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and A. Sirlin, Phys. Rev. Letters 25, 1231 (1970).
~~The form factors of Eqs. (20) are analytic functions of

the variables q and p. Their singularity structure con-
sists of cuts, as required by unitarity, and also certain
particle poles. The singularities of the W'l', W;, W;
arising from vacuum-vacuum matrix elements of eo can-
cel in the Ward-identity relations and may thus be dis-
regarded throughout the paper.

~ In writing these Ward identities, we assume that the
vertex functions are not divergent. If they were, the
identities would have to be suitably modified. For ex-
ample, see K. G. Wilson, Phys. Rev. 181, 1909 (1969).

~ Analysis of the equations involving 88 also yields this
result.

~6Although we choose in this paper to emphasize explor-
ing the specific possibility that SU(2) && SU(2) is an approx-
imate symmetry (c near -W2), our basic equations may
be of interest for other values of c.

~ A similar analysis of the A&A& matrix elements mere-
ly fixes two of the six parameters, H„., H,~;.

Particle Data Group, Phys. Letters 33B, 1 (1970).
There are two numerical errors in Ref. 7 which

slight1y modify the results. We list the corrected va1ues
here.

Other related calculations include J. Ellis, Phys. Let-
ters 338, 591 (1970); R. Jackiw, Phys. Rev. D 3, 1351,
1360 (1971); G. Segre, ibid. 3, 1303 (1971); R. Crewther,
Phys. Letters 33B, 305 (1970); J. Ellis, P. H. Weisz,
and B. Zumino, ibid. 34B, 91 {1971).

~J. J. Brehm and E. Golowich, Phys. Rev. D 2, 1668
(1970).

In this regard, note that our use of SU(3) as a good
symmetry for the t=0 matrix elements of Eq. (29) differs
from that of Gell-Mann, Oakes, and Renner (see Ref. 5) .
We thank R. Crewther for a relevant communication.
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Using "geometrical" inequalities similar to those of Martin for the partial waves f&(s) of
the m -7( amplitude in the Mandelstam triangle, we derive sets of inequalities, following from
positivity and analyticity alone, and involving only a finite number of the Balachandran dou-
ble partial-wave amplitudes a„&. Application of crossing symmetry gives further inequalities.
Similar inequalities are obtained from the more constraining positivity and analyticity in-
equalities for f&(s), given by Yndurain.

I. INTRODUCTION

In this paper we derive a number of exact con-
straints on the m'-7I scattering amplitude, follow-
ing from positivity and analyticity and from cross-
ing symmetry. This pursuit has received consid-
erable attention the past few years, ' ' and results
derived by Martin' and others have been used to
test various model amplitudes for the m-n system.
As in the above work, the constraints derived here
consist of inequalities on the partial-wave ampli-
tudes f, (s) and on the "double" partial-wave ampli-
tudes a„, introduced by Balachandran and others. '
These inequalities are valid within the Mandelstam
triangle (s~0, t~0, and u&0), and have implica-
tions for the physical amplitude once some form
of ana. lytic continuation is a,ssumed.

We start with the work of Martin4 and derive in-
equalities following from positivity and analyticity
alone, relating only a finite number of partial
waves in the s channel. In Sec. II we briefly re-

view the aspect of Martin's work that we require
and derive the inequalities given in (2.16). In Sec.
III we introduce the amplitudes a„, and derive in-
equalities relating a, finite number of these ampli-
tudes, again a consequence of positivity and analy-
ticity only. In Sec. IV crossing symmetry is in-
corporated using the crossing matrix derived by
Balachandran et a/. ,

' leading to a further set of
inequalities relating only a finite number of a„,'s.
In Sec. V, similar inequalities are derived from
an alternative constraint, giving a "tighter" in-
equality; these different forms are then compared.
These results and other implications are discussed
in Sec. VI.

II. INEQUALITIES ON PARTIAL-WAVE
AMPLITUDES

The starting point is the technique developed by
Martin4 to derive crossing-symmetry constraints
on the partial-wave amplitudes f, (s) of the s'-v'
scattering amplitude I'(s, t) in the Mandelstam
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tl'lallgle 4 ) 8 i g )0. {Encl'gy lllllts 8.1'e sllch that
m, m = 1.)

