinuity
equation given bv Fig. 3 one obtains by analytic
continuation the discontinuity equation shown in

Fig. 4.
The minus sign in the little section around the

set of lines B" indicates that all the channel ener-
gies that correspond to sets of lines in the set B"
have been continued to the negative sides of their
cuts. The right-hand side of Fig. 4 must, how-

ever, be interpreted with the aid of a special rule,
called the "back-up rule. "

The point is that the continuation around the cuts
in the variables -B" takes the function represented
by the upper bubble on the right-hand side of Fig.
4 to the negative sides of certain other cuts as
well. To see this consider the equation repre-
sented by Fig. 5.

The continuation of the equation represented by

Fig. 3 to the negative sides of the cuts associated
with B" will take the function represented by the
plus bubble on the right-hand side of Fig. 3 to the

negative side both of the cuts associated with B",
and also of the cuts associated with the discontinu-

ity indicated in Fig. 5. One way to see this is to
note that intermediate energies in Fig. 4 are real
(since all momenta are real) and hence the nega-
tive imaginary energy brought in at B" forces one

below the cut indicated on the right-hand side of

Fig. 5.
In Ref. 3 it was shown, in some simple cases,

FIG. 4. Another discontinuity equation.

how the unitarity equation is built up out of con-
tributions corresponding to individual discontinui-
ties calculated in this way from the two basic dis-
continuity equations. It is probably possible to
turn the calculation around and derive all the dis-
continuities from unitarity, since the discontinui-
ties around all the singularities lying in the physi-
cal region have already been derived in this way. '
So far it has not seemed worthwhile to reproduce
in this way all the equations that come out of field
theory, since the two methods appear always to
give the same results.

(b) The box diagram singularities on the bound-

ary of the double-spectral region of the four-point
function correspond to points where the double dis-
continuity associated with crossed channels does
not vanish. In the case of the mass-shell four-
point function these points lie outside the physical
region, and hence do not produce any violation of
the Steinmsnn relation. On the other hand, if one

replaces some of the single external lines by sets
of lines, then it is possible to move the box-dia-
gram singularity into the physical region of the
larger process. This might at first appear to pro-
duce a conflict with the Steinmann relations.

However, the Steinmann relation asserts only

that the double discontinuity associated with

crossed channels vanishes if all the other vari-
ables are fixed, and away from, their cuts. By
introducing extra external lines one introduces
also extra variables. These variables control,
through the back-up rule, the ic's associated with

the cuts that conspire to give the I; cut of the s-
channel discontinuity formula. When this fact is
taken into account, one finds that the box-diagram
singularity in the physical region does not pro-
duce any conflict with the Steinmann relations.
The Steinmann relations hold at al/ real points.
This fact is, of course, vital to the main conclu-
sion of this paper, which is that the discontinuity
equation represented by Fig. 3 holds at all ener-
gies, not just near the threshold.

(c) If one invokes a locality condition (e.g. , that
commutators vanish outside light cones), then the

analyticity in the upper and lower half E planes
discussed above can be extended to analyticity in

corresponding upper and lower light cones in the
space of the imaginary parts of the corresponding
four-vectors":

(7. la, )
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APPENDIX A: DISCUSSION OF Eq. (2.15)

Equation (2.15) is formally derived as follows:
Let (2.8) be written as

7(k) = QTp(k), (Al)

(+ImE;(P) &0, Imk&=0)

-(+Imk~&(P) &0, [Imk&(P)]'&0).

(V. lb)
The consequences of this analyticity property,
together with the spectral conditions and the Stein-
mann relations, have been studied in detail by

Bros, Epstein, and Glaser. ' They derive by alge-
braic methods an equation" from which a variety
of discontinuities across individual channel-energy
cuts can be derived.

The cones of analyticity described in (7.1) do

not intersect the mass shell. Indeed, one of the
outstanding problems in field theory is to show
that the domains of analyticity that follow from
the axioms do intersect the mass shell for the n-
point functions with n&4. This deep problem of
field theory lies outside the scope of the present
paper.

In S-matrix theory the situation is simplified by
the fact that the singularities are confined, by

assumption, to the Landau surfaces that are singu-
lar by virtue of the unitarity equations. It seems
likely that the cut-plane analyticity in E,(P) space
derived from field theory will go over in 8-matrix
theory to local cut-plane analyticity in S;(P) space.
That is, the scattering function S„,(k) will be analyt-
ic (in k) in some neighborhood of each real point

k, except on the normal threshold cuts ImS, (P) =0,
where S,(P) =—[k;(P)]'. One of the outstanding prob-
lems in S-matrix theory, at the fundamental level,
is to prove this, together with the relations be-
tween the various boundary values that follow
formally from field theory.

Next write

(A4}

(A5)

Q ~ e"'" Q(k,.' —M, ') 7 (k) (A6}
(2m)

=Qlimf (n ',)e"' ( (i)n(k,.'-M, .')I

(AV)

= lim Q e"'" w(k)II(k&' -M, ')d kg

, (2w)

(A8)

(A9)

The result (A8) is substituted in (2.3) and the
limit c-0 is then moved to outside the integral.

The validity of these formal manipulations de-
pends on the high-energy behavior of the off-mass-
shell matrix elements. We do not wish to delve
into such matters here. But the work of Hepp"
indicates that the final result is all right, provided
the time-ordered product is well defined in the
first place.

APPENDIX B: DISCONNECTED CONTRIBUTIONS

Notice that the sum of the terms corresponding
to the two orders of interaction shown in Fig. 6
leads to a factorized form of the propagator. That
ls,

1 1 1 1

E~ H~ E~ +E2 H~ H2 E2 H2 E~+E2 H j H2

where

(A2)

1 1

Ej.-H, E2 -H2 (B1)

and

7(x) =Q ~p(x) . (A3)

The contour CP runs just above the real axis in
each of the variables E,(P) j=1, . . . , n m+—1.

E-H
I I E]+E2 Hl H2 E~- H( E)+E~- H)- H

FIG. 6. Two orders of two disconnected contributions.
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ImEi
il

FIG. 7. An alternative representation.
= ImE&

The two parts can therefore be treated indepen-
dently, as indicated in Fig. 7.

The point is that the discontinuity does not really
occur in the variable E,+E,. It occurs in E, and

E, (see Fig. 8). Thus, if one stays away from the
two surfaces Im E, = 0 and Im E, = 0, there is no sin-
gularity. For this reason the factors S,(k') and
S,(k") in (4.5) are connected parts. The discon-

Im E~+ Im E& = 0

FIG. 8. The surface ImE, +Ime, =0.

tinuity being calculated is, by definition, to be
taken at points lying away from the various other
cuts.

*Work performed under the auspices of the U. S. Atomic
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