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The 7fvr partial-wave amplitudes are the projections of the corresponding scattering ampli-
tudes with respect to the Legendre polynomials with appropriate arguments. In the past few

years, several inequalities for the m. partial-wave amplitudes have been obtained by using
analyticity and unitarity. We show that many of these inequalities may be generalized into
inequalities for the projections of the xvr scattering amplitudes with respect to suitable
classes of orthogonal polynomials. The generalization yields several new inequalities for the
7r7f partial waves in the region 0 ~s ~4m~ . In particular, we derive such inequalities involv-
ing only s, p, and d waves.

I. INTRODUCTION

In previous papers, ' the Martin inequalities' on

the partial-wave amplitudes of the processes 7t'7t'

—m'm' and w'm'- 7l'7I were utilized in conjunction
with the crossing symmetry of the 7I7l scattering
amplitudes to derive an infinite number of inequal-
ities involving the s- and P-wave mm partial waves.
In the present work, we extend the results of Befs.
1 and 2 by introducing certain classes of functions
which are non-negative on the Mandelstam triangle
and associated classes of orthogonal polynomials.
The inequalities given in Refs. 1 and 2 may then be
generalized in a simple way into inequalities for
the projections of the mm scattering amplitudes
with respect to these orthogonal polynomials. The
striking correspondence between the properties of
the usual partial waves and these "generalized
partial waves" owes its origin to the fact that the
classes of orthogonal polynomials we consider and

their functions of the second kind have positivity
properties which are very similar to those of the
Legendre polynomials and their functions of the
second kind. The existence of such close analogies
between the nature of the ordinary partial waves
and of the generalized partial waves suggests that
the latter may be useful in other contexts in scat-
tering theory. The inequalities on the generalized
partial waves may be rewritten as inequalities on

the canonical partial waves. The latter lead to new

results when they form an extension of the inequal-
ities derived in Ref. 1. However, the inequalities
which come from the extension of the Martin in-
equalities are implied by the work of Yndurain, '
and at least partially implied by the work of Com-
mon' as well.

Section II generalizes Martin's results while
Sec. IV generalizes our previous results using
methods developed by Balachandran et al.' Unlike
the inequalities in Sec. IV, those in Sec. II do not
involve m7i s waves. In Sec. III, we establish that
at least a subset of the inequalities in Sec. II are
implied by a representation theorem on 7i7t partial
waves proved independently by Yndurain, '

by
Common, ' and by Froissa, rt.' (Unlike Common and
Yndurain, Froissart does not consider the positiv-
ity properties of the weight function in the repre-
sentation nor its consequences on the nature of the
partial waves. ) We conclude the text of the paper
with some general remarks in Sec. V. Appendix
A contains a discussion of the properties of orthog-
onal polynomials. Appendix B describes some new
inequalities involving the (usual) vv s, p, and d
waves.

II. INEQUALITIES FOR / ~ 2 PARTIAL %AVES

We will denote by A "(s, t) and 2 '(s, t) the scat-
tering amplitudes which in the s channel describe
the reactions m'm'- m'm' and m'm'- m'w, respec-
tively. The pion mass will be taken to be —,

' so that
s+t+u =1. The partial-wave expansion of A ' in
the s and t channels are

&"(, t) =g(2t+1)a',"(s)&,(,)
l=a

(2.1)

where

zz —-1+2t/(s —1), z, =l+2s/(t —1).

Also, at, '(s) = 0 if l is odd and for i =0, at/ (s)
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y(oI (s)
Let

(2.2)

1
a,' (s, z) =-,' dz, e(z„s)P, (z,)A' (s, t),

-1
i =0, c; &ue8; sg[0, 1]. (2.12)

We shall denote by 6 the class of functions &o(x, i )
which are defined on ~ and fulfill the following

properties on ~:
(2.3)(a) (o(x, ~)) 0,

(b) dx (u(x, w)x'&~, v =0, 1, 2, . . . . (2.4)
-1

The subset of functions &u(x, v) of class 6 which are
invariant under x- -x will be denoted by {', Thus

Then

at|'~(s, &u) ) 0 for l=2, 4, 6, . . . and sg [0, 1).