Martin observes that E(s, t) obeys a fixed-s dis-
persion relation with two subtractions' ("analy-
ticity"),

"A, (s, t')dt' u' "A„(s,&')«'
E(, )=&( )+—, t'„(t', t)

+ —, „", („', „)

as shown in Fig. 1. If we define a. function

~PI(x)zQI, (z)/QI(z) —xP~, (x)

goo

R~(s, x) = — X~(x, z)QI (z}A(8, z)dz .
J g

D

(2.9)

(2.10)

for 0 ~ s «4, and that the t-channel absorptive
part A, (s, t) is non-negative for t &4 and 0 ~ s ~4.
[Tllls 18 posltivity slid follows frolll tile posl'tlv-

ity of fmf, (t).] Symmetry under u tinte-rchange
implies A, (s, t) =A„(s, t). Putting x= cos 8, z,
= (4+ s)/(4 —s), and A(s, cos 8) = A, (s, t), Eq. (2.1)
becomes

HI„(x, s) = supxl(x, z)

for 8O «~8» '0
~

Ii~(x, s) = infX~(x, z)

h~(x, s)f~(s) «A~(s, x) ~H~(x, s)fi{s).

(2.118}

(2.1 lb)
I X2 1 1E{s,t) = C'(s) +— dz A{s,z) —, +
7r g3 8 —X 8+X

0
Since XI(x, z) is continuous in z, it is notational-

(2.2)

=Q (2l+1)P, (x)Q, {z)

~ Pl,(x)QI, ,(z) —P -,(x)Q (z) (2.4)

we can write E{s,t) as a truncated series EJ{s,x)
and a remainder R~(s, x):

E(s, t) = E~(s, x) +R~(s, x), (2.5)

E (s, x) = Q(2l+1)f, (s)P, (x), (2.6)

Rl(s, x) =— A(s, z)

zQz-, (z}P~(x)—»1, ,(x)Qx(z)

from which follows the Froissart-Gx'ibov defini-
tion of paxtial waves, viz. , for even /~2 and
O~s ~4,

f, (s) = — Q, (z)A(s, z)dz.2
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(2.7)

Because A(s, x) «0 and Q, (z) & 0 for z ~ zo) 1, and
because zQ, ,(z)/Q, (z) is an increasing function of
z, there are regions in the triangle in which
A~(s, x) has a definite sign, that of P~(x). For
j. ~ x~0, these regions are bounded by the curves

f —
u

2

4-s
COS 8 (units of m7T )2

FIG. 1. The Mandelstam triangle, showing the curves
PI (x) = 0 (straight lines) and q»(x) = 0 (curved lines) for
a number of even I values. Between a straight line and
the corresponding curved line that coalesces with it as
s 4, Rl (s,x) changes sign. (Only cose~o is shove,
because of the symmetry of the diagram about the line
u =t.)
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ly convenient to invoke (from the mean-value the-
orem) the existence of a point z' (z, &z' & ~), such
that

Ri(s, x) = Xi(x, z')fz(s) .
Similarly define

(2.11c)

( ) ( )
xPI „(x)—z@i„(z)/Ql(z) Pl(x)

z2-x2

with

(2.12)

GL(x, s) = sup gz(x, z)
for zo &z&~,

g~(x, s) =inf g~(x, z)

and a point z" such that

R~(s, x}= g~, (x, z"}f~,(s) .

(2.13a.)

(2.13b)

|The recursion relations for the Legendre func-
tions show that Q~(z)Kz(x, z) = gz, (x, z)Qz, (z),
giving two equivalent forms for R~(s, x).]

Martin then shows that the uncertainty in Rz(s, x),
defined by (G~ g~)/Pz(x-), is a minimum on the
line y~(x) =0, and by considering the intersection
of lines III&,(t, x, ) and yl (s, x,), one set in the t
channel and the other in the s channel, obtains
crossing-symmetry inequalities relating f, (s) and

I (t).
We will consider truncated expansions Fz(s, x)

and F~(s, x) in the s channel only, and observe
that

0.0

RLIS, XI&0 I ~ PI IXI=0
I
I

RL(s, x) ~0 pL( x s) 0

O. I

0.2—

0.3—

signs. The "tighter" inequalities, following from
(2.15) by varying z' and z", will be discussed in
Sec. VI.

Let the sign of RL in a particular range of x be
ez [the sign of P~(x) ]. We thenobservefrom Fig. 1
that for a given pair L, J, with J~ L, there exists
a region in which ez ~ e~„=-1 (the intersection of
a region in which RL has a definite sign eL while
R~„has the opposite sign). These regions may
be more readily identified in Fig. 2, where the
zeros and signs of P~(x) and the zeros of cpz(x) are
displayed. The worst" case, that of s=0, is
plotted; gaps between the bars are the intervals
in which R~(s, x) changes sign, and are largest for
s=0; horizontal lines indicate s=0.2m, '. As s
approaches 4 the curve y~(x) moves towards xz,
the fixed zero of P~(x). The intersection of inter-
vals of definite sign for RL and RJ„, a &x&b,

F(s, t) =Fi(s, x) +Rz(s, x) =Fps, x) +Rgs, x),

so that we can obtain relations with only a finite
number of partial waves:

