
PHYSICAL REVIEW D VOLUME 3, NUMBER 12 15 JUNE 1971

Spontaneous Breakdown of Conformal and Chiral Invariance*

R. Z. Crewthert
California Institute of TecknoloI. y, Pasadena, California 91109

(Received 5 February 1971)

We discuss the implications of a theory in which scale and chiral invariance are spontane-
ously broken, and the dilaton appears as a mixture of the two isoscalar members of the scal-
ar nonet. The usual assumptions for the conformal properties of the axial-vector current
constrain the low-energy behavior of the spin-2 form factor, F&{t), of the pionic matrix ele-
ment of the stress-energy tensor. In the limit of scale invariance, we find F&'{0)=F«'{0)/
F~~(0), where F«{t) is the axial-vector form factor obtained from the coupling of the dila-
ton to a pion via the axial-vector current, and the prime denotes differentiation. This relation
connects the assumptions off dominance of F&(t) and A.

&
dominance of F«(t) . Using the

method of collinear dispersion relations, we estimate the effects of violation of scale invari-
ance. A result previously obtained in the limit of scale invariance becomes F~F«(nz~ )f~
= &, where f~ is the decay constant of the pion, and F~ couples the dilaton to the vacuum via
the stress-energy tensor. Similar corrections to the scale-invariant prediction for Fl (0)
are calculated. The magnitudes of the corrections are controlled by the A&07i. coupling con-
stant. According to the usual estimates of this constant, the predicted width of the dilaton is
compatible with the Adler-Weisberger sum rule for zz scattering and phenomenological es-
timates of the oNjV coupling constant. While the relation for F& {0) obtained in the limit of
scale invariance is compatible with the assumption of f dominance, the effects of symmetry
breaking are large. In the rea1 world, we find that f dominance is a poor approximation, a
conclusion which is supported by recent estimates of the f++ coupling constants. We dis-
cuss the relation of our work to the magnitude of parameters measuring symmetry violation
in the energy density. Our interpretation of a recent result of Cheng and Dashen is that
scale invariance is spontaneously broken, and chiral SU(2)&&SU{2) is a much better symmetry
t an SU(3).

I. INTRODUCTION

The theory of broken scale invariance has re-
ceived considerable attention' since the discovery
of "scaling laws" in deep-inelastic electroproduc-
tion and e'e annihilation. By influencing the
short-distance behavior of operator-product ex-
pansions, ' broken scale invariance provides con-
straints on cross sections for a limited number of
such high-energy processes. ' Another aspect of
scaling theory, first considered by Kastrup' and

Mack, ' is the possibility that scale invariance is
spontaneously broken, so that there is also a con-
nection to low-energy phenomena.

In this paper we continue an investigation' of the
spontaneous breakdown of scale and conformal in-
variance, making use of constraints imposed by
the theory of broken chiral symmetry. The central
objects of our analysis are the stress-energy ten-
sor, e,(x), and the vector and axial-vector cur-
rents, P'„(x) and F»(x) (a= 1, . .., 8) from which cur-
rent algebra is constructed. The charges

(l.la)

X;(x,) fd'x e;,(x) (l. lb)

generate chiral SU(3)&SU(3) transformations,

i [Pe, D] =D —Pe (1.3}

If (t)(x) denotes a local operator with known behav-
ior under I orentz transformations, the operators

d@( ) = i[D(x ) —x ~ P, p(x)],

k@"(x)= i[Ke(xe) —2x "D(x(,) + 2x„M

+2x"x P-x'P", y(x)] (1.5)

are local, but may have obscure properties under
boosts because of the violation of conformal sym-
metry. If it exists, the dimension l& of (t)(x) is
given by

d~(x) = —I ~y(x) + ~ ~ (1.6}

where the dots indicate the possible existence of

while

e(x) fe xx e„,(x-)' (1.2a)

rCx(x) felix(2x, x.'ex( )-x'ex(x)( ().X)e

are the generators of scale and special conformal
transformations. 'x ' Unlike the exact SU(3)&&SU(3)
algebra formed by I' and I'„symmetry violation
affects the conformal algebra obeyed by D, K„, and

the Poincare generators P„and M„„ the simplest
example is'
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F.g. =m, +O(m.'/m, ),

F~G~us = 2m„'+O(m~'},

where the definition of I', is

(&(k}18,.(o) I o) = — F,(krak, -gp, k ).

(1.7)

(1.8)

Equations (1.7) and (1.8) are useful only if the mass
involved, M~ or m„, is large enough to swamp the
scale-invariance-breaking effects. For example,
it has been shown'~" that such effects cannot be
neglected for pseudoscalar mesons.

There may be scalar mesons such as e'(1060),
called 'Qp+ or $* by the Particle Data Group, "
which retain their masses as the dilaton mass
vanishes, and which can mix with the dilaton as
conformal invarianee is broken. Thus, in the -real
world, the dilaton quality may be distributed
among two or more mesons with (Z~, I~) =(0', 0').
The least massive (0', 0') state is supposed to
become the massless dilaton state in the limit of
conformal invariance. In the real world, we con-
tinue to use the notation ~o) for it, and assume
that m, is significantly lower than 1 GeV. We ex-
pect the magnitude of m,' to indicate the inaccuracy
of conformal-symmetric results only if mixing is

gradient terms which vanish when integrated over
3-space. We are concerned with a few of the phys-
ical implications of popular assumptions about

d&(x) and k~&(x) for p = P'„, 5';„, 8„„, s 6."„, and

9 $5f}f~

In the limit of conformal invariance, 6„"-0,
matrix elements of 9„,have poles at zero momen-
tum transfer due to the presence of massless
scalar particles, called "dilatons"; we assume
that just one dilaton is present. Most particles
retain their mass in this limit. However, scale
invariance is supposed to be accompanied by
chiral invariance, so the members of the pseudo-
scalar octet become massless. All other particles,
including the ninth pseudoscalar meson g', remain
massive. Physical SU(3) symmetry, according to
which particle multiplets are classified, is not
spontaneously violated: As 9„"vanishes, the dilaton
state ~o) becomes an SU(3) singlet, and the SU(3)
symmetry of the vacuum is retained.

In order that scale-symmetric relations for
amplitudes involving soft dilatons remain approxi-
mately true as scale invariance is broken, the low-
mass dilaton state is assumed to dominate an un-
subtracted dispersion relation for (8„~) at small
values of the square of the momentum trans-
fer."" This condition is the hypothesis of partial
conservation of the dilation current (PCDC). ' Nor-
malizing states invariantly, baryons and mesons
couple to the dilaton according to the PCDC rela-
tions

properly taken into account.
The main body of this paper consists of Secs.