Therefore, if

e(z„s)P, (z,) =g z„,(s)P,(z,),

(2.13)

(2.14)

where P,(z,) = P~ '(z, ) axe the Legendhe Polynomi
als,

(c) (u(-x, 7) =(u(x, r) (2.5) Q (u„,(s)a',"(s) ) 0
V=P

if &ucp, . The orthogonal polynomial P,"(x) rela-
tive to the weight cop{: is by definition a polynomi-
al of precise degree l in x for each v. in the inter-
val [0, 1] for which orthogonality relations

1
dx (u(x, ~)P, (x)x"=0,

-1

v = 0, 1, 2, . . . , l —1; l = 1, 2, 3, . . . (2.6)

are valid for v in the same interval. The depen-
dence of P, on v has been suppressed. We will

further assume that P, is so normalized that

P, (1))0, 7g [0, 1] . (2.7)

1 1 Pg y
Q, (x) =— dy(u(y, v)

2 -1 x —y

The method of construction of P, is well known

in the literature [See,. for example, Refs. 7 or 8,
or Appendix A of Ref. 5(b). ] When to(x, 7) is a poly-
nomial in x for fixed &, eP, can be expressed in
a particularly simple form in terms of Legendre
polynomials. Appendix A contains this formula.
It is also useful to have a systematic method for
the construction of non-negative functions on 4.
Representation theorems for non-negative func-
tions are available in the literature' and may be
adapted for this purpose.

With each P, , we can associate a "function of
the second kind" Q, by the formula

for i =0, c; l=2, 4, 6. . . ; sg[0, I). (2.15)

Because of (2.6), &u„(s) =0 if v& l, and therefore
the sum on v in (2.14) or (2.15) can be restricted
to v) i.

The inequalities (2.13) are extensions of the
Martin inequalities'

a,' ~ (s) ) 0 for i = 0, c; l = 2, 4, 6. . . ; s g [0, 1)
(2.16)

to a wide class of "generalized partial waves. "
Their derivation is also very similar to that of
Martin. Thus, A. '~(s, t) has a. fixed-s dispersion
relation with two subtractions when 0 ( s& 1." By
projecting out a~,'~(s, e) from this representation,
we obtain the generalized Froissart-Gribov formula

i = 0, c; l = 2, 3, 4, . . . ; s g [0, 1) . (2.17)

The absorptive part in the t channel of A~') (s, t) has
been denoted by At,''(s, t). The t channels of n'm'

- m'm' and m'm'- m'm refer to the elastic processes
m'm'- m'm' and m'm - m'm, respectively, and there-
fore, "

xq[-l, +1]; r g [0, 1]. (2.8)
At,'~(s, t') ) 0 for i =0, c; t') 1; sE[0, 1).

Q,
"(x) ~ 0, l = 0, 1, 2, . . . ; x) 1

Q, (x) & 0, l = 0, 2, 4, . . . ; x& -1

Q, (x))0, l=1, 3, 5, . . . ; x&-1.
We wish to show the following: Let

(2.9)

(2.10)

(2.11)

We have adopted a definition of Q, which differs
from the definition conventionally used in the liter-
ature essentially be a factor of ~. In Appendix A,
we will prove that for 0 &v (1 and for any vE{.,

(u(z„s) =(1-z,'). (2.19)

The polynomials P, may then be identified with the
associated Legendre polynomials P,".It follows
from Christoffel's formula that

(2.18)

The result (2. 13) follows from (2.17) when we use
(2.9), (2.10), and (2.18).

We illustrate (2.13) and its consequence (2.15) by
a simple example. Let
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(1 —z, )P, (z, ) = c, [P,(z,) —P„,(z,)],
c, =const&0. (2.20)

[See, for example, Appendix A. ] The content of
(2.13) and (2.15) is thus

a&') (s) —aI,", (s) & 0

for i =0, c; l=2, 4, 6, . . . ; sC[0, 1). (2.21)

(2.22)

Thus, for the first Q, , we have not yet utilized the
interval [1,x,(s)) [0& s& 1] where, too, the positiv-
ity of Q, persists by (2.9). To remedy this defect,
let us define

Q, in (2.17), for example, ranges over the interval
[x,(s), ~}, where

x,(s) =(1+s)/(1 —s) .

A refinement of the above result becomes possi-
ble when we notice that the argument of the first

r(s p) =(1-p)+px()(s),

where p is a constant. Then, for ~E6,
(2.23)

y(. .p) ~S JZ

, s I'i"
r(s, p)' ' r(s, p)

v(l —s), ' ', ' (y(s, p) 1 —s ] '(I,y(s, p) 1 —s i,
&0 for i =0, c; l=2, 4, 6, . . . ; pE[0, 1]; sC[0, I).

In terms of the partial waves at, ') (s), Eq. (2.24) is equivalent to the following: The series

(2.24)

1
a~, ' (s, (d, p) = g (2L + 1)a~+') (s) x —,

' dz, (d(z„s) P, (z,)PI(y(s, p)z,),
L)p -1

i =D, c; l=2, 4, 6, . . . , ; zE& (2.25)

is non negati-ue n)hen sE[0, 1) and pE[0, 1].