F,„,-F, = g(2t+1)P, (x)f, (s)
l =L

= Ri (s, x) —Rz„(s, x) . (2.14)

F~ F~„= Q (2l-+ 1)P,(x)f, (s)
l =L+2

= gi(x, 2")fz(s) -X~(x, 2')fI(s), (2.15)

Using (2.1lc) and (2.13b) with the "dummy" vari-
ables z' and z", we obtain
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with z, (s) &z', z"&~, and —1 &x &1. These rela-
tions involve partial waves from f1(s) to f~(s) only.
By rePlacing Xz and gz in (2.15) by H~ or II+ and

GL or gL, depending on the signs, we obtain linear
inequalities relating a finite number of partial
waves, as a consequence of positivity and analytic-
ity.

We commence by examining (2.14), and the sim-
pler case of choosing a region of s and x so that
R~„(s,x) and R~(s, x) have definite, but opposite,

FIG. 2. A bar chart displaying the zeros of PL(x) and

yL (x), and the sign of RL (s,x), for x ~ 0 and s = 0. A bar
to the left of the central line is A& & 0, and to the right is
R& & 0, while in the gaps the sign is uncertain. The lower
end (larger x) of each bar is an s-independent zero of
I'&(x), xL, while the upper end, a zero of yL(x), moves
with s towards xL. A horizontal line in the gap indicates
s = 0.2m„~. (More s values are given for L = 2, showing
how the region of uncertain sign decreases with increas-
ing s.)
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giving c~c~+~ ——-1 is easily read off, and for an x
in this interval,

e~ Q(2l+ 1)f,(s)P, (x) =e~R~ e~-R~„&0.

(2.16)

For example, in the central region (-xz, xz, ),
bounded by the pair of zeros of P~(x) closest to 0,
e~ = (-1)~~'. As I, increases, x~ decreases, so
that -x~& -x~„&0&x~„&x~, and thus both R~
and R~„have definite signs in (-x~„,x~„).

The simplest version of this is for L, =J:
cz(2L+ l)Pz(x)fz(s) &0. But a&Pi(x) &0, so that
f~(x) & 0, as anticipated.

If J= J+4, e~„=-c~ in the central region
(-x~„,x~„), and we have three adjacent partial
waves related:

(2L+1}I P, (x) lf, (s) —(2I + 5) I Pc„(x)I fr.„(s).(2L 9)IP...()lf.„() o.
(2.17)

In order to relate two adjacent partial waves, we

go to an off-central region. With L, =2 and J =4
we see that A, & 0 for x& 0.57V, while R6& 0 for
0.285&x&0.661 (which is true for all s&0; x goes
down to 0.238 if s =4). So for x in (0.285, 0.577)
[or (0.238, 0.577) if s=4J,

i 5P, (x) ff, (s) —9P,(x)f,(s) & 0. (2.18)

This is nontrivial if P,(x)&0, i.e., x&0.33. Then
0&f,/f, & ~5P,/9P, ~=c, which is most constraining
as x approaches y, (x) =0, the lower end of the in-
terval. For s=0, c=2.28 while for s=4, c=1.35.

This is to be compared with the result'

which enables us to write a relation valid for all s,
with s-independent coefficients. It is, in particu-
lar, this latter fact that allows us to derive in-
equalities relating a finite number of a„,'s.

III. INEQUALITIES ON THE DOUBLE
PARTIAL-WAVE AMPLITUDES

s'( ~)-(' ')'~'" "(' ')p( ) (3.1)

The crossing-invariant inner product for two func-
tions g(s, t) and k(s, t) is

We now explicitly display the s dependence of
the partial-wave amplitudes by expanding the scat-
tering amplitude in a double partial-wave series
introduced by Balchandran and collaborators. ' We
will content ourselves with the spinless equal-
mass case, although the formalism has been ex-
tended to include spin and unequal mass. ' A com-
bination of helicity amplitudes having positivity
properties analogous to those of the m -mo ampli-
tude has been exhibited by Martin and Mahoux, '0

and Case" has used the result to derive inequali-
ties for the general case, similar to those below.
His inequalities, however, use no more than the
equivalent of f, (s) &0; the generalization of our
"higher" inequalities will be extended to this case
of unequal mass and spin in a later publication.
Other inequalities for the spinless case, expressed
in terms of integrals over f, (s),"also use only

f (s) -0
In our energy units, the s-channel basis func-

tions which have simple crossing properties and
are orthogonal over the Mandelstam triangle are'

f,(s) Q, (z,) 1 if s=0
f, (s) Q, (z,) -0.19/z, 2 as s-4 (2.19)