II-V and our conclusions are summarized. in Sec.
VI. Section II contains a discussion of the limits
of conformal and chiral symmetry. The main re-
sult is that the slope of the spin-2 form factor of

(v~8„,~m), F,'(0), is determined by the conformal
properties of the axial-vector current. Section III
is concerned with the effects. of mixing on soft-
dilaton theorems. After noting some examples in
which the contribution of the e' pole to (8„")is
significant, its effect on calculations of the mrs
coupling constant is considered. In Sec. IV we use
the method of collinear dispersion relations to
estimate the effects of the violation of conformal
invariance. A new estimate of the gmw coupling
constant is obtained, and found to be consistent
with the Adler-Weisberger sum rule for pions. A

similar calculation yields F,'(0}. Meson-baryon
scattering and the result of Cheng and Dashen"
are discussed in Sec. V.

II. LIMITS OF CHIRAL AND
CONFORMAL SYMMETRY

The nature of the breakdown of a symmetry can
be specified by giving the symmetry properties of
the appropriate current divergences. In Gell-
Mann's theory of broken chiral symmetry, "the
energy density is written

800 Q)0 uo c Bi (2.1}

where Q, is chiral-invariant, u, and u, belong to
a set of scalars u, and pseudoscalars v, (k =0, ..., 8)
which form a (3, 3*) (3*,3) representation of SU(3)
xSU(3), and SU(2)xSU(2) violation is measured
by the deviation of c = -1.25 from -v 2."~" The
assumed Lorentz properties of u, and q, lead to
the relations

i[80„F']= 9"F'„,

i[8I,O, F;]=a~6';„,

(2.2a)

(2.2b)

from which the SU(3) x SU(3) behavior of s"6."„and
9"5,„automatically follows. The feature of this
theory which influences our work is the absence of
a term"

S„„=(s,s„-g„„a')s(x) (2.3)

in 8„,, where s(x) is not invariant under chiral
transformations. The existence of S„,would imply
that Eq. (2.2b) is invalid, and the axial-vector cur-
rent would not have dimension -3. Unless expli-
citly stated otherwise, we assume that Eq. (2.1)
is correct.

The breakdown of scale invariance has been sim-
ilarly treated. '~ ' The scale-invariance-breaking
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terms so„ in the energy density

e„=eI„+pw„ (2.4)

Following Wilson, ' we assume that 8» is SU(3)
x SU(3) -invariant, and write

8I„=Q„+5+u, (2.6}

where 5 violates scale invariance but not chiral
invariance, and u= -u, —cu, breaks both scale and
chiral invariance.

An important matrix element for our work is

3)I,.= &s(P+ lk} I e„.(o) lv(P —lk))

= [2P„P, ', (k„k—,—-g„„k')]F,(k')

+ (k„k, -g„,k')F, (k'), (2.7)

with F,(0) = 1. This expansion for 3it, was chosen'
because the dispersion theory of F,(t) and F,(t) is
simplified when the mass of the pion is neglected;
intermediate states with (Jp, I~) equal to (2', 0')
and (0', 0') contribute to ImF, (t) and ImF, (t), re-
spectively. Application of the condition of scale
invariance, 6„"-0 with m,' - 0, to the trace of Eq.
(2.7),

3}I„& = 2m, 'F, (k') —3k'F, (k'),

leads to the result'

F,(k') = o.

(2.6)

(2.9)

Thus the effects of scale violation are responsible
for the presence of the induced scalar form factor
F,(t) in Eq. (2.7).

Equation (2.7) may also be investigated in the
limit of chiral SU(2)xSU(2) invariance, with scale
invariance broken. In this limit, Eq. (2.2b) re-
quires that the energy density, not just the Hamil-
tonian and other Poincare generators, be chiral-
invariant; thus, I,= 0 implies

[F„e„l=o, (2.10)

have dimension I„w -4, and Q, is the scale-invari-
ant part of 8„. The assumption that Q (I„+4)w„ is
a scalar operator gives the virial theorem'

(2 5)

F,(t) = ——,'m.'/(m. ' t), — (2.16)

which holds for It I &m,', shows that the limits t- 0,
m,'-0 are not interchangeable. However, the
author regards the difference between Eqs. (2.9)
and (2.11) as significant only for dilaton theories.
In the scale-invariant limit of a theory with no
dilatons, all masses vanish, so chiral invariance
is no longer realized in the Goldstone manner and
has no connection with soft-meson amplitudes.
Therefore, the difference between Eqs. (2.9) and
(2.11) is significant only if the zero-mass limit of
Eq. (2.11) is supposed to be smooth, in spite of
the infrared problem. " This limit might be smooth
for amplitudes which are vacuum expectation values
of an operator expansion near the light cone. How-
ever, Eq. (2.11) is a low-energy result arising
from the behavior of the operator product pz„„(x)
at large x', so we expect that the difference be-
tween Eqs. (2.9) and (2.11) is generated by in-
frared effects if no dilatons are present. "

Returning to dilaton theory, another important
matrix element is

(g (k) I
5' (0) Iv (q)) = -t(k+q)„F (t)

+ t(k —q), G.,(t),

with divergence

D,(t) = (o(k) Is f', „(0)Im'(q))

= (m„' -m,')F.,(t) —tG.,(t),

(2.17)

(2.18)

where t = (q —k)' is the momentum transfer squared.
In the limit of SU(2)xSU(2) invariance, F„and G~
are related:

is a retarded commutator made covariant by care-
ful treatment of the singularity at &=0. Then

q d'xe ""&q' Az»x 0 =o ~.&4

implies

lim(~(q'} I 8,(0)Iv(q)) =0, (2.15)

which may be combined with Eq. (2.7) to yield Eq.
(2.11).

The behavior of F,(t) at t=k'=0 indicated by Eqs.
(2.9) and (2.11) is characteristic of theories in-
volving a Nambu-Goldstone boson. The relation

from which the- constraint'~"

F (o)=--', (2.11)

a"a„*„,(x}= 0,

where

(2.12)

follows.
A brief derivation of Eq. (2.11) follows from the

formula

m F (t) = tG„ (t).