III. CONNECTION VfITH THE COMMON-

YNDURAIN INEQUALITIES

Common' and Yndurain' (see also Ref. 6) have
shown that a necessary condition for the existence
of the Froissart-Gribov representation for ar', ) (s)
for sE [0, 1) and L = 2, 4, 6, . . . is that a~~ ) (s) fulfill
certain inequalities which are necessary and suf-
ficient for them to be the moments of a non-nega-
tive function P

~' ~ (s, () over an appropriate interval,
that is,

1lr(s )
g ' (s)= dg(t) ' (s, ()$, i=0, c;

0

(3.2)

1
x —,

' dz, &u(z„s)P, (z,)S(y(s, p)z„$),
-1

l = 2, 4, 6, . . . ; sc [0, 1); p C [0, 1] . (3.3)

S(r(, p) „5}-=g(2L+I)5'P (r(s, p)z,)
L=0

(2

[1 —2r(s, p)z. h+ h']""
we find

a',"(s,w, p) f4 (="'(s, ()

where
r(s) = x,(s) + [x,(s)' —1]"'

and

L=2, 4, 6, . . . ; sg[0, 1)

(3.1a)

(3.1b)

[The identity (3.2) follows easily from the expres-
sion for the generating function for Legendre poly-
nomials in terms of I egendre polynomials. ] We
will prove in Appendix A that

pl'(s, $) & 0 when sC[0, 1) and FC[0, 1/r(s)].
(3.1c)

Here (3.1c) is a consequence of the positivity pro-
perty (2.18) of the absorptive parts A,' . We will
now show that the non-negativity of the series
(2.25) [which for p=0 reduces to (2.15)] is implied
by the above representation provided vE, .

On inserting (3.1a) in (2.25) and using
S(y(s, p)z„()=Q—;z,",

v=p
(3.5)

1
dz, (u(z „s)P)~(z,)z," & 0,

-1

l=0, 1,2, . . . ; v =0, 1, 2, . . . ; sE[0, 1]
(3.4)

provided &uE(., In (3.3), let us therefore write
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where

2 [3y(s, p)$][5y(s, p)$] "[(2v+1)y(s, p)$]
v (1 + $2)hv+3)t2

(3.6)
Since c, -0 in the region of interest in (3.3), the
result a,' (s, e, p) ) 0 for the specified restrictions
on s, &u, and p follows from (3.4).

We have not succeeded in showing that (3.1) im-
plies (2.25) when &u(-z„s)4 &@(z„s), nor do we know

whether (2.25) implies (3.1).
We refer the reader to Yndurain' for the state-

ment of the necessary and sufficient conditions on

ai', (s) [L =2, 4, 6, . . . , sg[0, 1)] for the existence
of their Froissart-Gribov representations with
absorptive parts which fulfill (2.18). These condi-
tions of course imply the inequalities (2.25).

IV. INEQUALITIES WHICH INVOLVE
s WAVES AND HIGHER WAVES

In this section we will investigate the conse-
quences of the preceding results on the partial-
wave amplitudes ati' i(s) and b~,

' i(t) when the cross-
ing symmetry of A~')(s, t) is imposed. Since we
have found no good way of evaluating the impact of
the inequalities (2.25) on the nature of these par-
tial waves except when p =0 and cu6g„we shall
hereafter concentrate exclusively on the inequal-
ities (2.13) with ~ cg, .

In previous research, ' a number of inequalities
have been obtained involving the s and P waves

a~ (s), b~o ~(t), and b~,
' (t1) starting from the Martin

inequalities (2.16) and using crossing. A main
point of this section is that when

&ATE-8„

those in-
equalities may be generalized into ones involving
ao' (s, e), bo (t, e), and b~P(t, &u) provided we use
(2.13) instead of (2.15). The definition of b~,'~(t, &u)

for cu6e is

1

b'I'(t, (u) =-,' dz, u)(z„t)P, (z,)A"'(s, t),
-1

i =0, c; tE[0, 1]. (4.1)

We have already seen in Sec. III that at,' i(s, &u) and

a,' (s) enjoy analogous positivity properties. The
accumulation of such common properties between

a,' (s, &u), b,' (t, &u), and a,' (s), b,' (t) tends to
suggest that the former set of generalized partial
waves may have a significance in scattering theory
which is not yet properly understood. Of more im-
mediate concern for us is the fact that when the
relevant u(z„s) are low-order polynomials in s
and t, the inequalities of this section can be read-
ily converted into ones involving the first few par-
tial waves. Such inequalities involving s, P, d
waves are studied in Appendix B.

