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An infinite number of inequalities are derived for integrals over the s- and p-wave 7r7r am-
plitudes in the interval 0 ~ s ~4m„ in terms of the 7r7r total cross sections and other experi-
mentally accessible data. The main ingredients in the derivations are crossing symmetry,
the positivity of the even l ~2 partial waves of the reactions 7r 7r 7r 7r and 7r 7r m+7r- in the
interval 0 ~s ~4m~2, and some known bounds on the crossed-channel absorptive parts of
these reactions. It is shown that if the partial-wave sum over any subset of 7r 7r 7r 7r par-
tial waves is itself invariant under permutations of s, t, and u, and this subset contains the
s wave, then the entire 7r 7r 7r 7r amplitude has to vanish identically. (Actually, a some-
what stronger result is proved for the amplitudes of both the processes 7r 7r 7r 7r and 7r 7r

7r+7r or for any linear combination of these amplitudes with positive coefficients. )

I. INTRODUCTION

Some years ago, Martin' proved that the partial-
wave amplitudes with angular momenta l & 2 of the
processes 7T'7I'- 7r'7r' and 7T'7T'- 7r'7t are non-nega-
tive when the square of the center-of-mass energy
s is restricted to be in the region 0 & s & I. (We
take the pion mass m, to be ~ and denote the Man-
delstam variables by s, t, and u. ) Later work by

Common and by Yndurain' extended Martin's re-
sults and revealed a more refined set of inequali-
ties for these partial waves. General methods for
studying the crossing properties of partial waves
have been developed by Balachandran et al. and by
Modjtehedzadeh. ' In this and subsequent papers,
we will use the positivity properties of the partial
waves due to Martin, Common, and Yndurain, in
conjunction with the crossing properties of the par-
tial waves of four-body processes studied by Bala-
chandran et al. and some other known properties of
scattering arqplitudes, to derive an infinite number
of integral inequalities for the 7t7T partial waves.
The emphasis in the present work will be on stating
simple algorithms for writing down inequalities

which involve only the s and p waves. Further,
the Common-Yndurain refinement of the Martin in-
equalities will be completely ignored here. For
these reasons, the results will not be exhaustive.
(A preliminary account of this research has been
reported elsewhere. ') In a second paper, we will
develop suitable elementary (and therefore incom-
plete) algorithms for deriving partial-wave inequal-
ities, taking advantage of the work of Common and
Yndurain, while in a third paper, an attempt will
be made to state systematically all such inequali-
ties which follow from crossing symmetry and the
Martin-Common- Yndurain positivity properties of
the partial waves. For similar and occasionally
overlapping research, we refer the reader to
Piguet and Wanders, to Roskies, and, most re-
cently, to Pennington. '

Some unanticipated insights provided by these in-
equalities refer to the allowed crossing properties
of partial-wave sums over subsets of partial waves.
They are partially described below and merit atten-
tion since they indicate some possible difficulties
in enforcing crossing symmetry and unitarity in
any model.
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The construction of the inequalities by our meth-
od involves two classes of auxiliary functions, one
each for m'm'- m'm' and m'm'- n'w, such that for
each such function there is an inequality involving
only the s- and p-wave nn amplitudes. Due to the
greater symmetry of the amplitude for the process
7r 77'-7r r', the allowed functions are somewhat
more numerous for it as compared to the process
m'n'- z'm . In Sec. II we state our notation and
characterize the auxiliary functions for either of
these processes.

In Sec. III we review our previous paper on in-
equalities, ' relate it to Sec. II, and then extend it
to obtain a continuously infinite number of new
inequalities.

Section IV generalizes the work of Sec. III in a
new direction and develops simple rules for find-
ing many more bounds.

In Sec. V we refine these inequalities into ones
involving integrals over partial waves in the region
0 «s «1 and integrals over total cross sections and
other experimentally accessible data. While this
method of refinement is well known to workers in
the field, we describe it in view of its physical
interest.

