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As an examp1e of the group-theoretical approach to the construction of new dual ampli-
tudes, we discuss a model pion N-point function in which the m trajectory lies ~ unit below
the leading (p) trajectory. The model is completely factorizable, contains a natural G pari-
ty, and obeys the Adler condition approximately. The degeneracy of the spectrum and the
ghost problem are essentially the same as in the conventional Veneziano N-point function.
In a separate section, we discuss a dual interaction of an SU(3) nonet of scalar mesons with
mass splitting.

I. INTRODUCTION

Recently, by abstracting the symmetry of the
Veneziano N-point function, a general group-theo-
retical prescription for factorizable dual ampli-
tudes has been given, ' opening the way for the con-
struction of a wide variety of new dual amplitudes,
some of which will hopefully be closer to nature
than the conventional multi-Veneziano expression.
As an example of this technique, we propose in
Sec. II a model pion N-point function incorporating
the p trajectory, G parity, and the Adler condition
approximately. %e note here that pion N-point
functions based on a generalization' of the I.ovelace
amplitude' or on a relativistic quark model' are
not dual in the group-theoretic sense since the
cyclic symmetry is put in by hand. Since it con-
tains all the diseases of the conventional amplitude,
the major interest in the present model is the ex-
ample it provides of one dual vertex carrying two
trajectories. In addition to the mA, trajectory con-
taining the external particles, there is a leading
trajectory one half unit higher containing the p and

f. States on the parent ))A, trajectory have nega-
tive 6 parity and are decoupled from even numbers
of pions. In Sec. III, we discuss a model for the
N-point function of a nonet of scalar mesons with

SU(3) mass splittings. The model contains a lead-
ing trajectory a variable distance above the scalar-
meson trajectory.

For completeness, we summarize here the basic
rules for a factorizable, dual amplitude given in
Ref. 1. In terms of suitable creation and destruc-
tion operators, one constructs a representation of
the SU(1, 1) generators L„ I,„and a vertex opera-
tor V(z), z on the unit circle, transforming under
the SU(1, 1) algebra as some spin-Jz representa-
tion. That is,

[Loz L.]=+I+ r

[f„,f, ]=-I.„

then using (1.3) and (1.4)

&'&(z) I o) =dg (dz +1)~(z) I
o) (1.6)

If one has N such vertices for the absorption of N
(in general, different) particles, each of which
transforms with the same SU(1, 1) spin J'z, a, fac-
torizable, dual X-point function is

dz,.
O g —'Iz —z. I-'-"

N 4+1
i-"1 i

z Z(zrgz, . —zrgz;„)rr(g;z;)I 0),

(1.7)

where

dzdz'dz" 8(argz —argz') 6(argz' —argz")
zz'z" z —z' z'-z" z"-z

(1.8)

The contours are all taken around the unit circle
and the z's are defined cyclically, z„„-=z,.

The conventional multi-Veneziano amplitude em-
ploys an infinite set of boson creation and destruc-
tion operators' satisfying

[u[gruu )=&mug[ur'
with metric g&„——(1, 1, 1, -1). Under the SU(1, 1)
algebra generated by

z %1

[r.„)r(z)[=-~~ zg zg, ))r(z).

V(z) represents the vertex for the absorption of a
particle and may depend on all of the quantum num-
bers of that particle and, in particular, on its
four-momentum k&. The significance of Js as the
SU(1, 1) spin of the particle is clear since, if we de-
fine the Casimir operator
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Lo=g(m+ —,'e)a a
m=p

(m+ e)(m+ 1)
L, —~ vYm=Q

L =L, ,

(1.10)

the anticommutation relations

{bm bn«) {dm dry«)

{b,b"'l={b,d")={d,d "j={b,d"«)=0,
(2.1)

and commuting with the a's of Eq. (1.9). We con-
struct the following SU(l, 1) generators:

the operator

mt
m=p

(1.11)

transforms effectively as an SU(l, 1) scalar in the
limit e-0. In that limit, the operator

V(k, z) =:e""': (1.12)

transforms with" J, p~ Q.p.