Apart from the relation"

F.,(m.') = G.,(m.')

obtained from Eq. (2.19) at t =m,', we have

m, '[F„'(m,') —G„'(m,')]= G„,(m,'),

m.'[F.,"(m.') —G.."(m.')]= G..'(m.'),

(2.19)

(2.20)

(2.21)

(2.22)

ft„*„,(x) = [r,„(x),8„(O)]„,. (2.13) and so on, when m, vanishes. (Here the prime de-
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notes differentiation. ) The Goldberger-Treiman
relation'4

(2f„) 'G„,=m,'E,„(0)+O(m, ') (2.23)

is obtained at t = 0. In the limit of scale invari-
ance, '

G..(t) = o (2.24)

follows from Eq. (2.18). In spite of Eq. (2.20),
F„(0) survives in this limit. The limits t-m, ,
m,'-0 are not interchangeable in Eq. (2.19) be-
cause of the zero-mass pion pole in G„(t):

G.„(t)=m.'E.,(O)/t (2.25)

F.F.,(0}f,= —,
' (2.26)

holds for ~t)&m,'.
We have previously shown' that, in the limit of

scale invariance, the formula

2G =m (2.28)

3'„„(x)= (2x „x"—5~vx'}e,~, (2.30)

the amplitude

vt„~(k, q) =ifd'x e"'(ii
I &(xt, (&)v, x'(ii)) l~'(qV

which we also obtained using Eq. (2.16).
There is a conformal calculation corresponding

to the analysis based on Eq. (2.27). Again we work
in the limit of scale invariance, postponing the
consideration of scale-invariance-breaking effects
to Sec. IV. We assume the validity of the standard
equal-time commutatj. on relation

[1~„(0),6:,.(0)]=0; (2.29)

in the language of Eq. (1.5), we are supposing that
kv&(x) vanishes for p=5'». Then, defining the con-
formal current

follows from the requirements e„"=0, 8~5,~=0,
and is consistent with the assumption that 5,& has
dimension -3:

obeys the identity

t 'M„,„(k,q) =O(k).

(2.31}

(2.32)

t[D(0), 6:„(0)]=»„(0). (2.27)

This means that the term S„,of Eq. (2.3) must be
absent in the limit of scale invariance, and ex-
plains why Eqs. (2.23) and (2.26) are consistent
with the low-energy result'y "y"

As k' approaches zero, the only contributions to
k'M„,~ come from terms in M„„~ which are singu-
lar in k. Applying Eqs. (1.9), (2.7), (2.9), (2.17),
and (2.24), the pion- and dilaton-pole diagrams
shown in Fig. 1 represent the amplitude

P (k } y .
(k ) E F ((k )2) knkv —gnvk ~E'~(k )

(k )
2(q —2k)n(q —2k}v 6(knkv g'nvk )

otvt &9 Y~ +'7 X a 07' 2f " 2q k-k'

(2.33)

The part of M„„q which is singular in k may be obtained by differentiating P„,q(k, q) twice with respect to k:

k'M„„,(k, q) = -k'~ 2 „—5"„8 P„&(k,q) +O(k) (2.34)

follows from Eqs. (2.30) and (2.31}. Calculations of this nature are always simplified by applying the iden-
tities

k ~v=8k k

8 8 vn 8 9
)/2

8 8 vn 9 9 v 2 v 9
~ 9 vv 8

Bk~ Bk~ Bk Bks ( Bkp Bk~ Bk Bk8 8k~ Bkv Bk

(2.35)

(2.36)

[Equation (2.35) is useful when handling expressions
involving the dilation current. ] The last term of
Eq. (2.36) is antisymmetric in the indices (o., v), so
it does not contribute to Eq. (2.34). Combining
Eqs. (2.32)-(2.34) and (2.36), we obtain

»g»[E.E.,(0) -(2f„)-'1

=4tqvqx[E. E..'(0) -(2f.) 'E, '(o)], (2 37)

which implies Eq. (2.26) together with a new re-

lation

F..'(o)/E. „(o)= E,'(o). (2.38)

The primes denote differentiation with respect to
the momentum transfer squared.

If poles due to the A, (1070) meson and the spin-2
SU(3) singlet, which corresponds to a mixture of
the f(1260) and f '(1515) states, are supposed to
dominate E„(t}and E,(t}, respectively, then
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,(k)

FIG. 1. Pole diagrams for Eq. (2.33).

Eq. (2.38) implies

m'(2') =H(A, ). (2.39)

When the magnitude of SU(3) mass splitting is con-
sidered, the agreement of this result with the ob-
served meson spectrum is reasonable. However,
it turns out that Eq. (2.38) is strongly affected by
the inclusion of scale-invariance-breaking effects,
and the results of 2, and f dominance are not con-
sistent. "

In contrast with theories lacking a dilaton, "no
difficulty has been experienced in our discussion of
the limit of scale invariance, and we conclude this
section with some further remarks about this limit.
Let us write the PCDC hypothesis in the form"

2
1 ~P~v 4 pv~

~pv trav 3 m, +cP
(2.40)

where(t~„) has noo pole; the trace of Eq. (2.40) is

2m

m '+8'
a

(2.41)

The Poincare generators are well defined for 0„"
-0 if the 0-pole term in 8„, is not included in the
usual definitions. " The expressions

P„= d xto„, (2.42a)

d x x„to xto„242b

are valid for any value of m . As 8„"vanishes, the
unique physical vacuum becomes a member of a
continuum of degenerate vacua, but it may still be
distinguished by the properties"

P„i'~-0™q„i0)=0. (2.43)

Paradoxes are avoided if the effects of the dilaton
pole are properly included. For simplicity, suppose
that apart from a c-number term, the scale-invari-
ance-violating term w in Q„has unique dimension

l, so we have the relation

e'"Poe ' =e"Po+(e '" —e )D(xo)l(I+4) ~

(2.44)

In the limit D-0, it appears that g-i™transforms
states of mass M~ into states with mass M„e, so
that transformations with n & 0 are forbidden. "
This anomaly arises from an illegal interchange of
limits in the equation

Iim Iim(X(p+u) ~e„"~X(p)&=M,.
ep"-0 6-0

In fact, if we sandwich Eq. (2.44) between nucleon
states at rest, the requirement

(2.46)

(2.46}

implies the inequality

(I+3)e +e '"' &I+4, (2.47)

which does not depend on the magnitude of symme-
try violation. If u is to be unrestricted, Eq. (2.47)
implies the constraints $~-3 or /& -4. Making use
of the usual constraints on l, "we find

-3 &l &-1. (2.48)

III. EFFECTS OF MIXING

F G,~~+F;G;-=2ng~+0(m ). (3.1)

Suppose that the scalar nonet is a set of +0 states

The application of conformal-invariant results to
amplitudes in the real world requires some care:

(i) Conformal symmetry is badly broken, with

no candidate for the dilaton below 0.5 GeV. We
assume that the mass of the dilaton is significantly
less than 1 oeV (500&m, &800 MeV).