In Sec. VI we prove that if the partial wave sum-

over any subset of partial waves of either the

pmcess m m —n'n' ox the pmcess m'n'- n'm pro-
duces the correct s suave in all channels, then the
remaining partial waves of that process are identi
cally zero. In particular, for the m n - n'n ampli-
tude, if the partial-wave sum over a subset of par-
tial waves is itself symmetric under permutations,
of s, t, and u and if the subset contains the s wave,
the remaining m'm'- n. m' partial waves are identi-
cally zero. It is then an easy consequence of the
Froissart-Gribov representation that the corre-
sponding scattering amplitude itself is identically
zero. If the absorptive part of the amplitude which
vanishes refers to w'w'- m'w', the optical theorem
will also force the amplitude for s'v'- v'v (and
many other amplitudes as well) to vanish identi-
cally. Similar remarks may also be made for any
linear combination of the amplitudes of the pro-
cesses w'w'- w'm' and w'm'- n'm with positive
coefficients.

In the Appendix we summarize the explicit forms
of many of the inequalities and give further exam-
ples of acceptable auxiliary functions using the
methods of Sec. IV.

This paper concentrates on getting results involv-
ing only s and p waves in view of their greater
practical interest. The results can, however, be
generalized to involve more partial waves.

In a recent paper Case' has obtained inequalities
involving a finite number of partial waves of the
&r-NN and mN- mN systems which are the analogs

A~'(s, t) =P (2l+1)a", (s)P, (z,), i =0, c (2.1)
1=0

=P (2l+1)bI'~(t)P, (s,), i =0, c
l=0

(2.2)

where a~' (s) = 0 if l is odd and aP(s) = bP(s) while
s, =1+2t/(s-1) and s, =1+2s/(t 1). M-artin' has
shown that7

a,'(s) ~ 0 for i=0, c; l=2, 4, 6, . . . ; 0 &s &1.

(2.3)

We prove the following theorem regarding the
v'v'- v'v' s-wave. Let H ' (s, t) be a function of s
and t whi ch has the following properties': (a)
K "(s, t) is antisymmetricin s and t; (b) the s-
channel partial waves hIO~(s) of H~" (s, t) are non

negative for 0 &s &1 and l=2, 4, 6, . . . . Thus

H"'(s, t) =-H"'(t, s) (2 4)

l=0
where

hI' (s) & 0 for 0 &s & 1 and l = 2, 4, 6, . . . .

Then
1
ds(1 —s)h~o" (s)a~0" (s) ~ 0,

(2 5)

(2 6)

(2.7)

where equality is attained if and only if hIO~(s)

&& a~'~ (s) = 0 for l = 2, 4, 6, . . . and 0 & s & 1.
Note that for convenience we shall use different

normalizations for the partial waves of A" and of
the auxiliary functions. The proof of (2.7) is sim-
ple. Let 6 be the Mandelstam triangle 0 «s, t, u «1.
As 6 is invariant under the s —t permutation,
while A" and H' are symmetric arid antisymme-
tric, respectively, under the same operation, we
have

dsdtII s, tA s, t =0. (2.8)

Changing variables from s and t to s and z, and
using (2.5), we find that

1 1

ds(1 —s) x —,
' ds, Q hIP(s)P, (s,)A"'(s, t) =0

0 -1 ~ 1=0

of the positivity properties of the n~ partial waves.

II. CHARACTERIZATION OF THE

AUXILIARY FUNCTIONS

We denote by A@'(s, t) and A~'(s, t) the scattering
amplitudes which in the s channel describe the pro-
cesses v m - m'm' and z'z0- z'7t-, respectively.
Their partial-wave expansions are
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or that

ds(1 —s)h,"(s)a,"(s)
4 0

1

ds(1 —s)h,' (s)a,' (s),
l=2

H" (s, t) = gh' (s)P, (z.)
l=p

g,"tz, z, ,
l=p

where

(2.10}

(2.11)

(2.9)

Equations (2.3) and (2.6) then lead to the required
result.

The preceding method has to be modified for the
process w'v'- v'v . Let H ')(s, t) be a function of
s and t which has the following properties:
(a) H ' (s, t) is at most linear in s for fixed t.
(b) The s-channel partial waves h,

' (s) ofH ' (s, t)
are non negative f-or 0 & s & 1 and l = 2, 4, 6, . . . .
Thus

h;)(s) & 0 for 0 & s & 1 and l= 2, 4, 6, . . . .

Then

(2.12)

1 1gf ds(1 —s) g"(s)b' (s) —~'(s)a"(s) -0,
l-(} 0 J

(2.13)
where equality is attained if and only if h()')(s)

&& aI'!(s}= 0 for I = 2, 4, 6, . . . and 0 & s & 1.