Taking Eq. (1.12) to represent the vertex for the
absorption of a scalar meson of momentum k& and

substituting into Eq. (1.5) with J, = -o.„one obtains
the usual N-point function in Koba-Nielsen form.
It is interesting to note that the two points of spe-
cial simplicity in the model, a = 0 and e =1, are
the null points of the Casimir operator, Eq. (1.6).

Because of the projective invariance, one can, in
general, reduce Eq. (1.5) to the explicitly factor-
ized form by the Fubini-Veneziano technique. De-
fine the ground-state bra and ket:

!k„)= limz„~sV(k„, z„)!0))

(k, != iim z, '*(0!V(k„z,) .
z ~Q

(1.14)

Then
N-3

A.„=( k, !V(k, 1)g !b, ;(L )V(k;, , 1)I!k ), (1.15)

where the propagator is given by

1

6,(L,)= dx, x, "io'~~(1 —x) ' ~~.
Q

(1.16)

In the multi-Veneziano amplitude, the external par-
ticle lies on the leading trajectory. We now pro-
ceed to discuss a generalization in Which the exter-
nal particle lies 2 unit below the leading trajectory.
Such a, configuration is close to the physical situa-
tion in which the m trajectory is 2 unit below the p
trajectory. In Sec. II, we will allow the incorpora-
tion of the Paton-Chan' isospin factors to be under-
stood although we will not discuss them explicitly.

II. PION N-POINT FUNCTiON

We would now like to consider a model for the
pion N-point function which includes the mA„p, and

f trajectories. To this end, we introduce two infi-
nite sets of spinless Fermi operators satisfying

L, = g (m+-,'e)a «a" +P( m+-,')(b «b +d «d"),
m=p mm

(2.2)
" ' (m+e)(m+1) '/'

+,«

m=Q

( +-')( +1)"',b, «b
2

+ I y

m~
(2.8)

(2.4)

and the operator

(bmzm+x/4+ d m«z-m-|/4)

, ir(m+1)

4 4«!II:.""".!o&=n n!,—.,I"
i=1 i=1 /=i+1

(2 7)

{H'(z,), H-(z, ))=!z, -z, !-'/', (2.8)

where the
frequency

+ and —refer to positive- and negative-
parts of II. Then putting

~Z2 Z4 ~Z3
z z -z

Z4 ~ Zl Z2

z —z z —z

(2.9)

Under the SU(1, 1) algebra defined by Eqs. (2.2)-
(2.4), H(z) transforms as J,= ——,'. We could as
well have taken the b's and d's to satisfy commuta-
tion relations instead of the anticommutation rela-
tions of Eq. (2.1), but by use of Fermi operators,
we will be able to keep the degeneracy from in-
creasing appreciably over that of the conventional
model. Similarly, we could have taken spinor b's
and d's, but we avoid doing so, mostly for simplic-
ity but partly to avoid a negligible increase in the
number of ghosts in the theory.

We now define the vertex for pion absorption as

V(k, , z/) = e' &o '& H«(z )H(z. ) . . (2 6)

where Q(z) is still given by Eq. (1.11) in terms of
the a operators. Under the SU(1, 1) algebra, V(k, z)

1 1 ltransforms as a J, = —pint' ——,= —ap ——, representa-
tion. As before, we obtain a dual factorizable am-
plitude by substituting Eq. (2.6) into Eq. (1.7) with

J,= —a —2. The four-point function can be imme-
diately written down using the facts that (ignoring
constant factors)
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we find

1
dxx ' "(1—x) ' ""' 2 —2W~ -2(1 —x)'i'+ + +[x(1—x)]'i'

p x 1 —x

F( u, -)F(-u, ) F(-u, +i')F(-u, ) F(-u, )F(-u, +-,')
I'(-u, —u, ) I'(-u, —u, + —,') I'(-u. —u, +2)