The following results may be proved: Let X (s, t)

cohere
hei') (s, (u) - 0,

Then

l=2, 4, 6, . . . ; sg[0, 1]. (4 3)

ds(l —s)k~,"(s, u))a',"(s, (u) ) 0. (4.4)
0

For the proof we refer the reader to paper I,
where a similar result for ~ =1 is derived. Note
that due to (A34) in Appendix A, a,') (s, ~) = 0 if
&u Cg, and l is odd. The expansion of at,'~ (s, u&) in

(4.4) in terms of a,oi(s) may be achieved, if de-
sired, by expressing ~P, as a series in Legendre
polynomials as in the transition from (2.13) to
(2.15).

A somewhat different statement which is equally
valid for i =0 and c is the following:

Let

X(s, t) = &u,(z„s)gk&(s, &u&)Pi ' (z,)
l=O

1

,( t, )Qg, (t, (g,)P, (z,),
i=0

(4 5)

(4.6)

SUhere (d, gg„(d, gg, and

h, (s, v, ) ) 0, l=2, 4, 6, . . . ; sg[0, 1].
Then

(4 7)

dS 1 —S g) S, 602 5) S, (d2
l=o

-h, (s, v,)a~fr(s, &u,)])0, i =O, c.
(4 8)

The proof is once more patterned on the work of
paper I.

In previous papers we constructed a class of K '
and X which fulfilled the preceding requirements
for the choice ~=&a, =u&, =1. (The notation there
was Xto~=Hl'i, X~Ht'i. ) The constructions were
essentially based on the observations that

1=2, 4, $, . . . ; -1(x(0
or 2m + 1 & X & 2m + 2 (m = 0, 1, 2, . . . ); s g [0, 1)

1
dz +,(z,)t & 0, l = 2, 4, 6, . . . ;-I

(4.9)

0&& &1; sr[0, 1)

(4.10)

be any antisymmetric function of s and t suck that,
for z, s E6i and for some (AC ev*

X ' (s, t) = u&(z„s)g h,' (s, e)P, (z,), (4.2)
E=O



A. P. BAI ACHANQHAN AND M. L. BLACKMON

1

dz~(z )(1-2t)"o O

l=2, 4, 6, . . . ; n=o, 1, 2, . . . ; sc[0, 1].

H"'(s, t) =M„+M„s+M„, „,(1 —2s)+ ~ ~ ~ +M„t

+Mt, ts+M, t, „)t(1 —2s) + ~ ~ ~

(4.11) M t~) s(.) o'«)@s)
~(~},8(&}

(4.21)

Nom it mill be shown in Appendix A that the follow-
ing analogs of (4.9)-(4.11)are valid for projections
with respect to ~P, mhen ~gg, .'

where n(x), p(x) take on tke values l, x, 1 —2x,
x, (1 —Zx), . . . and where the matrix M with nu
erical entries satisfies

1

dz, (u(z„s)P, (z,)t ~ 0,
-1

a(~}8(.} — e(~}a(s} y
(4.22)

)=2, 4, 6, . . . ; -1&X ~0

or 2m + 1 c x ~ 2m + 2 (m = 0, 1, 2...); sc [0, 1)

(4.12)

(ii} ~M-(~) st.)&«) -0
8(s}

for sc[0, 1] and Q(t) = t', (1 —2t)', t', (1 —2t)', . . . .

(4.23)

dZ~(d Zsy S I ) Z~ t
TIMg see may set

(a) X'+ (s, t) = &u(z „s)H'"(s, t), (4.24}
l=2, 4, 6, . . . ; 0~X &1; sg[0, 1)

dz, (u(z„s)P, (z,)(1 —2t)" ~0,

(4.18)

(b) X(s, t) = (o,(z„s)H(s, t), (4.25)

wkere &g(z, s)c Q and is furtksrmors completely
symmetric under interckangss of s, t, u, «d

l=2, 4, 6, . . . ; n=0, 1, 2; sC[O, 1]. (4.14)

%e will denote by. H 0} and H the functions X( }

and K which refer to the case (d = v, = v, =1. Then,
because of (4.12)-(4.14), several sets of allowed
X and X may be eonstrueted by suitably choosing
0 and II from paper I and multxplyxng them with

appropriate weight functions. %e have the follow-
ing results: I-et H and H be defined in any one of
the following ways:

td, (z„t)=~,[ (zzt), s(z„t)],
mhere'' "-"(l-t)(1-.,) 2

(4.26)

(4.27)

where ~,(z„s)c6,.
The weights &u in (4.2) and (4.24) are the same.

So are the weights &u, in (4.5) and (4.25). The

weight ~, in (4. 6) is to be obtained by a change of
vafvabls from tks corrssPQnd2ng ws1gkt (d~.

H "(s, t)=t s —ts, H(s, t)=t s,
s(z „t) =-,'(1 —t)(1-z, ) . (4.28)

0&X&1 (4.16)

H ~" (s, t}= t (1 —s) —(1 —t)s, H(s, t) = t "(1—s),

-1&1~0 or 2m+1 ~X «2m+2; m =0, 1, 2, . . .