74ds t'4dt
(g(s, t),k(s, f)}=, — —e(4 —s —t)g*(s, t)h(s, f)4„4

or the weaker results, 4 also derived by Yndurain'
and Common, '

4 ~
~

~~

2
s4ds 4 —s ~& dx,' g*(s, x, )k (s, x,),

(3.2)

f,(s) 1 1 if s=0
f,(s) u, ' -0.25/z, ' as s-4; (2.20) and the basis functions have the simple orthogonal-

ity property

where u, =z, +(z,' —1)'". So at best, our inequality
is too "slack" by a factor of about 23. On using
(2.15) we improve the result considerably. We
need to account for the threshold zero of f, (s) as s
approaches 4, which is done in (2.19) and (2.20).
Similar results hold true for the inequalities in-
volving more / values; they are not as tight a test
of analyticity and positivity as are those given by
Yndurain' and are clearly only a necessary condi-
tion for positivity. Their importance is that they
are linear constraints, and that the coefficients of
f, (s) only involve s in a simple "geometrical" way,

(S„' (s, t), S„(s,t))—

We then expand the scattering amplitude as

P(s, i) = +(21+I)+2(n+ 1+ 1)a„,

(3.3)

(3.5)



fy

&o-t, r
= ~ ~Soho-~', r'&

)I
(3.6)

where o, = 2l+1 for convenience. A similar expan-
sion in the t channel is possible, giving amplitudes

These are related to a„, by a finite-dimension-
al crossing matrix Q'„a= n+ l,

Varying x in its allowed range will change the
coefficients somewhat, but it is usually evident
what value is most "useful, " as in Sec. II for Eq.
(2.18).

The first few inequalities are simple and inter-
esting. For L= J, Eq. (3.2) is

C;,, = 2(a+ l)K;, ,(2l'+ 1), (3.7)

«, (2I, +1)P,(x) Q a„,D„',&0.

But «~P~(x) & 0 in (a, b), so that

(3.13a)

and K,', =(S„'(s, f), S„' (f, s)), with n'+ l'=a= n+ f, is
given explicitly in Ref. 5. Crossing symmetry,
E(s, f) = E(t, s), then .implies a„, = b„,.

We now insert (3.5) into (2.16), and multiply by
a function [(4 —s)/4]'" which is positive in the in-
terval 0 &s &4. Integrating over s, we obtain

«,g(2 1+1)P,(x)g a„,x 2(s+ f+ 1)

k-I.

g a„,D„'~ 0&. (3.13b)

So for k= I., a~~DOI, &0, and from (3.12), Do~&0,
giving

(3.13c)

For k=1.+1,

s 4 —s (~ o) s —2

(3.8)
The Jacobi polynomials P„"' (x) a.re orthogonal
over (-1,1) with weight w„(x) = (1 —x)" so that the
integral in (3.8),

I+1 I+1
QOJDOL + a»D» & 0

a1.e. )

2(I. + 1)a,~ —a~ & 0 .
For k=I+2,

I,+2 L+.2 L, +2
aoIDOI + a,ID,J +a21D I 0.

(3.14a)

(3.14b)

(3.14c)

(3.9)

is zero for k large enough to make up the weight

w„(x) yet leave a polynomial of degree less than n:

Consider now J = I.+ 2, k ~ L + 2, and x chosen as
for Eq. (2.18); then

«~(2L+ l)P~(x) Q a„,D„",

D„,=0 if n+k —l 0. (3.10) +«1.(2L+5)P~„(x) P a„,D„",&0.

So if k & J {the maximum value of f in the sum),
the sum on n becomes finite and we finally have

(3.15a.)

«I Q (2l+ 1)P,(x)Q a„,D„",&0 (3.11)
Set k = I + 2; then recaUing «~PI. (x) & 0 and x chosen
so a~I'~, 2&0, we have

for any k & 8 and any xP (a, b), the interval in
which R~ and R~+, have fixed„opposite signs. The
value of o. =n, +1 ranges from I. to k~ J.

The numbers D„", are easy to obtain from the ex-
plicit forms of the Jacobi polynomials, or numeri-
cally via recursion relations. The first few are

D,", =2(l +1)/(k+ i+2),

D» = 2(l+ 2) (l —k)/[(0+1+ 2)(k+ l+ 3)], (3.12)

(1+1)(o.+ 2) 2(l+ 2)(a+ 2)
(k+ 1+2) (k+ i+3)

(1+2) ( a+ 4)
(l+ k+ 4)

%e thus obtain sets of inequalities on the a„„
following from positivity and analyticity alone, in
which we can vary the number of l and n values.