We have the identities

J
1 1

dsdtH~' s, tA' s, t = ds 1 —s x-,' dz, h, s P, z, ,
A.' s, t

0 -1 l=p

which leads to

1 r. 1

dt(1 —t) && —,
'

dz, Qg,"(t)P,(z,) A('(s, t),
0 -l=p

(2.14}

1 1

ds(l —s) g, ' (s)h; (s) —h; (s)a,' (s) =g ds(1 —s)h; (s)a,'(s).
l =0 0 l =2 0

(2.16)

Equations (2.3) and (2.12) then demonstrate the re-
quired result.

If equality is attained in (2.7) or (2.13) and a cor-
responding hI') (s) is not identically zero for
0 & s & 1 and some l = lp where l, is even and & 2,
then it is usually possible to infer that a!,', (s) —= 0.
Such is in fact the case in all the inequalities we
state in this paper. But if a,',)(s) —= 0 for lo ~ 2 and

even, then A!')(s, t) has to vanish for consistency
with the Froissart-Gribov representation. (See,
e.g. , the end of Sec. VI.) Thus, althoughwe do not
exclude the equality symbol in stating our results
in what follows, it is allowed only if the appropri-
ate H!'(s, t) is linear in t

It should be remarked that for each H(')(s, t),
there is an H(0)(s, t) defined by H!')(s, t) =H(')(s, t)
—H(' (t, s} since the s-channel partial waves of
H ')(s, t) fulfill the positivity requirements while
H(')(t, s) does not affect the s-channel partial waves
with angular momenta ~ 2. The correspondence,
however, cannot always be inverted.

III. REVIEW OF PREVIOUS WORK
AND A GENERALIZATION

The inequalities of Ref. 4 (see also Pennington,

Ref. 6) were based on the observation that the even
partial waves of (1—z,)" and z," are non-negative.
Thus'

1
dz, (1 —z, )"P, (z,)

1

(n!)'
I'(n —l+1)(n+l+1)! ' (3.1a)

I
dz, z,"P, (z,)

n![,(n+ l)j!-
I'(-,'(n —l)+1)(n+l+1), if (n l} is eve-n

=0 if (n —l) is odd. (3.1b)

Since t= ,'(1 —s}(1-z, ), al-l the even s-channel par-
tial waves of t" are non-negative for 0 & s & 1 due
to (3.1a). Since (1 —2t) =s+(1 —s)z, , (1 —2t)" is a
linear combination of powers of z, with non-nega-
tive coefficients for 0 & s & I, so that all its s-chan-
nel partial waves are non-negative for 0 & s & 1.
Thus t "s, t "(1—s), (1 —2t)"s, and (1 —2t)"(1—s)
a.re all allowed as H ' . [The inequality due to t",
for example, can be obtained by adding the inequal-
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n=0, 1, 2, . . . . (3.5)

The corresponding inequalities are stated in the
Appendix. They were originally derived in Ref. 4.
They were also independently found by Pennington. '

To generalize these bounds, consider the integral
1

I ()(., l) = —,
'

dz, (1-z,)'P, (z,). (3.6)

The integral is analytic and regular in A. for A. &- 1
and for each fixed I=0, 1, 2, . . . . In this region, we

can evaluate the integral as indicated in Ref. 9 to
find

2~[r ()).+ 1)j'
r(~- I +1)r(A. +I+2) '

(3.7)

Now 1/I'(z) is entire, " so that I'(z) has no zeros.
Further, the residues at the simple poles of
I'(z) at z = -n (n = 0, 1,2, . . .) are (- I)"/n! .'0 It fol-
lows that I'(z) & 0 if z & 0 or if -(2m+ 2)&z&
—(2m+1), m=0, 1, 2, . . . , and that

f(), l)~0 (3.8a)

ities due to t" s and t "(1—s) so that the latter con-
stitute a better set than just t".] For each of these
H(' 's, we may set H ' (s, t) = H ' (s, t) —H(')(t, s).
There are thus the following sets of II ' andII ):
H ' (s, t) = t "s, H ') (s, t) = t "s —ts",

n=0, 1, 2, . . . (3.2)

H(') (s, t) = t "(1—s), H ')(s, t) = t "(1—s) —(1 —t)s",

n=0, 1, 2, . . . (3.3)