(4.17)

H~" (s, t) =-t (1 —s)+(1 —t)s", H(s, t) = t"(1—s), -
0&X&1 (4.18)

H&'&(s, t) =(1 —2t)"s —t(1 —as)", H(s, t) =(1-2t)"s,

g=0, 1, 2

H'+ (s, t) = (1 —2t)"(1 —s) —(1 —t)(1 —2s)",

H(s, t) =(1 —2t)"(1 —s),

kg=0, 1, 2, . . .

(4.18)

(4.20)

-1& X ~ 0 or 2m + 1 ~ X ~ 2' + 2; m, = 0, 1, 2, . . .

(4.15)

H'"(s, t) =-t"s+ts", H(s, t) = t's, -

The proof of these results again uses the methods
of paper I and may be omitted. Simple ways of
constructing the matrix M are also described in
that paper. Examples of ~ for (4.24) are stu and
st+ tu+us and the square of the modulus of any
polynomial in these variables and examples of co,
for (4.25) are t+u and tu.

%e finally observe that the eonstruetion of H
in (4.21) and hence that of Xt'~ by the formula (4.24)
may be generalized to involve fractional pomers of
s and t as mas described in paper I.

V. FINAL REMARKS

%e have attempted to formulate the results of
this paper in a form which closely resembles the
results in Befs. 1 and 2 and have placed special
emphasis on displaying the nature of the general-
ized partial waves. Thus, for example, Eqs. (4.4)
and (4.8) could easily have been reformulated so
as to contain more generalized partial maves.
Again the existence of co, is not really used in Eqs.
(4.5)-(4.8), so that the inequality (4.8) could have
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APPENDIX A

Properties of Orthogonal Polynomials

The standard reference for orthogonal polynomi-
als is Szego's book'; see also Ref. 8 and Appendix
A of Ref. 5(b). Only such results are described
here as are of some relevance to the text of the
paper or to the literature in the field. The dis-
cussion given here regarding the positivity prop-
erties of P, and Q,

"may in parts be new, at least
in its methodology of proofs.

For convenience of notation, we will suppress
the dependence on 7 of the weight function &u(x, 7')

and denote it simply by &u(x). The translation of
the results to the weight function ~(x, v. ) is of
course immediate. Thus if v(x)68,

(a) &u(x) & 0 for xg[-1, +1],
1

(b) dx(u(x)x'&~, v =0, 1,2, . . . .
-1

(A1)

(A2)

If v(x)p 6„ then besides (Al) and (A2), it enjoys
the symmetry property

(c) v(-x) =e(x) for xE-[-1,+1]. (A3)

It will further be assumed that the weight functions
we deal with are nonvanishing almost everywhere
on [-1,+1]. The orthogonal polynomial P~~(x) with
respect to the weight ru(x}g6 is as usual defined to
be a polynomial of degree l with the following prop-
erties:

been written without introducing e, at all by replac-
ing the integral over Qg, 5t,'l by the integral

~

~ ~ ~

j, 1

dt(1 —t)x-', dz, X(s, t)A"'(s, t).
0 -1

It should also be noted that all the inequalities in
the text can be refined and made to involve wm total
cross sections and other experimentally accessible
data as was done in paper I. Some theorems on

the allowed crossing properties of partial-wave
sums over subsets of partial waves can also be
proved following paper I. We have omitted such
details however in the belief that they can be filled
in by the interested reader.

(c) P, (1)&0. (A6)

[P, (x) cannot vanish at x=1; see below. ] Along
with P, , we will also be interested in the functions

Q, of the second kind defined by

Q, (x) =-,' dy u)(y) ', xq[-1, +1].P, (y)
-1 x —g

(A7)

P,"(x)&0, x& 1; I=0, 1, 2, . . . . (A8)

As x-~, (A4) and (AS) yield n»&0. Therefore, as
x- -~, P, (x) & 0 for l even and P,"(x)& 0 for l odd.
Thus by the theorem,

P, (x)&0, x&-1; /=0, 2, 4, . . .

P, (x)&0, x--1; l=1, 3, 5, . . . .

(A9)

(A10)

Another result, which has been extensively used
in the literature, in particular when the orthogonal
polynomial in question is the Legendre polynomial,
states that if P, (x) is a constant multiple of one of
the classical orthogonal polynomials, "then its
first l derivatives are positive for x ~ 1. This re-
sult may also be proved quite simply using the
above theorem For, i.n this event, d'P, (x)/dx"
(@=1,2, 3, . . . , I) is itself a nonzero constant times
one of the classical orthogonal polynomials" and
therefore cannot vanish for x& 1. But for x-~,
these derivatives are positive since n» is posi-
tive; hence the result.