F(-u, ——,')I'(-u, +-', ) I'(-u, +-,')F(-u, ——,') F(-u, +-', )I'(-u, +-,')
F(-u, —u, ) I'(-u, —u, ) F(-u, —u, +1) (2.10)

I'(L, —u, ——,') I'(u, + —,')
r(L, )

If we write Eq. (2.2) as

Lp = gPp +R

with

(2.12)

(2.13)

The first point to be noted is that there is no pole
at u(s) =0, corresponding to the absence of a pion
pole in elastic vw scattering. Furthermore at u(s)
=n, for n ~ 1, the residue contains only spins
0, 1, ..., n-1. Hence, the parent A, trajectory
decouples from the elastic scattering as it should.
There are, however, contributing poles on the
daughter trajectories (e.g. , a. 0' particle at the A,
mass, etc.).

The asymptotic behavior of A, is

limA, =[-u(s)]" ' " ' (2.11)

corresponding to a leading trajectory —,
' unit above

the v trajectory. Thus, if we put u~(t) = u(t)+ 2,
the asymptotic behavior for wz scattering is s &

'

as it should be. It is to be noted that, unlike the
recent model of Bardakci and Halpern, ' the Pomer-
anchuk trajectory has no place in the Born term of
the present model. However, as in the convention-
al amplitude, diffraction might arise from higher-
order nonplanar loop graphs.

The 4-point function of Eq. (2.10) also contains
poles at the p-meson mass and its recurrences.
That is, at u(s) =n —;[oru~(s) = n], there are
poles with spins 0, 1, ..., n. The Paton-Chan fac-
tors identify these poles as the positive-G-parity
p and f trajectories. The chiral-symmetry pre-
diction nz„'=2m~' is also built into the model. A
presently unavoidable difficulty is the existence of
a spin-zero pole at u~(s) = 0 which becomes a tach-
yon in the physical case of u~(0) & 0.

To examine the pole structure of the general N-
point function, it is convenient to use the propaga-
tor Eq. (1.16) with J,=-u, ——,',

F( u( -P,'-)+R — )F(u, +-,')
F(-,'p, '+R) (2.15)

The physical eigenvalues of R are integral and half
integral. To see this, it is sufficient to prove that
on the physical states

—,'Q(b b +d td )=-,'gb"~b (2.16)

b~q+„,) =0,
where

(2.18)

~4'"»,) = limzo" 'V(k„ l)h(L, )

x V(k„ 1)b,(I,,) ~ .V(k„„1)V(k„) z) i 0) .
(2.19)

Thus the poles of Eq. (2.15) occur at u(-P, ') =n for
R = —,', —,', ..., n+ —,

' and at u(-Po ) = n ——,
' for R = 0, 1,

..., n. The first set of poles corresponds to the
mA, trajectory and the second to the p, f trajec-
tory a half unit above. It is a simple matter to
construct the intermediate states in terms of the
occupation-number states of the a' s, b's, and d's.
The b's and d's introduce no new ghosts into the
theory, since they are scalar operators; since
their number operators have eigenvalues zero and
one only, they do not contribute significantly to the
degeneracy already in the model due to the a's and
a 's. Since the new L, -R2L annihilates the phys-
ical states, Eq. (2.19), the usual Ward identities
are still in force.

The conservation of 6 parity is also easily de-
monstrable in the model. We define the t"-parity
operator

To prove Eq. (2.16), it is sufficient to note that the
operator

(bFIltblTI dllltd1Ã. ) (2.17)
m=

commutes with the vertex Eq. (2.6) and with the
propagator Eq. (2.12) and hence annihilates the
physical states, i.e.,

R= +ma ~a +P(m+ ,')(b b +d d -), (2.14) G=exp[inp(b td +d tb )],
m=p

(2.20)

the propagator can be written with the property that
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Rnd

[G, I„]=0,

(2.21)