H('(s, t) = (1 —2t)"s, H(') (s, t) = (1 —2t)"s —t(l —2s)",

n=0, 1, 2, . . . (3.4)

H(')(s, t) = (1 —2t)"(1 —s), H(')(s, t) = (1 —2t)"(1—s)

—(1 —t) (1 —2s)",

It is understood that A. is restricted as in (3.8c) or
(3.8d)." Then A. =(2m —1) or (2m), and (3.9) and

(3.10) reduce to (3.2) and (3.3).
When 0 & A. & 1, the preceding argument also

shows that f(A. , l) &0 for l=2, 4, 6, . . . . Therefore,
we may set

H" (s, t) = t's-,

H ' (s, t) = ts+-ts,
H" (s, t) =-t~(1 —s),

H("(s, t) =-t~(1 —s)+(1 —t)s

(3.11)

(3.12)

for 0 &A. &1.
The inequalities due to (3.9)-(3.12) are given in

the Appendix.

IV. A GENERALIZATION OF THE INEQUALITIES
OF SECTION III

M (, )s(,)o.(t)P(s),
a(t )8(s)

(4 1)

where ~(x), p(x) tahe on the values1, x, (1 —2x),
x', (I 2x)', . . . , and where the matrix M with
numerical entries M (, )s(,) satisfies the following
pxopexti es:

Mn(s)s(s) M()(t)a(s) I (4 2)

(b) P M„«)()(,) P(s) -0
8(s)

for 0 & s & 1; o. (t) = t', (1 —2t)', t', (1—2t)', . . . .

(4 3)

There is an elementary way of obtaining many
more inequalities by using the observations of
Secs. II and III. We prove the following theorem.
L,et

H"'(s, t)=M„+M„s+M„, „,(1-2s)+
+ Mq ( t + Mssts + M((q 2s) t (1 -2s) +. . .

l=0, 2, 4, . . .
and either

2m- 1 &~ &2m, m=1, 2, 3, . . .

or
—1& X &0.

This leads to the following II ' and II':
H" (s, t}= t's,

H'(s, t)=t s-ts",

H ' (s, t) = t (1 —s),

H"'(s, t) = t'(1 —s) —(1 —t)s'.

(3.8b)

(3.8c)

(3.8d)

(3.9)

(3.10)

Then if
H ' (s, t) = P h,

' (s)P, (z,),
1=0

zoe have

ds(1 —s)h(0'(s)a("(s) ~ 0,
0

where equality is attained if and only if h,o (s)
d,') (s) = 0 for 0 & s & 1 and l = 2, 4, 6. . . .
Equation (4.2) ensures that H "(s, t) = H "(t, s), -

while (4.3) ensures that h, (s), h, (s), h, (s), . . .
~ 0 for 0 ~ s ~ 1, owing to the properties of the
partial waves of t" and (1 —2t)" which we already
proved in Sec. III. Note that if the rows of M are
labeled by 1, t, (1 —2t), . . . , while its columns are
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labeled by 1, s, (1 —2s), . . . , then M is an antisym-
metric matrix.

We illustrate the above by the following example:

0 0
s ( 1-2s}
0 0

0 0 0

0 0 0

0 0 0

{1-2t)2 0 1

0 0 0

(4.4)

This M leads to

H"'(s, t) = t '(1- 2s)' —(1-2t)'s'

+ (1 —2t)'s —t(1 —2s)' (4.5)

H (o) (s t) tx. p to (4.6)

where X and p, are any two numbers restricted by
(2m- 1) & A. , tl & 2m, m = 1, 2, 3, . . . . This H 'I is
antisymmetric. The s-channel partial waves of
t s" have the correct positivity, while those of
—t"s do not. But since 0 & s ~ 1 when sC[0, I),
this error of sign is compensated by the partial

and a corresponding inequality for a, , which is
eRsy to colllpu'te llslllg (3.1). We 11Rve Rdopted tile

convention in (4.4) that the omitted columns of M

labeled by (1—2s)', s', (1—2s)4, . . . and omitted
rows of M labeled by (1 —2t)', t', (1 —2t)', . . . are
identically zero. To specify the elements of M,
we start with an entry +1 for M, 3~, »)2. The cor-
responding term, t'(1 —2s)', in H" has partial
waves of the correct sign in the s channel. Anti-

symmetry requires a -1 for M~, 2,}2,3 and the term
-(1—2t)'s' it generates in Hto~ has partial waves

of the wrong sign in this channel. To correct for
this, after noting that s ~ s' for 0 «s «1, we as-
sign a+1 for M~, „)2, since it leads to a term
s(1 —2t)' in Hto~ Finally, a. ntisymmetry requires
M«, „~2 to be -1. The term -t(1-2s)' does not

influence d waves and higher waves in the s chan-
nel, so that (4.5) is the final form for H~o~.