(ii) This symmetry violation may be accompanied
by mixing of the dilaton with other (g', Ic) =(0', 0')
me sons.

A phenomenological analysis of (ii) has been per-
formed by Carruthers.

There is fairly strong evidence''~" for the pre-
sence of some members, 6(960) and e'(1060) (also
called q, + or S*), of a possible nonet of scalar
mesons. Evidence for the corresponding strange
particles is obscure. The ninth member could be
the e(700) meson, but its parameters depend on

indirect and controversial analyses of data. "~'
That only a nonet should be present results from
theoretical prejudice; the number of (0', 0') reso-
nances in the region of interest (below 2 GeV} is
not even vaguely suggested by experiment. How-

ever, we will usually assume that the nonet picture
of two (0', 0') mesons, e' and the dilaton g, is
correct.

A good illustration of the effect of mixing is
provided by applying the PCDC hypothesis to the
matrix element" (p~e„"~p):
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~ate =0, (8.2)

in the quark model. The apparent suppression of
the ~'- ww mode relative to e'-KK suggests that
e' contains only strange quarks. Ellis" has pointed
out that this standard picture implies

tion is negligible compared with that of the dilaton.
Consider the usual method of estimating G from
broken scale invariance. '~" Neglecting the mass
of the pion, we combine an unsubtracted dispersion
relation for F,(t), Eq. (2.11), and the decomposition

because the corresponding quark diagram is dis-
connected. Thus Eq. (3.1) shows that the c' pole
provides an essential contribution to the unsub-
tracted dispersion relation for (P I8„"I &]])&. As the
limit of conformal invariance is approached, the
e' state loses its dilaton quality to the 0 state, and

Eq. (8.1}becomes

ImFR(t) = —
8 v5(t-m )F G

—88&6(t-m, )F, G,. +f(t))

obtaining

FGm. F G m 3 f(t)
m m, & t

(3.8)

(8.9)

I' G g@=2mg .
Another obvious example is the sum rule"

(3.3) The contribution of the c' term is small, so

F,F, (P) «F F (P) (3.10)

-i&o](e, e,"]lo)=ito' elec)&ol(e„"(e)e '(o)]lo), „

(3.4)

Assuming that e(700) is the dilaton, Carruthers's
analysis gives

I',=102 MeV, I',.=68 MeV. (3.5)

F.&o IM.Io&+ F, (~' lgelp& = I.(0 I~.lp&,

F.(o IM.Io&+F, (~'188elp& = I„&0 I88810& = o.

(3.6)

(3.7)

In some cases, it is expected that the c' contribu-

Numerically, we observe m, + ' =m, '+, ', so
c'ontribution of the c pole to the sum rule is signif-
icant. If 5 is a, c-number, Eqs. (2.5), (3.4), and

(3.5) and the value of (0I88lp& given by Gell-Mann,
Oakes, and Renner" lead to the crude estimate
-l„(I„+4)= 5, where l„ is the dimension of M. Since
Carruthers's estimates depend on PCDC for bar-
yons, we think that the uncertainty is sufficient to
allow -3 & l„&-1. Similar account of the e' term
should be taken in the standard soft-dilaton theo-
rems

& I
IF'., 6."„lip& = 0, (3.11)

where o here refers to any (0+, 0+} meson. The de-
tails will be suppressed because our analysis is
analogous to the treatment of K» decay given by
Ademollo, Denardo, and Furlan. "

According to Eq. (3.11) and a standard Ward
identity, the retarded commutator

follows from Eq. (2.28), where the numerical dif-
ference is roughly a factor of 10. If the continuum
integral in Eq. (3.9} is also insignificant, Eq. (2.28}
is obtained, and the prediction for the width of the
dilaton is I', „=1200MeV. An optimistic view
of the accuracy of this result might lead to the
conclusion that it violates the Adler-Weisberger
sum rule for m~ scattering. " However, Sec. IV is
devoted to estimating G„, according to the method
of collinear dispersion relations, "and there we
conclude that our theory of broken scale invariance
is not in conflict with the mm sum rule. First, a
preliminary calculation is necessary to establish
an inequality similar to Eq. (3.10).

We apply the method of collinear dispersion re-
lations to evaluate the equal-time commutator

R(o, e) = (2f /ee, ')ifR ee "'e(e ) &e(o) l
le"e„'(e),o,„'(o)1lo)

= ik pV~+iqpV2

satisfies the constraint

R,(J8, 0) = 0.

The usual analysis of the large-q, behavior of R„ leads to the unsubtracted dispersion relation

(3.12)

(3.13}

„rmV, (y)0= dy (3.14)

together with the superconvergence relation

0= dyImV, y, (3.15)
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in the collinear frame k= (m„o), q=(ym, , o).
Separation of the pion poles at y=+m, /m„1am, /m, from the imaginary part of R„yields

1m V, (y) = we(y —1)6((y —1)' -m„'/m, ')D„(y'm, ')/(m, m, )'+ we(y) 6(y' -m,'/m, ')

x [-F,„((1—y)'m, ')+ G„((1—y)'m, ')]/m, '+ u, (y),

1m V, (y) = -we(y —1)6((y —1)' -m,'/m, ')D,„(y'm,')/(m, m, }'-we(y) 6(y' -m,'/m, ')

x [F„((1—y)'m ') + G„((l—y)'m, ')]/m, '+ v, (y),

(3.16)

(3.17)

so Eqs. (3.14) and (3.15}become"
2 3

m [G (+) —G,(-)]=(m —2m )F „(+)—(m +2m )F,(-)+ dy"'
r (3.18}

=F..(+)+G..(+) -F..(-) -G..(-)+ '
— dye, (y), (3.19)

, lmG. .(t')+ — dt' (3.21)

where ——,'t(o+ w)qg„„ is the A, crw coupling. TheAia 7I

inequality needed in Sec. IV is

F, ,(+), G, ,(+)«F„(m,'), G,„(m,'); (3 22)

to make it plausible, we must show that the effect
of the A, e'm coupling is negligible.