Qr
P (s) =s[A(s)]'+(4 —s)[B(s)]' (m odd)

P (s) = [C(s)]'+ s(4 —s)[E(s)]' (m even),
(3.16)

where A. (s), B(s), C(s), and E(s) are any real poly-
nomials of s. Then, if a function E(s) is positive,
the integral

(2I +l)~P (x)~(a D ' +a, D, ' +a D ' ]
(2I.+ 5) ~ P~„-(x)

~ a,~„D~ 2, & 0 . (3.15b)

Notice that [. j&0 from (3.14c), and also
D~»,',a, i,„&0from (3.13c), so that this inequality
is not trivially satisfied.

As pointed out by Case, "instead of multiplying
by a particular positive polynomial, we can use
Lukfcs theorem" to express any polynomial P„(s)
of order m which is positive in the interval
(}&s(4
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~4dS E—(s)P (s)&0.
0

(3.17)
tained in it; Eq. (3.23) duplicates the previous re-
sult, Eq. (3.11) (k=2M —1 if odd, k=2M if even),
but (3.24) leads in a similar fashion to

We expand the polynomials A(s), B(s), C(s), and

E(s) as polynomials in the variable y = (4 —s)/4,
with coefficients (», , P;, y, , and 5;, respectively,
as f0110%'s:

k-l k +1- l

e~ p (21+ op, (x) ga„, o —'„,g a„,o„') 0.
l=I n=o n=0

(3.25)

A(s) = Q (»;y', B(s) = Q P;y', etc.
L=0

(3.18} Combining this with (3.11), we get the additional
set of inequalities

These coefficients are arbitrary real numbers.
Then if we put

J' l
[k]=-e g (2l+1)P,(x) g a„,D„",& c

t 4ds t+j
w» =)I 4

X(s)F(s)
0

(3.19)
x g (2l+1)PL(x) g a„,D„',"&0. (3.26)

X(s) =1, s, (4 —s)/4, or s(4 —s)/4,

the positivity of the quadratic form

(3.20) Thus for k = J = L we have

I L+1 L+1
~OL OL ~OL oL ~1L 1L (3.27)

gw„"(»; (»;
i,j

for an arbitrary set of numbers [(»;j leads to the
positivity of all the determinants:

M, M M, M+1
x x

M, N+M

(3.22)

Obviously,

M+N, M M+N, M+1 M+N, M+N+'x +'x ' ' ' ' +'x

(3.21)

In particular, D»(M, O) =w»" &0 for allM «0.
Now if E(s) is that polynomial leading to Eq.

(3.8), we see that instead of D„', , we should con-
sider the mox'e general moments

3R (»)„,= 2(n+ I + 1) —X(s)
4 ds

0

L+1, L+1 L+2 L+2 1+2
OL OL ~ I 1L ~OL OL ~lL 1L 2LD2L

(3.28)

In fact, we have an infinite chain of inequalities
for a given L, J, and x; that is, for any k~ J

I~] [~+I] [&+2]&"

and each bracket involves only a finite number of

~nl S

IV. APPLICATION OF CROSSING SYMMETRY

Furthex inequalities are derived from those of
Sec. III by the application of crossing symmetry.
Using the crossing matrix, Eq. (3.6}, to rewrite
the inequalities in terms of the t-channel ampli-
tudes b„„we then introduce crossing symmetry
by the identification 5„,= a„,.

Equation (3.11}becomes
J' k-l (I

[k]'-=eL g (2I+1)P,(x) g D„", p C(', b„., &0,
l=L n=o l =0

(4.1)
(m fj Dl+ j-1

(1)n l n t

ae 4 n~+j
~~"(4-s)nl nl

and since s/4=1 —(4 —s)/4, we see that

NI(n)nr g(x)n( 3g(4-n)n( Dn( Dnt

while

(3.23a}

(3.23b)

where 0'=n+E=n'+$' and only even values of E and
l' enter. It is important to note that only values of
o from J to k are involved, and of course that the
8-wave 4' =0 enters.

For low values of L, J; and k only a few 6„,'s
appear, giving fairly simple xelations. If k= J =4,
Eq. (3.26) becomes

Crtf &n j en 4 cd &+l,j+1 nl+j n&+j+1
~so(s(4-s)/4)nl ~'"(4-s)nl ~'y(l)nl nl nl

(3.24b)

Apart from the determinantal inequalities which
are more general, the simple linear inequality
sex' ~ 0 has a relation of further interest con-

L
L L 1+1 I

DoL Z CL)' f)L (', (' &DoL-Q CL(' f)L (',('-
0

I..= 1

1L Q CL(' hL+I, l', i' *

l'=O



3130 MARTIN L. GRISS

If no subtractions are needed (l, = 0), as suggested
in Ref. 6, we can have L = 0 in (4.2):

DppCoobop )DopCoobpp + D1oCoob1o

while the uncrossed (3.11) gives
0 1 1
ooaoo ooaoo 1o 10

(4.3)

(4.4)

If we now use crossing symmetry, b„, =a„, and
the numerical values of the D's and C's from (3.12)
and (3.7), we have two inequalities: from analytic-
ity and positivity,

2 1
aQQ 3aQQ 3a„oo,

and from crossing symmetry,
2 1

aoo 3 aop 6 10

Manipulating, we get

a„)—alp 2app

(4.5a.)