Recurrence Formulas

Any three consecutive orthogonal polynomials
are connected by the relation'

xP,"(x)=A „,P„,(x) +B,P, (x) + C, ,P, ,(x),

This Appendix consists of three parts. In the
first part, we study P, and Q, when &@ED, while
in the second part (d is further restricted to be in

In the final part, we illustrate with two exam-
ples what appears to be a relatively simple method
for obtaining inequalities for I', and Q, when (de@
or 6,.

The Case where cog Q

The Zeros of P, (x)

It is well known" that all the zeros of P, (x) are
simple and are located in the interval -1&x& 1.

Some immediate consequences of this theorem
are the following: Since P~(1)& 0 by the conven-
tion (A6), we may conclude that P, (x) &0 for all
xo 1, i.e

(a) P~~(x) =g n„x", where n«& 0,

1
(b) dx (u(x)P, (x)x"= 0,

-1

(A4) l=1, 2, 3, . . .
where A„y Bt and C, , are constants and

A, &0, C, ,&0.

(A11)

(A12)

@=0,1, 2, . . . , / —1; l=1, 2, 3, . . . (A5) Suppose that q(x) is a polynomial of degree n not
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exceeding I. From

q(y)=P —,,
(y-x)"

d .1 „d'q(x)

and (A5), we find

q(V)p) V
dy (d(y} ' = q(x)Q, (x) .

-1 x —g

(A13)

(A14)

(d) I(x, l)&0, -I&X&0; l=1, 2, 3, . . .

(e) I(A. , l) &0, 2m &X&2m+1;

(A24)

1=2m+1, 2m+2, 2m+3, . . . ; m =0, 1, 2, . . .
(A25)

existence of the integral for X&-I. Clearly I(X, O)

& 0 for all A. & -1, but besides this, we have the
additional inequalities

(A15)

(A16)
p=o

Christoffel's Formula

Thus if q(x) is a polynomial of degree & l a,nd
n+l

q(x)p;(x) =Pq, P, (x),
p=0

where the qp's are constants, then
n+l

q(x)Q, (x) =gq, Q, (x).

(f) I(~, l)&0, 2m+1&~&2m+2;

3-2m+2 2m+3 2m+4 m=0 1 2

To prove (A20), we note that if
[P(2)( ) ]2

~(x) = -' dy (d(y)
-1 x —g

then

J(x) & 0 for x& 1.

(A26)

(A27)

(A28)

n

(d(x) = p, g (x —x;), I(, t 0. (A17}

Let the weight function &u(x)C(. be a, polynomial
of degree n with zeros at x„x„.. . , x„. Thus

The result (A20) follows from (A14) and (A8). Sim-
ilarly, (A21) and (A22) follow from J(x)& 0 for x
& -1 on using (A14), (A9), and (A10).'

To prove (A24), we start from the dispersion
relation

Then if x; & x& whenever i 4 j,
P, (x) P„,(x) ~ P„„(x)

P(x,) P„(x,) ~ ~ ~ P,„(x,)
(u(x)p, (x) = X,det

P, (x„) P„,(x„) P„„(x„)

, (A18)

(1 —x) = — dx', , -1&x&()sinn' ', ~x'
~

7r - 1 —x -x
(A29)

and find

I(&, I) = — ' dx' lx'
I
"Q) (I —x'),

(A30)
where the constant X, is subject to the constraint
(A6) and P, denotes the Legendre polynomial. In
the case of a zero x„of multiplicity m & 1, the cor-
responding rows of the determinant in (A18) are to
be replaced by the rows

Pl(xk) 221(xk) ' ' ' Pl+n(xk)

This representation yields (A24) for -1&X& 0 due
to (A20). It is established for X =0 as well by let-
ting X- 0 in the relation I(&, l) & 0 a,nd using con-
tinuity or by a direct calculation.

It remains to show (A25) and (A26). Let X =&,
+n, where -1&A.,&0 and n=1, 2, 3, . . . . Then from
(A29),

p(m-2) (x ) p(k)-2) (x ) . . . P(m-1) (x )

where PI' (x,) =d"P)(x )/dxk". k

For a proof of this formula, see Ref. 15.

Positivi ty Properties

(A19)
I(~, +n, l) = 'dx'~x—'("0

7r

( )
(1 —x)"P, (x)

-1 1-x —x

So if n & l, by (A14),

(A31)

We will prove the following results:

(a) Q, (x) & 0, x & 1; l = 0, 1, 2, . . .

(b) Q, (x)&0, x& -1; l=0, 2, 4. . .

(c) Q,"(x)&0, x&-1; l=1, 3, 5, . . . .