When e' is the (0', 0') meson involved in Eqs.
(3.18) and (3.19), the points at which F, ,(t),
G, ,(t), and D, ,(t) are evaluated straddle the
point t =m„'. The near degeneracy of e'(1060)
and A, (1070) gives

[F...(+ ) + F, ,(-)]„„=0,

[G, ,(+)+G, .(-)l, ...=o,

whereas D;,(t) does not have a pole near t=m„',
1

so Eq. (3.19) becomes

(3.23a}

(3.23b)

2[F, ,(-)+G, ,(-)]„„,.= [D, ,(+) -D, ,(-)]/m, '

+ continuum integrals.

(3.24)

where Eq. (3.18) has been simplified by using Eq.
(2.18), the definition of D,„(t). In Eq. (3.18), ex-
amination of the leading power in m, gives a re-
sult consistent with Eqs. (2.20) and (2.21).

In the collinear frame, only 0 intermediate
states contribute to Img, . The coupling of the

A, (1070) meson to the axial-vector current,
(A, ls', „(0)lo) = e„g„, is implicitly contained in the
form factors

g~,g~, a~ t, ImF„(t')
F,„(t)= F,„(0)—,(, )

+ — dt, (, ),
Aj. Ay

(s.2o)

Z~&~ a.(m. -m, )
G,(t) = -G„,(2f„) '(m,' —t) '-

2m„'(m„' —t)

From partial conservation of the axial-vector cur-
rent, D,.„(t) and D„(t) satisfy unsubtracted dis-
persion relations; while we do not expect that the
pion pole at t =m ' dominates dispersion integrals
for D,i„and D„at t =w, ' or m,', the respective
m-pole terms should indicate the correct orders
of magnitude, i.e. ,

D, (+)«D (0}, D (m ). (3.25)

Therefore, gA, , is very small and the A, ,-poleAye 7t'

terms in F;,(t) and G, ,(t) do not affect the
validity of Eq. (3.22).

IV. EFFECTS OF SYMMETRY VIOLATION

&o lf[D(0), 8:„(0)]lw(q)) = s(o 18'so(0) lw(q)&+ o(q),
(4.1)

(o 14„(o),8:,„(0)]lw(q)& = o. (4.2)

Equation (4.1) is equivalent to the assumption that

S„„is not present [see Eq. (2.3)]. Equation (4.2) is
a stronger condition which holds if there are no
Schwinger terms more singular than s6'(x) in the
equal-time commutator

Z„,„(x)= [e„„(O,x), 8:,„(0)]. (4.3)

The retarded commutators

( , l=o~foo' oo(~l(o
~ [e,~(«)o„(o)l ~. (,o)), ,

(4.4)

Collinear dispersion relations" have provided a
framework within which soft-pion and soft-kaon
results may be corrected for violation of chiral
symmetry. In this section, we use this formalism
to estimate corrections to Eqs. (2.26) and (2.38)
for violation of conformal symmetry.

We assume the standard equal-time commutation
relations"



SPONTANEOUS BREAKDOWN OF CONFORMAL AND CHIRAL. .. 3159

e»(o, o)= ifd'xe"'e(x, )(o[[e(|),e,„(o))lw(q)),

(4.5)

io „„(ll,d)= if d xe '.e(x )(ol [do„„(x),e„(o)) l (d))

(4.6)

(where &„(x)=x"e„, is the dilation current) are
related to the equal-time commutators in Eqs.
(4.1) and (4.2) by the identities

ik "D-&(k, q) = i (0 l [D(0), $,„(0)]lw(q))+ T„(k,q) + o(k),

(4.7)

-ik "K„,z(k, q) = i (0 l [K„(0),$,„(0)]lz(q)) -2i ~ + O(k).

(4.8)

With the expansion4'

T~ —sq), X~+ sk~X2, (4.17)

the assumption that Co is finite and independent of
z implies an unsubtracted dispersion relation for
x,(z), 1,Imxg(z')

(4.18)

and a superconvergence relation for X,(z),

0= dzImX, z . 4.19

Equations (4.18) and (4.19) will be considered only
in the collinear frame, which is defined by the
constraints

k =q=0. (4.20)
The singularities in k of D„~ and K„,z are given

by derivatives of the pion-pole term

P.,„(k,q) = -i(k —q),(2f,}-'

x ][2(q ——',k), (q —2k), —(')(k k, -g „k')]

xF,(k')+(k k„-g,k')E, (k')]/(2q k -k')

(4.9)

The imaginary part of Tz is given by the formula

ImT„=i' ImX, + ik&ImX,

= l(»)'g [&0 le„ l I}(Il5:»lw(q)}5 (k —P )

-&016', II)&Ile„"lv(q}}5'(q -k -P,)] (4 21)

Let us isolate the contribution of the pion pole at
z =0 in Eq. (4.21):

with respect to k, so we obtain

-ik "D„„(k,q) = -k" P„„,+O(k),
ak„

8 8 o| 8

(4.10)

ImX (z) = -z5(z)(2f„) '+ImX, (z),

ImX, (z}= v5(z)(2f, ) '+ ImX, (z).

Then Eqs. (4.18) and (4.19) may be written

X,(z) = (ofz) + fdz, —'

(4.22)

(4.28)

(4.24)

x P „„+O(k). (4.11)

The substitution of Eq. (4.9) in Eqs. (4.10) and
(4.11) is simplified if the identities (2.85) and
(2.86) are first applied. The results are

i(q —k)~2m„' iq z

(2q ~ k —k'}2f, f, (4.12)

O
o [Om,'S', ()d) —Od'S'(d'))(d -O)~I

ak" (2q k -k')2f,

+(2f,) '[-2g„~+4q„q~F, '(0)]. (4.13)

When k vanishes, we define a variable z:

k = (zm„, 0).
In terms of the equal-time commutator

(4.14)

T„=-C„/m„z+O(z-'). (4.16)

Cz= d'xe' &'"o5 x, 0 e„~ x, F,z' 0 m q,
(4.15)

Tz has the following asymptotic behavior in z4'.