(4.5b)

(4.6a)

4app) a») -2app. (4.6b)

The tighter constraint is that following from
analyticity and positivity alone, (4.6a). The lower
bound of -2app may be increased by including more
a„,'s by using larger k values, as in (3.29). If
(4.6a) is violated from above, we may be able to
conclude that subtractions are necessary or that
our amplitude does not have positivity and analytic-
ity properties at all, depending on whether or not
inequalities for higher L are violated.

The inequality for L =J = 2 is valid for lo & 2, and
(3.11) is then

2 3 3
p2 02 02 02 12 12 0

while (4.2) becomes

()2 (3a20 6 a02) 02 Aa20 6 02)

(4.7)

+D„'(-,'a„——,'a„) & 0.

(4.8)

The S-wave parts a„, in (4.8) do not appear in

(4.7), and so immediate comparison is impossible.
However, if the numerical values of our D-wave
parts a„, do satisfy (4.7), we can use them succes-
sively to bound the possible S-wave parts using
the inequality (4.8).

As we go to higher L, many more inequalities,
involving higher values of @=n+l, must be simul-
taneously satisfied, and in each ease the use of
the crossed inequalities [k]' enables us to relate
the S-wave components to the remainder.

For the special case of L =J we define

[k]~.is similarly de6ned with C~, inserted and
summed over l'.

Consider, for example, L and L+2. From
(3.29), for L=Z we have the pair of chains

[L], [I,+1], [I.+2], [I.+3], ." 0,

[L+2]~„&[L+3]~„&~ ~ ~ &0,
(4.10)

)0. (4.12)

V. TIGHTER INEQUALITIES

As exempli6ed near the end of Sec. II, the in-
equalities derived above are only necessary con-
straints, and are not the "tightest" possible. In
this section we obtain similar inequalities for the
a„,'s, based on a result of Yndurain, ' who consid-
ered the power-moment problem related to the
Froissart-Gribov definition (2.3) of the partial
waves

Oo

f, (s) = — A(s, z)Q, (z)dz,
s(s0

where A(s, z) is a non-negative function for z, (s)
&z«and 0 &s &4, z, = (4+s)/(4 —s).

Using the representation for Q, (z) given by

(5.1)

Q, (z)= de[z+(z' —I)'~'cosh8] ' ',
0

(5.2)

an associated moment problem may be defined by

f, (s) f ds))(s)* ' ', ,
gp

(5 3)

with u, (s) = z, + (z,' —1)' and B(s, z) non-negative.
By identifying it as a Hausdorff moment problem, '
the set of inequalities

while for J= L+2 we have the coupled inequalities
(for appropriate range of x)

(2L+ I) I Pg(x) I(L+ 2]1.- (2L+ 5) I Pl + 2XI[L+ 2]~„
& (2L+» I Pi(z) I[L+3]g- (2L+ 5) IP~,.(~) I [L+3]„,
) ~ ~ ~ )0 (4.11)

The expressions [L+2]~, [L+3]I, [L+2]1„,and

[L+3]z,„involve (7 from L to L+3, and when
crossed add in a~„, and a~„, (others already ap-
pear in lower inequalities).

Combining (4.10) and (4.11) with crossing, we
have the nontrivial constraint involving a~„o and

aL,„Q in terms of the other a„, with n+ L ~ L, +3:

(2L+1)IP (~) I([L+2]' —[L+3]')
' (2L+ 5) I Pi. , (z) I((L+ 2]i+, —[L+3]i+,)

(k]i= Z D!ia.i,
n=0

(4.9)
2m 2j

6 f, (s) -=Z (-1)'f„»(s)—
~-0 g Qo

which involves cr from L to k. The crossed bracket (5.4)
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are obtained for all m» 0 and even l»/„neces-
sary and sufficient for non-negative B(s,z).

We will use this expression much in the way

(2.16) was used to obtain inequalities on the a„,'s.
Now u, (s) = (4+ s+ 4&s)/(4 —s) & 1, and as in Sec.

III, we need the s-dependent coefficients (here
-u,') to be simple enough to make the moment inte-
grals of (3.19) simple enough to cut off with a, finite
number of a„,'s for each k.