(2.22)

mass degeneracy. Following the method of the
Appendix of Ref. 7, fox any g &0 we can eonstruet
the SU(1, 1) algebra

so that operating on Eq. (2.19),

(2.23)GIN"p~y& =(-I)"IP"p~„&

Inserting the identity operator 1=6~6 at any point
in the N-point amplitude of Eq. (1.V) [or (1.15)]
yields

LO= g (m+21i)b" b",

oo X/2
I+= m+g m+ 1 5 +~~&~,

(3.1)

(3.2)

(3 3)

A„=(-1) A„, (2.24) and under thi. s algebra the field

so that amplitudes for the scattering of an odd num-
ber of pions vanish identically.

We would now like to investigate the behavior of
A.4 at the Adler point o.,= e, = o.„=0. Putting e,
= a, = a, Eq. (2.10) becomes

I"{-a)
2

l (-a+ -,')
) I (-2a) I (-2m+-,')

I"(m+ q)"
I'(m + 1)

Lo= Q{m+ ,'1))b t(ap—'+u, xo)b", (3.5)

transforms covariantly with g, = -11/2.
Folloming Bardakci and Halpern, ' we mould like

to make b" an SU(3) triplet and write

Using the logarithmic derivative 4'(x) = mini'{x)/dx
Rnd expanding to first ox'dex' in ot, me hRve

1

= 1+ o,4'(o),I'(-'- 2& (2.26)

' -=2[I+2aln2+ n4(-,')], (2.2V)I" -2a I" —,
' —a

limA, (a, = o., = o) =-8ln2+v. (2.28)

III. INCLUSION OF SU(3)

In this section, me discuss a possible dual inter-
action of a nonet of scalar mesons with broken-

Thus there is a. partial cancellation between the p,
f and wA, trajectories at the Adler point. The value
at threshold (a, =—0.05, a, =0) is approximately
twenty times greater than Eq. (2.28). We have not
been able to demonstrate a similar suppression in
the X-point amplitude. In addition, the value of A4
at the Adler point is uncomfortably sensitive to the
way the limit is approached. Fox' example, if in-
stead of the symmetric approach above, one first
takes a, 0 and then 0., 0, the amplitude diverges.

Because of this ambiguity and the ghost problem
discussed above, and because of the unsatisfactory
features of the Paton-Chan scheme for isospin, the
amplitude proposed here is not completely accept-
able. Nevertheless, it has several obvious features
in common with empirical observations that the
conventional multi-Veneziano model lacks.

O'1P1+ O'2P2 = (O)"'P1

~.P, + C1,P. (o)"—~P.= (2)"'P. ,

p O+p O (O)1/O+

2P P -~=(-')'"o .p O

12 ~2
o O'

(3.8a)

(3.8c)

(3.8d)

Besides the trival solution a, =P, =(-,')'/', o,, =p, =0,
there are two solutions with nonvanishing symme-
try breaking:

corresponding to the tmo matrices

(X)l/OyO ~ (L)1/Og8

A, = (-,')1/'X' —(-,'}'"~',

(3.10a)

(3.10b)

where A., and A, can be seen to be the projection
operators onto the spRee of nonstx'Rnge Rnd stx'Rnge
quarks, respectively. We mouM nom like to build
a dual amplitude based on the algebra

40 ]
L+=g—[(m+ q}(m+ 1)]"'b""(P~'+ P ~')b,W2

(3.8)

(3.7)

However, me are not free to have arbitrary sym-
metry breaking.