0= (2f,) '+ — dz ImX, (z).1
(4.25)

Equations (4.1), (4.2), (4.7), (4.8), (4.12), and
(4.13) determine the low-z behavior of X,(z):

2f„X,(z) = z-' --,'+ O(z), (4.26)

2f„' = -z ——'E (0) + Sm„E '(0) + —'+ O(z);

(4.27)

therefore, Eqs. (4.24), (4.26), and (4.27) imply
the sum rules

2f„ Im X,(z)
m z

2 ImXi z) = --;F,(O)+Sm„'F, '(0)+-,'.
(4.28)

(4.29)

In the collinear frame, only 0' states contribute
to the sum over a complete set of states lI) in Eq.
(4.21). We expect that the pion poles at z = 0, 2
and g poles at z = +m, /m, will dominate, so these
contributions are explicitly displayed:



rmX, (~) = m6(s —2)[F,(4m,') —6F,(4m.')]/2f,
—&&(~)6(~ -m, /m, ')F,[F ((1-z}m, m}+G„((1-x)'m„'}]m,2/m, '+x, (g),

lmX, (~) = -v6(z -2)[F,(4m„')-6F,(4m„')]/2f„

+ ~e(z) 6(s' m—,' /m„') F,[ F-,„((1-2)' m„') + G,„((1-z)'m, ')]m,'/m„'+ x, (x)

(4.30)

(4.31)

[the z =0 contribution appears in Eqs. (4.22) and (4.23)]. Summation over g is understood if more than one

scalar meson contributes. Diagrams which correspond to the pole terms are displayed in Pig. 2.
Substituting E]ls. (4.30) and (4.31), the sum rules (4.19), (4.28), and (4.29) become

(&f ] ']F(4m.')-&-6S', (4m.')]= ' ' S]'..(+)-&.,(+)-S'.,(-)+O ()1.„+,-fez—x(z).

(af ) ']-', + —,'z(4m, '}-sF(4m, ')] = ]s'.]s'.,(+) + ~.,(-) + a„,(+ ) + o„(-)] 'fd. "—"-

(4.32)

(4.33)

(2f) ']-,' —',E,(4m,')+Sl,'F,-'(0) ]k;(4+)~F(,'0))= 2' ']F„(+)+G.„(+) E ()-0., (-)-]+„f-dz—
(4.34}

using a notation established in Sec. III.~'

The interpretation of Egs. (4.32)-(4.34) is sim-
plified by changing the variable of integration, z.
Consider the parametrization

x,. = x,.(s, f) = lmX, - Im(m pole +o pole), ,

i=1, 2 (4.35)

where s and E are given in terms of the momenta

q, k of E]l. (4.4):

f = (q —]].)', s = 0' & 0.

In the collinear frame, we obtain

s =m,'z', t =m„'(1-g)'.

(4.36)

(4.37)

In order to understand the magnitude of the con-
tinuum integrals and their behavior as the limit

m, -o is taken, an integration variable such as
s or E should be used instead of z. Keeping only

the terms of lowest order in m,', we have

dz x,(z)= -2 ds —x,(s, s) +O(m,'),
BI;

(4.38}

(4.39)

(4.40}

Nothing unexpected happens in E]ls. (4.38) and

(4.39), but Eg. (4.40) shows that there is a hidden

factor m,' in Eq. (4.34) [corresponding to the factor

~q„ in Eq. (2.37)], which should be removed be-
fore symmetry limits are considered or continuum

integrals are neglected.
In the limit of scale invariance, it follows from

FIG. 2. Diagrams representing poles at (a) s =0, (b)

8=2, (c) 2'=m~/mph' (d) 8=-m~/mg, see Eqs. (4.22),
(4.23), (4.30), and (4.31).



S PONTANEOUS B REAKDO%'N OF CON FORMAL AND CHIRAL. .. 316i

Eqs. (2.9) and (2.24) that both sides of the super-
convergence relation (4.32) vanish, while Eq,
(4.33) reduces to Eq. (2.26). When the artificial
factor m,' is removed, Eq. (4.34) becomes

(2f,) 'F, '(o)= F.F..'(o), (4.41)

(2f„) = F,F„(m, ) —— ds —x,(s, s), (4.42)

(2f,) '=E,P„„(m,') ——fds (4.43)

(2f,) '[F~'(0) + 3F, '(0)] =F,[F„'(m,') + G„'(m,')]

from which Eq. (2.38) is easily obtained.
Consistent with the result (3.22) of the analysis

of Sec. III, we neglect the contribution of the
e'(1060) meson pole to Eqs. (4.32)-(4.34). The
importance of showing that the e'A, n coupling is
small is evident —in these sum rules, the axial-
vector form factors for the e' are evaluated at
points very close to the position of the A, pole.
To simplify Eqs. (4.32)-(4.34), we neglect the
mass of the pion, a sufficiently accurate approxi-
mation for our purposes. Making use of Eqs.
(4.38)-(4.40), the relations

while Eqs. (4.43) and (4.46) require

(4.47)

(4.48)

From the point of view of broken scale and chiral
invariance, Eqs. (4.47) and (4.48) cannot be dis-
tinguished, because only terms 0(m,') are deter-
mined by symmetry arguments. Numerically, the
discrepancy between Eqs. (4.47) and (4.48) amounts

to a factor of almost 2.
Of course, this numerical difference could be

removed by suitably weakening the assumptions
—for example, a tenth scalar meson could be in-
troduced. The author does not believe that such a
procedure is necessary at present. " By saturating
two different dispersion integrals, two estimates
of G„,have resulted; the difference between
these estimates is a measure of the uncertainty
involved in predicting G„„by arguments based on

broken scale invariance. Arguments outside the
theory of broken scale invariance allow further
progress. The most important theoretical con-
straint not derived from broken scale invariance
is provided by the Adler-Weisberger sum rule for
ww scattering, "which requires'

ds —1 ' (4 44)
Bt s

~F.„(0)~ & I/~z. (4.49)

follow.
Various pole -dominance approximations will

now be considered. Let us compare Eqs. (3.9)
and (4.43), noting that, with the aid of Eq. (2.23)
and the usual neglect of the e' term, Eq. (3.9) may

be written

(2f,) '=F,F„(0)- ds'3,f(s') (4.45)

F.,(O)/F. ,(m,') = 1-m,'/m„'. (4.46)

When continuum integrals are neglected, Eq. (4.45)
yields the usual formula

Both continuum terms involve semiinfinite integra-
tion paths with apparently similar rates of con-
vergence and similar sets of contributing diagrams.
So at this level, we are unable to determine that
one continuum integral is significantly smaller
than the other.