We may replace uo(s) in (5.4) by any function

u, (s) such that u, (s) &u,(s) for 0 & s &4. This fol-
lows from Eq. (5.3) because (z ')"''(u, '-z ')
is positive for u, &u, &z& ~. Equation (5.4) now
becomes only the necessary condition (with changes
in summation indices, and removal of common
factors)

J
(-1) ' /'f (s}u (s}' & 0,

, i (l-L)/2 (5.5)

with even I,, J& l, .
If we put u, (s) = 1, we have a result very similar

to (2.16), with e~(21+ l)P, (x) replaced by

(
(J L)/2

( 1)(( I)/2-
(l —L}/2

Again, we have not canceled the threshold zero,
f,(s)-(4 —s)' as s-4, resulting in "slack" inequali-
ties.

However, if we put u, (s}=4/(4 —s) &u, (s), we do

cancel this zero and obtain a tighter constraint;
this form still permits the integration in a simple
manner.

With f, (s) given by (3.5), we multiply (5.5) by
[(4 —s)/4]"", and integrate over s:

J 00

t=L n=0

ds 4 —s ~2l+1,0)
—2

0

(5.6)

If M»2J, we can terminate the n=M-2l, as in
Sec. III. This integral gives, in fact, D„", ' '
[Eq. (3.9)]. We then have

{M) = Z D I, a L,-o
n=0

(5.9)

then with M —L = k & I, , we regain (3.13b), with

the identification

{k+L)~ =—[k]~; i.e. , {M)1=[M—L]~ .
Then if J= L+2, M& 2J=2L+4, Eq. (5.7) gives

{M)~-{M)~„&0,which is

[M —L]~—[M —L —2]L,+ 2
& 0 ~

This means that the chain of inequalities

(5.10)

[L+4] [L+2] „--[L+5] -[L+3] „- ~ 0

(5.11)
is to be compared with (4.11).

If we pick the closer approximation,

u, (s}= (4+ s)/(4 —s) = z, (s) & 4/(4 —s),
(5.6) becomes
J ao

2 "/ 1,
, , (1-L)/2

AS 4 S 4 + S (2l+ 1 0)

Now we expand

(5.12)

(5.13}

(apart from the obvious absence of x, and its
associated range) is that for a given L, J and
minimum M or k, about twice as many a„,'s enter
into (5.7). In fact, if M=2J, then a„, for n=o, . . . ,
2(J —l) and all values of o' from L to 2J —L are
represented in (5.7), while for k= J, then a„„
n=O, . .. , J- l and all values of o from L to J ap-
pear in (3.11). These are the same for the sim-
plest case of L =J. This has the consequence that
many more a„,'s are "mixed" in by crossing in
the manner of Sec. IV.

If we now define, for L= J and M» 2L,
g-21.

J 8 2l

, , (l-I)/2
(5.7)

and thus obtain the improved constraint inequality
J

( )/
( 1)(1 I&/22ig( 2)~ l-

, i (l —L)/2 r=0

{M)-{M+1)-{M+2)- ~ -O, (5.8)

which hold for a given L, J and M» 2J.
The principal difference between (5.7) and (3.11)

with M & 2J, to be compared with (3.11).
By considering the more general moments lead-

ing to (3.29), we obtain the chain of inequalities
n=0

DN+r-lg» 0nl nl

(5.14)
with M» 2J to ensure that the sum is finite. Again,
the application of crossing using (3.7) will "mix"
in all a„, values for n = 0 to M —/, and o now ranges
from L to M» 2J, more than in the previous two
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cases.
Approximating the numerator of u, (s) by some

better rational function of s will give an even
better inequality, with a larger number of a„,'s.

VI. CONCLUSIONS AND DISCUSSION

g~(x, z")f~(s) -X~„(x,z')f~„(s) =0,

giving the ratio

(6 1)

A~(s, x), rather than only their signs. In fact, one
is able to replace (2.18) by the stronger form
[from (2.15) with J=L+2J

We have presented a number of inequalities,
based on successively tighter positivity and analy-
ticity constraints, which involve only a finite num-
ber of a„,'s; this number increases with the tight-
ness of the constraint. Applying crossing symmetry
via the crossing matrix leads to further inequali-
ties which may be used either to test deviation of
a given model from crossing symmetry, or to suc-
cessively determine approximate values of some
a„,'s given others, in particular, to determine the S
wave if two subtractions are needed, as expected. '

The approach presented here will provide a sim-
ple generalization of the inequalities for combina-
tions of helicity amplitudes, given by Case, "by
incorporating more of the constraint due to positiv-
ity and analyticity.