(A20)

(A21)

(A22)

I(X, +n, I) = — ' dx'~x'~" x'"Q,"(1-x')
7T

(A32)

&0 if n=2, 4, 6, . . .

Let
t(2, l)= f222(2)2',"(2-',)(( —2)', 2 —) (A22)

I

where (2)(x) is sufficiently smooth to guarantee the

and
&0 if n=1, 3, 5, . . . . (A33)

This proves (A25) and (A26) for X 0 integer and by
continuity for A. =integer as well.
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The Case where (d 6 8 s

Symmetry ProPerties

It may be shown from u&(-x) = ~(x) that'7

P, (-x) =(-1)'P, (x),

Q, (-x) =(-1)'"Q,"(x) .

(A34)

(A35)

xP, (x) A „,P,"„(x)+ C, ,P, ,(x),
where

+l+I l-1

(A36)

(A37)

As a consequence, the recurrence relation for P,
(and hence for Q, ) simplifies to r(v —x)

~o r(-X)r(v+ 1)
(A48)

that
I(X, l) = Q x-,' dx(u(x)P, (x)x'I' -A. I' v +1

where P, (x) is a constant which is positive by con-
vention. Thus (A38) is proved.

We have already derived (A40), (A42), and (A45).
It remains to discuss (A44). We may restrict our-
selves to nonintegra1. values of A. during the demon-
stration since integer values of X may be recovered
by a limiting procedure. For A. & 0 and A. 4 integer,
we find from

Posi tivity Properties
v= even

(A49)
In addition to the previous inequalities, we are

able to show that

I
(a) dx(d(x)P, (X)x' & 0

~1

for even l. The odd powers of x do not contribute,
because of the symmetry property (A34) of P~~(x).

Since

I'(z) & 0 if z & 0 or if -(2m + 2) & z & -(2m + 1);
l=0, 1, 2, . . . ; v=0, 1, 2, . . .

With the help of (A38), the inequalities for

(A38) m=0, 1, 2, . . .

(A44) follows from (A38).

(A50)

I
I(&, l) = —,

' dx &u(x)P, (x)(1 —x), x& -1
-I

(b) lf
then

I(X,

(c) U
then

I(~,
and

I(X,

-1&X&0, (A39)

l) &0 for /=0, 1, 2, . . . .

2m & X & 2m +1) m =0, 1, 2, . . .

(A40)

(A41)

0)&0

l) ~0 for i=2m+1, 2m+2, 2m+3, . . . .
(A42)

can be extended. Written out in full, they read as
follows:

Inequalities Involving P~»d Q,

Given two weight functions coI and (d» P, 2 and

Q, 2 can sometimes be expressed in a relatively
simple way in terms of P, I and Q,"1. Christoffel's
formula, which was described above, provides such
an example. The inequalities we have obtained with

the choice ~= co, may thus be reformulated as in-
equalities for P,"I and Q, '. We have found this
method to be a fairly simple and powerful way of
deriving inequalities involving P, ' and Q, '. As
illustrations of this method, we will now show that

Q, ,(.),P;,( )
Q(~(xo} P(~(x) '

(d) If 2m+1 &X &2m+2, m =0, 1, 2, . . .
then

I(X, l) o 0 for l =0, 2, 4, . . .

(A43)

(A44) and

l =1,2, 3, . . . ; xo& 1; x~ 1; (a)66

(A51)

and for /=2m+3, 2m+5, 2nz+7, . . . .

(A45)

The results (4.12)-(4.14) are implied by the above.
[Use 1 —2t =s+(1- s)z, and expand (1 —2t)" in a
power series in z, for (4.14).]

The proof of (A38) is based on (A36)-(A37). Re-
peated application of the latter yields the expansion

l+n

x"P~(x) =g p, P~(x), p, &O; n=O, 1, 2, . . .
p=0

Q, ,(x.), Q, ,(x)
Q, (xo) Q,"(x) '

l=1, 2, 3, . . . ; x, &x&1; (u66. (A52)

For the c'hoice v = 1, Martin" has proved (A52)
while (A51) can be derived from (A52)." For on
letting x-1 and recalling that the divergent term
in Q, (x) as x- 1 is independent of l, we find from
(A52) that

and hence the equation
(A46)

&1, l=1, 2, 3, . . . ; x, &1. (A53)

fI I
dx (u(x)x "P, (x) = P,P, (x) dx (u(x), (A47)-I -1

Since P, (x) increases when l increases and x& 1
and x is fixed, "and since P, (1)= 1, Eq. (A51)
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s) '(x) = (o(x)/(x, —x), x, & 1 (A54)

follows from Eq. (A53).
The derivation of (A51) and (A52) is as follows:

For the weight

(c) (u,(z„s)= s(t+u) . (B3)

The following H's are acceptable for these ct)y s:
H(s, t) =t, -1& A & 0 or 2m +1 &X & 2m +2;

the orthogonal polynomials P, (x}for I & 1 are
given by

(x) = o. [Q,(x.)P, (x) —Q, (x,)P,",(x)],

m =0, 1, 2, . . .