However, numerical agreement of the results of
ignoring the continuum integrals of both Eq. (4.43)
and Eq. (4.45) would be surprising. According to
the usual estimates ~ ~' of the A,om coupling, the
A., pole should cause considerable variation in

F,(t) between t =0 and t=m,'. In fact, Carruthers"
has shown that these estimates agree with the re-
sult of assuming A, -pole dominance of F„(t), in
which case we have

Then most phenomenological estimates" ~
' of

dilaton-baryon couplings favor Eq. (4.48). Having
observed the numerical failure of PCDC for
(v~8„"

~ v}, it is less surprising that o -pole domi-
nance of F,(t) is such a crude approximation.

Consider the approximation in which the contin-
uum integral of Eq. (4.44) is neglected. According
to Eqs. (2.20) and (2.21), we have

F,'(0) = -3F,'(0) + 2f;F.F.„(m.')

x[2F '(m, ')/F„(m, ') -m, ']. (4.50}

We apply Eqs. (4.43) and (4.48), together with the
estimates

-3F, (O) = F.G.„/m.',

F..'(m.')/F. ,(m.') = (m„' -m.') -',

to obtain

+ m2 2

F,'(0) =

(4.51}

(4.52)

(4.53)

By ignoring the violation of scale invariance, we
can recover our previous conclusion that f domi-
nance of F,(t) is consistent with the predictions of
a scale-invariant theory [see Eq. (2.39)]. However,
it is obvious in Eq. (4.53) that scale-breaking ef-
fects ruin f -dominance arguments. Our conclusion
is supported by recent work of Engels and Hohler. '
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They estimate the fNN coupling constants from
backward dispersion relations for wN scattering,
and obtain a result which is three times the value
predicted by f dominance.

The application of the method of collinear dis-
persion relations to related equal-time commuta-
tors is straightforward. We close this section
with the example

the formula (not to be applied to the real world)

T(0) = 2f-.I",(0)g.vN
= (5.1)

where the last equality follows from Eqs. (1.7)
and (2.26). That there is no contradiction can be
seen by explicitly displaying the p pole in the non-
scale-invariant m'p scattering amplitude:

&0~ [a, e„"]~o) = ttm. 'S., (4.54) (5.2)

assuming that the dimension of e„, l, is unique,
apart from a q-number term. Neglecting mixing,
we obtain

—;m.'(t+-') =&oIe„"Io,o)„„.
The crude estimate

&0 ~e," (g, o)„„=——,'Z. G,.+ &o )e„'(o)

leads to the prediction"

Z.G.„=(1- t)m.'

(4.55)

(4.56)

(4.57)

for the gag coupling constant. With ideal mixing
of o and e', the ae'e' and pae' quark graphs are
disconnected, so mixing effects may be small.
However, only the term determined by symmetry
considerations is displayed, and terms of higher
order in m,' may be significant. Of course, PCDC
for &v~e„"~g) does not fix l in Eq. (4.57).

V, MAGNITUDE OF SU(2)XSU(2) VIOLATION

Basic to our approach to calculation of soft-me-
son amplitudes has been the idea that the violation
of chiral SU(2)xSU(2) symmetry is much smaller
than the breakdown of conformal invariance. For
example, we have assumed that, in the real world,
the induced scalar form factor E,(t) is better ap-
proximated by Eq. (2.11) than Eq. (2.9). This im-
plies that G, is O(m,') rather than O(m, ') or
O(m,'). However, the position of chiral SU(3)
xSU(3) in the hierarchy of symmetries is less
clear.

In general, chiral calculations performed in the
limit of scale invariance differ from the usual
analyses with 8„"~0. With 8„"=0, extra insertions
arise from diagrams in which the axial-vector cur-
rent can hook on to an external pion and turn it
into a dilaton (and vice versa). Consideration of
such insertions was essential in the derivation of
Eqs. (2.26) and (2.38) in the scale-invariant limit.
A formal example is the threshold amplitude T(0)
for forward m'p scattering, where we show only
the dependence on t, the square of the momentum
transfer. According to the Adler consistency con-
dition, "T(0) vanishes in the limit m, -0 with

e„"g0. In the limit of scale invariance, the extra
insertion changes this result; instead, one gets

T(0, 0, m, m,') = 4f,'c„„+"O(m, )"

for the amplitude

(5.4)

with T(0) = g,„„-'/M for both e„"w0 and e„"=0.
The limits m,'-0, t-0 are not interchangeable
in Eq. (5.2). Since the Adler consistency condition
is in excellent agreement with experiment, chiral
SU(2)xSU(2) symmetry provides a much better
description of the real world than does conformal
symmetry. On the other hand, results based on
chiral SU(3)x SU(3) symmetry show sufficient
deviation from experiment to allow the possibility"
that SU(3)xSU(3) and conformal symmetry are
violated by the same term in the energy density
(i. e., 6 equals a c-number). Therefore, it is
important to note which SU(3)xSU(3) results may
be affected by dilaton poles. "

Evidently, this viewpoint requires that SU(2)
xSU(2) be regarded as a much better symmetry
than SU(3)xSU(3), i.e., c=-~2 in Eq. (2.1).
This has been challenged by Gaillard" and by
Brandt and Preparata, "who prefer -c «v 2, a
result based mainly on their analyses of K» decay.
Their main assumption is ((mr') =$(0); then a
small value of c is required if the confused experi-
mental situation" is supposed to favor ((0)=-1.
However, when the collinear dispersion relations
of Banerjee~ are examined, it is difficult to avoid
the conclusion that -c «W2 implies $(mr') =-1 and

$(0)» 0; only by having c =-W can a value $(0)
&-0.5 be obtained. Then the behavior of the form
factors is difficult to explain in terms of dispersion
theory. To avoid a mysterious dip in the scalar
form factor, A., has to be much larger than the
value 0.024 implied by K*(890) dominance of f, (t)."
We doubt that data from K„decays can be reliably
interpreted until all parametrizations are avoided
and the form factors are plotted as functions of
the momentum transfer squared, so we retain the
usual estimate' q -—-1.25.

Recently, Cheng and Dashen" obtained the result

(r„„=&N
~

——,'(vY+ c)(%qua+us) ~N) = 110 MeV

(5.3}

by using wN phase shifts, a fixed-t dispersion re-
lation, and the low-energy theorem
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T(v)vs)q)q )

2f~ '
=(m,' —q')(m, ' —q'2) ', z d xe" '"B(x,}

x(N(p')
~

IB"6',„'(x),O'5:,„'(0)](N(p)), (5.5)

with q=p'+ q' p, -v=(p+p') (q+q')/4M„, and
v = —q q'/2M„. Since 110 MeV is not much
smaller than energies associated with SU(3) break-
ing, they conclude that SU(2)xSU(2) and SU(3) vio-
lations are comparable in magnitude, which is
contrary to expectations that c is near -vY. In a
theory which does not contain dilatons, their con-
clusion appears to be unavoidable.