The trick of constructing permissible M's by
suitably inserting +1 as its entries is readily gen-
eralized when the dimension of 1II is larger. More
sophisticated forms of M may also be constructed
by using representation theorems for non-negative
functions on the interval [0, 1)."

Continuous analogs of the above result may be
obtained using the results of Sec. III. It is enough
to give an example, since the general statement is
along lines similar to the one above. Consider

where A,'~(s, t) denotes the absorptive part in t of
A ' (s, t). The s-channel partial waves a,' (s) for
0 «s «1 and l = 2, 4, 6, . . . satisfy the Froissart-
Gribov representation"

1+ oo

1

It is also known that

Q, (x) ~ 0 for x ~ l.

(5.2)

(5.3)

Therefore, since 2t/(I —s)-1o 1 for t~ 1 and

O~s ~1, Eq. (2.3) follows from using (5.1) with
n=0 and (5.3) in (5.2).

The inequalities (2.3) can be improved by finding
sllltRMe lowel' bollllds fol' A) (s~ t} ill (5.2} ill tel'Ins
of experimentally accessible functions. There are
several such bounds of which we describe a few.
The simplest of these follows from (5.1):

A',"(s, t) ~ A',"(0, t), 0 ~ s ~ 1. (5.4)

Here Ai,'(0, t) is proportional to the IIollo total cross-
seetion for i= 0 and to the m m' total cross section
for i= c. There are actually better bounds than
(5.4) for At,'(s, t) in terms of Ai, 'l(0, t), due to Martin
and to Singh and Boy." Although the Singh-Boy
bound is superior to Martin' s, we give the latter in
view of its greater simplicity:

A", (s, t)- () 2l'. , (1+ )+P (I+ )
0 ~ s « I (5.5a)

waves of t". Since —s" contributes only to the
s wave in the s channel, (4.6) defines an acceptable
g (o)

Owing to the linearity requirement, we have

found no simple generalization of the constructions
in Sec. III for JJ".

V. s- AND p-WAVE INEQUALITIES INVOLVING
TOTAL CROSS SECTIONS AND OTHER

MEASURABLE DATA

In this section we improve the previous inequal-
ities by finding lower bounds for the right-hand
sides of (2.9) and (2.15) in terms of total cross-
sections and other observable quantities. The
method is well known to workers in the field,
but the results are derived here in view of their
physical interest.

We briefly recall the steps which lead to the
Martin result (2.3). The imaginary parts of the

partial waves in the t channels of A~'~(s, t) (i =0, c)
are non-negative, since these channels refer to the
elastic processes Yt'7t'- m'mo and mom+- mom+, respec-
tively. As a consequence, "

Bn
„A,' (s, t) ~ 0 n = 0, 1, 2, . . . ; 0 ~ s & 1 (5.1)
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provided

1 1/2
A(t')(0, t) ~ 1

t

(N+ I)' ~-'
i

A" (0 t)) t (5.5d)

Let us write (5.4) and (5.5) collectively in the form

AI') (s, t) & A(t') (0, t), 0 & s ~ 1 (5.5c) A,'(s, t) ~ t).t') (s, t), 0 ~ s ~ 1 (5.6)

otherwise. Here N is the largest non-negative inte-
ger which fulfills the inequality

where o.'' (s, t) denotes either of the bounding func-
tions. If follows from (5.2) that

4 2t

1
(5.7)

which, if we remember (2.9), improves (2.7) to

(0)ds(1 —s)h'p(s) p(s) — ds dt Q)),"'(s)Q, —
1)

u'"'(s, t)
0 0 1 L l ~2

l even

A generalization of (5.4) also implied by (5.1) is

(5.8}

n n

A(tt)(s, t}~ g— „A", (s, t}
n =0 -s=0

O~s~l; @=0,1, 2, . . . (5 9)