Requiring the operators of Eq. (3.4) to satisfy the
SU(1, 1) algebra gives us the nonlinear constraints
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L,,=g{m+',~)a ~a +Q(m+8'll, )(f) ~A, b +d tA, d )+g{m+-,'i}8)(/) ~AORS +d ~AOd ),
oo

1
oo

I, =— [(m+ e)(m+1)]' 'a " a +— [(m+})}){m+1)]' '(f) "A 5 +d "~A d")

1
+—g[(m+n )(m+ 1)]'/'(f "'» +d""A d.) (3.11b)

(3.lie)
The paxameter e is to be taken to zero at the end of all operations, but q, and q, are constants to be deter-
mined later by the meson masses. The model of Ref. 9 is obtained in the limit q, 1, A, -1, A2-O. How-
ever, terms in A, are important for a consistent dual theory with symmetry breaking. %'e now consider
the spin-zero SU(3) triplet

3 oo

a„(z)=g g „, , [rl/'(m+~, )A„,h;z"o /'+r'/'(m+~, )A,„,f;z""/'],
S=j, I=O

(3.12)

with z on the unit circle. Similarly,
OC

D (8) =g g [r'/'(m+ 1} )A d "8 '"1/8+ r'/'(m+ 1l )A. d "8"+"8/8]
s 1 I=O

(3.13)

We now define the quark operator

e„(s)= a„(z)+D,'(z) . (3.14)

Commuting H with the SU(l, 1}generators of Eqs. (3.11) and comparing with Eqs. (1.3) and (1.4), we see
that B„transforms with J,= -2q, i.f r = 1, or 2, and with J', = -&@2 if s= 3.

The vertices for meson absorption are now written

e"(0,z}=: "e"a'( )~z"a(s):.
Commuting with the generators, we find

(3.15)

[Lo,4 (/8, s}]=-z—4) {/8, z),

z"
[I,„4"(k,g)}=— z —4"+-',k O +:e"' 8[—,'(rlA, +qQ), l "}8:).dz

(3.1V)

SU(1, 1) covariance requires

(8'(l),A, +1}+8),A. "]=/1 "A." (no sum on o.) .
Using Eqs. (3.10a), (3.10b), and the familiar anticommutation relations of the X's, we find the following
eigenstates of Eq. (3.18):

(3.19a)

E~ go Eo A. +iX A. +jA,

W2
'

vY
(3.19b)

@O. (8)1/8 /0+ (1)l/8/8

(1)1/8 yO+ (X)l/8 p8

(3.19c)

(3.191)

@ =(81},+ OHIO)+(8)'/'(1}, —1}.)d,

Substituting Eq. (3.18) into (3.1V), we see that the vertex 4" transforms under SU(1, 1) with

Z, (a) = -8/1 „8 -/1 .

(3.20)

(3.21)
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According to criterion IV of Ref. 1, in order for particles with different quantum numbers to interact dual-
ly, they must have the same J,. Thus if the mass splittings of the 4" are octet-dominated, i.e.,

u„'=-m, '-&36m'd, „„,
we must have

g2 —g, =-26m =m~ —m„.3 . 2 2 2

(3.22)

(3.23)

Then J, becomes independent of o, and depends only on the central mass m, and the parameters g, and g2:

1 2 2 I j.J, = —,m, ' —(-, It, + —,I4) = —,m, ' —I), . (3.24)

The dual amplitude for the scattering of n scalar mesons with SU(3) quantum numbers a,a, ~ ~ a„ is, ac-
cording to (1.7),

A „.. . „=— g ' 8(argz; —argz, .„)iz; —z„,i
' (Oi4"IC "2. ~ ~ 4g i0} .1 " dz'

1 2 n C i 1 ~i
(3.25)

In the case of the four-point function, (3.25) is easy to evaluate using the anticommutation relation

fB„(z,), B, (z~)j= e""&i'r(It,)A,„,iz, —zI [
"g+e""gt'r(I},)A,„,iz,. —z, i

"g, (3.26)

although some may prefer to use the factorized form of Eqs. (1.15) and (1.16}. With either method one
finds, for example, that in the case of m m elastic scattering the st term in the amplitude takes the form