However, a different interpretation is available
in dilaton theory. As a subgroup of SU(3)xSU(3),
the physical SU(3} group is distinguished from
other SU(3) groups in that its elements leave the
vacuum invariant. " Then physical SU(3) is not
spontaneously broken and perturbation theory in
the SU(3} violating parameter makes sense:

= 1060 MeV. (5.10)

Within the 20% accuracy of Eq. (5.10), we have

&N I~I» =My, &Nl cool» = - &Nl &I», (5 11)

so the formula

(
2f.'I'—'

I g i d'xe"'*
m j a ))())(

x &o
~
T(s"5,„(x),s"5,„(0)}~0}(„,„„)

= O(Mg(2f„) &0
~

8"S,„~&*)'/(m,m, ~)'),

(5.9)

with &O~s"6'» ~v*) =O(m,'/2f„), so the correction
terms have magnitude O(4f,'M„m,'/(m, m, ~}2). 1(te-
glect of such terms appears to be a satisfactory
approximation; a corollary is that the correspond-
ing terms for KN scattering should not be thrown
away: m+4/m, ' = O(mz'). Therefore we use Eqs.
(5.3) and (5.6) to obtain &N ~u, ~N) = -1280 MeV and

(NIMlrrr) =
~(~) )

rr„+ ( ~ —))(N[eu, IN)

(N ~ e((8 ~N} —2M' + 2M)( -Mg = 215 Me V. (5.6) &N ~(I, +4}5+(t„+4)M~N) = &N
~
8„"(N) =M„(5.12)

This means that dilaton state ~o) must be invariant
under physical SU(3} transformations in the limit
of scale invariance. As scale invariance is broken,
the dilaton quality is distributed between the

~ o)
and ~e') states. Poles in &u,) due to the existence
of ~o) and ~e') arise from the nondilaton, or octet,
quality of these states. On the other hand, matrix
elements of u, have 0 and e' poles due to the dilaton
quality in ~o) and ~e'). Therefore the magnitude of
(N M, » is O(m„'M„/m, '), much larger than
&N u, N). In general, we expect

(5.7}

for all one-particle rest states ~g} except ~a) and

)0,8).
Because of these observations, there is no rea-

son to abandon either the (3, 3*}$(3*,3) form of the
chiral SU(3)XSU(3) violating term in the energy
density or the value -1.25 for q, if there is a, dila, -
ton. In order to apply Eq. (5.3) in a dilaton theory,
we should first check the validity of neglecting the
terms "O(m,4)" in Eq. (5.4), where the next order
in m„' is given by

"O(m 4)"=m„,z T(0, 0, 0, 0) + "O(m,'}".
7( )( s sq/I

(5.8}

The pion poles at q = q" =m, ' do not contribute to
Eq. (5.8}. Parametrizing the failure of PCAC in
terms of a "heavy pion, " m*, the contribution of
the dilaton pole is

suggests 5= q-number and l„= -3; however, we
are unable to exclude the possibility -&N

~ 5~N)
= O(M„).

If Eq. (2.1) is accepted and SU(2)xSU(2) is a
much better symmetry than SU(3)&SU(3), the re-
sult of Cheng and Dashen is strong evidence that
conformal invariance is spontaneously broken.

2 2mo, ~a
g~~ 2m, M~ m„1

(6.1)

for the dimensionless constant g„,=(2m, ) 'Q,
Equation (6.1}follows from Eq. (4.48) and PCDC
for ba.ryons. The original estimate'y" of this
ratio did not contain the factor (1-m '/m„'). Sym-
metry considerations fail to distinguish the new
formula (6.1}from the old one, so, as stated pre-
viously, ' only an order-of-magnitude prediction
for I' can be obtained. The uncertainty of the
prediction is large enough to include most experi-
mental and theoretical estimates, such as those
derived from the mm Adler-Weisberger sum rule,
PCDC for baryons, and the meager data available
for g and g~„.

In analogy with our previous discussion' of the

VI. CONCLUDING REMARKS

We have found that mixing and scale-violating
effects can strongly affect the accuracy of soft-
dilaton results. The most important case arises
in calculating the o ~~ coupling constant. Applying
the method of collinear dispersion relations, we
find the expression
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connection between the scaling behavior of the
axial-vector current and the induced scalar form
factor E,(t), the standard assumption (2.29) for
the conformal transformation properties of the
axial-vector current provides information about
the spin-2 form factor E,(t) of (v~8„,~v). The
scale-invariant prediction is Eq. (2.38), which

appears to confirm the validity of f dominance of

E,(t). However, when the effects of scale-invari-
ance breaking are included by saturating the ap-
propriate collinear dispersion relation [Eq.
(4.29)], we obtain the prediction (4.53) for E,'(0).
The disagreement with f dominance involves a
factor of 3. Since the data for fNN coupling con-
stants'" display similar disagreement with f domi-
nance, it appears that f mesons do not couple uni-
versally, and our prediction is not contradicted.

Because of our assumption that scale invariance
is spontaneously violated, we can offer an alterna-
tive interpretation of the discovery of Cheng and
Dashen" that the current-algebraic "g term" for
&N scattering equals 110 MeV. This result may be
viewed as confirmation of our approach to broken

symmetry: The limits of SU(3)xSU(3) and scale
invariance are accompanied by the appearance of

(0,8) and (0", l) Nambu-Goldstone bosons, and
the violation of SU(2)xSU(2) is small compared
with that of SU(3)xSU(3) and conformal symmetry.
Thus, the "g term" for ~r scattering is given by
either PCAC or the variational principle, but the
same methods do not apply when K or g mesons
are involved. " Similarly, the method of Cheng
and Dashen applies to nN, not KN or ~ scattering.

In the author's opinion, there is no reason to
doubt that the breakdown of conformal invariance
is spontaneous.

A brief summary of this paper was presented
at the Coral Gables Conference on Fundamental
Interactions at High Energy, Vniversity of Miami,
January 20-22, 1971; there the author learned of
a related discussion of tensor-meson dominance
due to Raman. "
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