The functions

can be evaluated for example by a, phase-shift analysis. The analog of (5.8) for the bounds (5.9) is

1 W

ds(1 —s)h',"(s)a',"(s)~ — ds dt Q h't" (s)Q( —1 Q —, „A", (s, t)
0 p t t ap 1 sp()@asap

l even

In the same way for i=c,
I 1 . oo 2t

ds(1 —s) g, ' (s)b; (s) —h' (s)a' (s) ~ — ds dt g h, (s)Qt —1 t).
' (s, t),

l=o 0 0 1,
,

l~2 1 —s
l even

and another inequality where t). ')(s, t) is replaced by the right-hand side of (5.9) with i = c.
The sum on l in the preceding results can be evaluated by noting that2t, )' P, (x)

1-s ', 2t .1 —s —1 —x

and that

hI'(s)Pt (x) = —,'[H '(s, —,'(1 —s)(1 —x)) + H "(s,—,'(1 —s)(l+ x))] —h(p'(s).
l ~2
l even

The result is

() 2t 1 2t 1 + S~2 1 —8 1 —g -A0 8
1 —s '

1 —s, [2t/(1 —s) —1]'—y'
l even

(5.10)

(5.11)

(5.12)

(5.18)

(5.14)

VI. A REMARK ON THE CROSSING PROPERTIES OF INCOMPLETE PARTIAL-WAVE SUMS

Let (aI'(s)}denote a subset of s-channel partial waves of A ' (s, t) such that a,')(s) C (aI')(s)}. Suppose
that the sum

A ') (s, t) =P (2t, + 1)a,') (s)Pt (z, )
lv

(6.1)
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has the property that its t-channel s-wave is be'~(t). Then we can show that aI'~(s) =0 if lpfl, f. Since the
s-channel partial waves for i =0 or c are zero if angular momentum is odd, At' (s, t) is symmetric under
t—u exchange, so that its u-channel s wave is necessarily equal to b~'(u). Thus we can state the result
as follows: If the partial wa-ve sum over a subset ofpartial waves of either of the processes popo

produces the correct s wave in all the channels, the remaining partial waves of that process
axe identically zero.

The proof is as follows. We can write

A"(s, t) =A"'(s, t) eA"'(s, t),

where

A"'(s, t) = Q (2l +1)a", (s)P, (z,).
l + ~lv~

Since A' and A' have the same s waves in both s and t channels, the s wave of A' in either of these
channels is zero:

(6.2)

(6.3)

1 1

dz, A ' (s, t) = —,
' dz, A ' (s, t) = 0.

-1 -1
(6.4)

As a consequence, every aI'~ in (6.3}fulfills the Martin positivity (2.3):

a~,'(s) & 0 for l tE fl, j and 0 & s & 1. (6.5)

From the work in Sec. III, we know that the even s-channel partial waves of t", are non-negative for 0 & s
& 1. Thus

t"= Q h, (s)P, (z,) = g,(t), n= 0, 1, 2, . . .
l=0

where

(6.6)

h, (s) & 0 for l.= 0, 2, 4, . . . and 0 & s & 1.

Here we have suppressed the dependence of h, and g0 on
Consider the identity

(6.7}

J 1 1 EX)

dtt A's t = ds1 —s x-,' dz, hlsPlz, A'
0 -1 l=0

1 1

dt(1 —t) && —,
' dz, g,(t)A t'(s, t).

0
(6.8)

Due to (6.4), we find

1

Z ds(I —s)h (s)a"(s) =0.
l q(lv) 0

(6.9)

Therefore, since (hs)a (~s~) & 0 for If (I,) and 0 & s &1,

h, (s)a,' (s) = 0 for l EP (l, ) and 0 & s & 1. (6.10)

Given an I, there is always an n such that h, (s) is not identically zero. The result a~~'(s) —= 0 for lg(IJ
and all s follows by analytic-continuation arguments. Hence, A~'(s, t)= 0. —

From the Froissart-Gribov representation (5.2), we can next infer that Att'~(s, t) =0. By the optical
theorem, it will then follow that the amplitude At'~(s, t) itself has to vanish identically.