H(s, t)=-t", 0&~&1

H(s, t) =(1 —2t)", n =0, 1, 2, . . . .

(B4)

(a5)

(B6)

P, '(x)&0 for x& 1,
which is the inequality (A51).

The formula

(A56)

Q
QJ~( )

1 d +(y) P$ (y)
(x, —y) (x-y)

for Q, (x) becomes on using (A55) and writing
[(xo —y)(x —y)]

' in partial fractions,

(A57)

Q,"'(x) = '
[Q, ,(xo)Q, (x)

0

-Q;(x,)Q;,(x)], I =1, 2, 3, . . . . (A58)

The result (A52) now follows from (A20).
It is a simple exercise to generalize (A51) and

(A52) to negative values of x, and/or x.

APPENDIX B

Inequalities for the I ~& 2' 7}.Partial Waves

In this Appendix we list some expressions for
e and v, and some corresponding expressions for
H and H which lead to inequalities involving the
(canonical) s, P, and d vv partial waves on using
(4.4) and (4.8). In view of the elementary nature of
the computations involved, the inequalities them-
selves are not explicitly tabulated. We shall, how-

ever, illustrate the method in an example. In the
equations below, the weight functions in (Bl) are
completely symmetric in s, I;, and u, while those
in (B2) and (B3) a.re symmetric only in t and u.

(a) ~(z„s)=stu, st+tu+us.

For either of these co's, H may be identified with
any one of the H ~'s listed in (4.15)-(4.23).

(b) (u,(z„s)=s, t+u, tu. (B2)

Here H may be chosen to be any one of the H's
tabulated in (4.15)-(4.20).

(A55)

where o. , is any constant, a, &0. [See Appendix B
of Ref. 5(b). ] As x-~, the first term dominates
and therefore P, (x) & 0 because of (A20) and (A8).
By the theorem on zeros we are assured first that
P, (x) in (A55) fulfills the convention P,"(1)& 0 and
second that

(o(z„s)= s(1 —s) + [-,'(1 —s)]'(1-z,'), (B7)

we find with P, (z,) = 1,

a~o'(s, e) =—,
' [(1—s)(1+5s)a~/(s) —(1 —s)'a~,' (s)] .

(B8)
Further, from

(u(z„s)Q h~P(s, &u)P, (z,) = (u(z„s)(t"s —ts ~),

we can compute boo (s, &u). Let

K„(s)= dz, (u(z„s)t~
-1

=21 —s)" +
S 1 —s

~+1 (X+2}(~+3) (B10)

[We have evaluated the integral by expressing it in
terms of beta functions by a linear change of vari-
ables. ]

On using the orthogonality properties of P, , (BQ)
gives

k~,'~(s, &u) dz, (u(z„s) = dz, (u(z.„s)[t s —ts ].
-1

(B11}
Thus

h,'(s, (u) = [SK~(s) —s "K,(s)]
0

and the integral

P(~) d (1 )
sKy(s) —s K~(s)

K,(s)
& [(1—s)(1 + 5s)a 0' (s) —(1 —s)'a, (s)]

(a13)

(a12)

The expressions for H in (B4) are obtained by add-
ing the expressions for H in (4.15) and (4.17). This
was done in order to suppress the linear term in
s in (4.15) and (4.17) which would induce an f wave-
term in the inequalities. [The v, (z„t) which arises
from s(t+u) = s(1 —s) involves a, quadratic term in

z, . Therefore, b~,'~(s, v, ) in (4.8) contains b~3f~l(s).

We choose such H's in (B4) for which g,(s, &o,) =0.]
The construction of (B5) and (B6) is similar.

We will illustrate the explicit computation of the
inequalities for the case ~ = st+ tu +us and H '~

= t s —ts, where X is subject to the usual restric-
tions. Since
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fulfills the inequalities

F(X) & 0, -1&X &0; 2m+I &X &2m+2;

y'(z) &0,

m =0, 1, 2, . . .

0 &A. (1.
(B14)

(B15)

The functions which weight a,'(s) and a,'(s) in

(B13) are, in general, rational in s for X =integer.
This property is easily traced to the fact that st
+tu+us is not factorizable into the form g,(s,)P,(s).
It may be noted that in the inequalities derived in
Ref. 1 such weighting factors are always polynomi-
als in s whenever Hi'~(s, t) or H(s, t) is a polynomi-
al in s and t.
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