I'(-a„(s))I'(-a, (t)) I'(-a„(s))I'(-a, (t) + I),) I'(-a, (t)) I'(-a, (s) + Ih}
r( — „( ) — ,(t)) r( — ,( ) — .(t)+ n,) r( — ,( ) — ,(t) + It,)

r(-a, (s)+ I7,) r( -a, (t)+It,) r(-a, (s) —r],) r(-a, (t)+ I),) r(-a, (s)+ I7,) r(-a, (t) —Il )
r(-a, (s) —a, (t)+2rl, ) r(-a, (s) —a, (t)) I'(-a, (s) —a, (t))

(3.27)

If we choose I), = z, we recover the 7III amplitude of Eq. (2.10) (apart from some factors of 2 due to thetrace
of A,). There is a leading trajectory one half unit above the II trajectory. The isospin content of the pres-
ent model is, however, entirely different from the model of the preceding section which relied on the
Paton-Chan formalism. As can be seen by examining Eq. (3.25} for IIII scattering, in other charge states
the p and A, trajectories decouple from the model leaving only isospin-zero trajectories (&u, f). By taking

g, = 1, we can move the leading trajectory to one unit above the m trajectory, thus obtaining an isospin-zero
Pomeranchuk trajectory as in Ref. 9.

In the case of scalar XII scattering, Eq. (3.25) yields

where

r(-a, (s)}r(-a,(t)} r(-a, (s)+Ih)r(-a, (t)) r(-a, (s)+Ih)r(-a, (t) -I},)
r( — ( ) — ,(t)) r( — ( ) — ,(t) + I7,) r( — ,( ) — „(t))

(3.28)

aK(s) = —~2K + 2s = ag(s) + 2(7I —'Qg) . (3.29)

If g, = —,', the asymptotic behavior is s &
' as desired, and poles appear in the s channel at the mass of the

K* and its recurrences with

my+ m =my m2 2 2 2
P r (3.30)

However, the parent trajectory in the K* family decouples. Thus one might prefer to take g, = 1 and adopt
the Pomeranchuk interpretation of the leading pole.

By examining scalar K'K' scattering, one finds the existence of exotics on low-lying daughter trajecto-
ries, as expected.

The general four-point function can be written as follows:
4 3 4

II ~I* -~„l "" "g(»g*, —»g*„,) II II l~, -z, l"")&„X'(2 S+ Q i g, +i
i=i. &=i+1,

(3.31)
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where

T,=(oIH:&'(;)~ '&( ):lo) (3.32)

We adopt the notation

(ijk. .n) =—Tr(A"'C;, A'C, A.
"». A. +C„;), (3.33)

with

(C„),.=(B,(z, ), B.'(z, )).
Then

T, =(12 34) +(4321) —(1243)

(3.34)

—(2314) —(3421) —(4182)

+ (12)(84) +(23) (41) + (13)(24) . (3.35)

The cyclic symmetry of the four-point function is
evident from Eels. (3.81) and (3.35). We assume
that the cyclic character of the higher N-point
functions can be similarly demonstrated although
we have not developed a general proof of this.

Finally, we note that we have taken the field H(z)
to be spin-zero for simplicity. It is natural of
course to make II a Lorentz spinor, in which case
one could form the pseudoscalar octet

(3.36)

The SU(1, 1} transformation properties 4" are not
altered by this generalization, but the scattering
amplitudes above are modified by the appropriate
traces of y matrices [e.g., in the expression (3.33)
each A. matrix is multiplied by y,]. The odd N-point
functions are then identically zero. Additional
ghosts appear in the model because of the third and
fourth Dirac components of the b's and d's. In

view of the fact that the SU(3)-breaking mechanism
discussed in this section forces m'g degeneracy
and the canonical quark-model mixing angle
[Eqs. (3.19) and (3.22)], it does not seem worth-
while to pursue this possibility without more dras-
tic modifications of the model. It is interesting,
however, that phenomenological attempts to con-
struct a dual m'g scattering amplitude have also
been forced to assume a 7t'g degeneracy. This fact
makes it additionally interesting to try to construct,
from the group-theoretical point of view, a dual
model with a different symmetry-breaking mecha-
nism in which v' and g do not have equal masses.
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