A corollary to the above is that for the n'n'-n'z' amplitude, if a subset of partial-wave amplitudes adds
up to an amplitude A"~(s, t), which is invariant under permutations of s, t, and u, and this subset contains
the s wave, then the partial waves which do not belong to this subset are identically zero. As a conse-
quence, the amplitude A@~(s, t) itself must vanish for consistency with the Froissart-Gribov representation.
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APPENDIX

Several acceptable forms of II(o) and H ') are tabulated in Eqs. (3.2)-(3.5), (3.9), and (3.10). The s waves

of these functions can be projected out by using (3.1a), (3.1b), and (3.7). Equations (2.7) and (2.13) then

lead to the following bounds:

sat (: H'~(s, t)=t sH'(s, , t)=t s —ts; dk(( —s) — () —s) I,' (s) —(,' ( ) — a,' (s)I o-0.
0

Set 2: If"(s t) = f'(1 —s), a"'(s, t) = t'(1 —s) —(1 —t)s'
1+1

ds() —s) s', —.'(( + s)b,"( ) + -,'(( —s)&", (s) — a,"(s)I - D.

Set 3 H('(s t) =(1—2t)"s, H~')(s, t)=(1 —2t)"s —t(1 —2s)";
1

ds(1 —s) (1 —2s)" —,'(1 —s) f)"(s) —5"(s) — a")(s) ~ 0.

(A2}

Set 4: H '(s, t) = (1 —2t)" (1-s), II"'(s, t) =(1 —2t)" (1 —s) —(1 —&)(1 —2s)";

as(& —s) () —2s)" !(( s)a',"(s) -', () s)t',"(s) —
~
', a,"(s)I O.

0
(A4)

Here, i=0, c, n=-0, 1, 2, . . . , and A. is a number
restricted by either A=— ds 1 —s 2s' —s a(00~ s ~0,

0
(A8)

or ll

2 f/) 1 ~ I, ~ 2' pf/ 1 2 3a ~ ~

—1&A, ~0.

(A5a)

(A5b}

(A 9)

When 0 ~X ~ 1, (Al) and (A2) are still valid pro-
vided the symbol & is replaced by the symbol ~ in
each znequalzty.

Note that if X =0 or 1 in (Al) or (A2) or n= 0 or
1 in (A3) or (A4), the inequality can be replaced by

an equality since h~,'(s)a, ' (s) =—0 for l=2, 4, 6, . . . .
The sum rules are then the ones whose derivation
was first given by Balachandran and Nuyts. ' Note
also that (Al)-{A4) acquire the form (2.7) for

( ) &(o) &(.)

The inequalities (A1)-(A4) with )). = 0, 1, 2, . . .
)vere already stated in Ref. 4. For completeness,
me reproduce the four inequalities given towards
the end of that paper. Proofs are deferred to a
later publication.

ds(1 —s)(18s' —32s'+ 18s' —3s)aio') (s) ~ 0,
0 (A6)

(A7)

8= ds 1 —s 5s —3s Qo s (A10)

H(o)(s, t) = t's' —t's'+ t's' —t's'

+ t's' —t's'+ t's —ts',

0)(s t) = t Bs4 —t4s5+ t4s2 —t 42s

+t s —t s +t s —ts

(A12)

(A13)

If(0'(s, t) = t's'- t's4+ t 's' —f's'+ t's' —t's"

+ t's' —t s + t s'- t's + t's —ts',

(A 14)

1

C = ds(1 —s)(s'+6s' —6s'+ s)a',"(s). (A11

Finally, we give five examples of H('~ con-
structed using the prescription of Sec. IV. The
derivation of the corresponding inequalities is
simple if one uses (3.1a), {3.lb), and (3.7), and it
is therefore omitted.
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H 0 (s t) —t4s5 —t5s4+ t5s2 t2s5+ t2s4

—t's'+ t4s —ts4, (A15)

8(')(s t) = t "s"—t"s"
+ t "s"—t"s"

+ t"s"—t"s"+ t"s- ts"
(A 16)

In these constructions every term of the form

-t0s' (p&1) is immediately followed by a term of
the form+/'s, A. &0, which compensates for the
wrong signs of the s-channel partial waves of
—t~ s'.

It is perhaps worth remarking that any positive
linear combination of these H's is an acceptable
auxilary function H.

All the bounds indicated above can be improved
by the method described in Sec. V.
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