Using the a„,'s is really a particularly useful
parametrization of the s dependence of the f, (s)'s
within the Mandelstam triangle, especially signifi-
cant when we wish to consider crossing symmetry.
The original "geometrical" inequalities given by
Martin' compare the partial waves at various
points within the triangle, and some statement
about their s dependence is required. We simply
specify how many a„,'s are significant, and this
specifies how "smooth" the s dependence is, while
still retaining the threshold zero and facilitating
crossing. This expansion is also useful outside of
the triangle, when combined with partial-wave dis-
persion relations, ' and Grassberger" uses it to
obtain inequalities on the left-hand discontinuity
in these relations, from positivity and crossing. "

It was noted in Sec. II and Ref. 2 that the "geo-
metrical" Martin inequalities on f, (s) may be tight-
ened by using the actual bounds on the remainders

fg„(s) Bg(x, z")
f~(s) Xi„(x,z') '

with

(6.2)

z, (s) & z', z "&~.
Using the result presented after (3.13b) we obtain

f.„(s) Q.„(z")&...(x, z")
fI (s) Qi(z") SCir., (x, z') (6.3)
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We are now to vary z' and z" to maximize the
right-hand side, giving an upper bound, and to
choose x so that the ratio is in fact positive and

is the least upper bound. It turns out that this
condition occurs when both z' and z"- z,(s), giving
again the result (2.19).

We may similarly consider J& I.+ 2, and from
(2.15) obtain a result involving Q~(z')(Q~(z") which

will go as z, ' as z' and z"-z, ; however we

will not obtain the correct powers zo
~ in each co-

efficient to compensate for the threshold zero at
s= 4, only one over-all factor. This again indicates
that the "geometrical" inequalities, at best, are
not as constraining a test of positivity and analytic-
ity as the ("almost" sufficient) conditions of Yndu-
rann. '
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An infinite number of inequalities are derived for integrals over the s- and p-wave 7r7r am-
plitudes in the interval 0 ~ s ~4m„ in terms of the 7r7r total cross sections and other experi-
mentally accessible data. The main ingredients in the derivations are crossing symmetry,
the positivity of the even l ~2 partial waves of the reactions 7r 7r 7r 7r and 7r 7r m+7r- in the
interval 0 ~s ~4m~2, and some known bounds on the crossed-channel absorptive parts of
these reactions. It is shown that if the partial-wave sum over any subset of 7r 7r 7r 7r par-
tial waves is itself invariant under permutations of s, t, and u, and this subset contains the
s wave, then the entire 7r 7r 7r 7r amplitude has to vanish identically. (Actually, a some-
what stronger result is proved for the amplitudes of both the processes 7r 7r 7r 7r and 7r 7r

7r+7r or for any linear combination of these amplitudes with positive coefficients. )

I. INTRODUCTION

Some years ago, Martin' proved that the partial-
wave amplitudes with angular momenta l & 2 of the
processes 7T'7I'- 7r'7r' and 7T'7T'- 7r'7t are non-nega-
tive when the square of the center-of-mass energy
s is restricted to be in the region 0 & s & I. (We
take the pion mass m, to be ~ and denote the Man-
delstam variables by s, t, and u. ) Later work by

Common and by Yndurain' extended Martin's re-
sults and revealed a more refined set of inequali-
ties for these partial waves. General methods for
studying the crossing properties of partial waves
have been developed by Balachandran et al. and by
Modjtehedzadeh. ' In this and subsequent papers,
we will use the positivity properties of the partial
waves due to Martin, Common, and Yndurain, in
conjunction with the crossing properties of the par-
tial waves of four-body processes studied by Bala-
chandran et al. and some other known properties of
scattering arqplitudes, to derive an infinite number
of integral inequalities for the 7t7T partial waves.
The emphasis in the present work will be on stating
simple algorithms for writing down inequalities

which involve only the s and p waves. Further,
the Common-Yndurain refinement of the Martin in-
equalities will be completely ignored here. For
these reasons, the results will not be exhaustive.
(A preliminary account of this research has been
reported elsewhere. ') In a second paper, we will
develop suitable elementary (and therefore incom-
plete) algorithms for deriving partial-wave inequal-
ities, taking advantage of the work of Common and
Yndurain, while in a third paper, an attempt will
be made to state systematically all such inequali-
ties which follow from crossing symmetry and the
Martin-Common- Yndurain positivity properties of
the partial waves. For similar and occasionally
overlapping research, we refer the reader to
Piguet and Wanders, to Roskies, and, most re-
cently, to Pennington. '

Some unanticipated insights provided by these in-
equalities refer to the allowed crossing properties
of partial-wave sums over subsets of partial waves.
They are partially described below and merit atten-
tion since they indicate some possible difficulties
in enforcing crossing symmetry and unitarity in
any model.


