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The various methods which have been used to enforce the existence of the threshold zeros
in the solutions of the partial-wave dispersion relations are compared. It is found that these
methods are very closely related and are in fact equivalent under the proper conditions. The
above are then studied in detail for the case of the potential scattering of equal-mass parti-
cles under the influence of a Yukawa inte-;action.

I. INTRODUCTION

The N/D method was introduced by Chew and
Mandelstam' in order to linearize the relativistic
partial-wave dispersion relations. However, since
its inception, practical applications have been
plagued with the problem of finding a sufficiently
accurate approximation for the discontinuities
across the left-hand cuts' and the related prob-
lem of producing amplitudes that have the correct
behavior at threshold. "'

We study these problems in the case of Yukawa-
potential scattering of equal-mass particles in or-
der to have an exactly soluble model which has ana-
lytic structure similar to the relativistic problem.
Although our numerical results depend on this mod-
el, our treatment of threshold conditions applies
equally well to the relativistic case.

A wide variety of methods have been used to treat
the threshold problem. The most common is the
use of a threshold or phase-space factor, ' which
is factored out of the original amplitude before ap-
plying the N/D method If this fa.ctor is chosen to
vanish as (s —s,)' at threshold, the resulting am-
plitude also has this property. An alternative tech-
nique is to add background pole terms of the form
A/(s —a) to the left-hand cut terms 'The po.sitions
and residues of these poles can be chosen to give a
solution with the correct threshold behavior. These
additional forces may be interpreted as represent-
ing short-range effects neglected in using the hy-
pothesis that nearby singularities dominate" -that
is, approximating the left-hand cut by the first few
Born terms.

The first method suffers from the fact that the
simple choice p = (s —s,)' produces an amplitude
which violates unitarity for l ~ 1.' In fact, it is
easily seen that for large s, p must be bounded by
a constant. Thus, the simplest choice of p is p(s)

= (s —s,)'/ll', (s), where (P, (s) is an /th-degree poly-
nomial in s with zeros on the left. To avoid arbi-
trariness, many authors simply use p(s) =(s —s,)'
and cut off their integrals at some large value to
avoid divergences. "As we shall see, this cor-
responds to choosing 6', (s) such that all its zeros
have been pushed to infinity. Since a suitable
threshold factor has /-poles, it is obviously quite
similar to the use of background poles. In fact, the
two methods can be shown to be identical; the poles
in p(s) correspond exactly to the positions of the
background poles. '" Hence, the cut-off N/D equa-
tions are effectively including additional forces of
zero range.

We first investigate in detail the interrelation of
the methods of insuring threshold zeros. We show
that the use of threshold factors is completely
equivalent to using background poles and that the
latter method can be employed either by introducing
poles into the equation for N(s) or zeros into the
equation for D(s). This last formulation resembles
the equations in the presence of a Castillejo-Dalitz-
Dyson ambiguity. ' Finally, we note that choosing
these additional background poles at infinity is
equivalent to solutions obtained by using a cutoff in
the N/D equations.

In order to study the problems of threshold fac-
tors and the left-hand discontinuity in a physical
problem, we have compared various approximate
solutions to the N/D equations for p-wave scatter-
ing with the exact solution of the Schrodinger equa-
tion. We work with an attractive Yukawa force with
g'/p. = 5 which produces no resonances but has a
phase shift significantly larger than the first Born
approximation so that unitarity corrections are im-
portant. This potential strength is comparable to
that found in strong interaction physics where the
n-m force due to p-meson exchange has been esti-
mated to be g'/p -3." We have not included long-
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range repulsive forces which are thought to be im-
portant for resonance formation" but restrict our
considerations to finding an accurate approximation
to the solution with attraction only.

Luming' and Collins and Johnson' have studied
the effects of using higher-order Born approxima-
tions for the left-hand cut within the framework of
the cut-off N/D equations. We also study the effect
of using higher Born approximations for the left-
hand cut but within the context of a more general
treatment of the threshold problem. We find that
with our coupling strength, no combination of
threshold effects with the first Born approximation
for the left-hand cut produces accurate solutions.
However, if we include the second Born approxima-
tion we obtain excellent results, whereas Collins
and Johnson were forced to include the third Born
terms in their approach to achieve similar accura-
cy.

In Sec. II, we review the physical problem of
scalar-scalar Yukawa scattering and formulate the
usual N/D equations with a threshold factor, p(s).
In Sec. III, we show that the threshold factor is
equivalent to the use of background poles and show
that these equations can be written either with poles
in the N(s) equation or poles in the D(s) equation.
Section IV is devoted to a comparison of exact solu-
tions to the scattering problem with various ap-
proximations to the left-hand discontinuities.

II. BACKGROUND AND NOTATION

We consider the scattering of equal-mass scalar
particles due to an attractive Yukawa force in the
nonrelativistic Schrodinger equation. Our units are
such that 5= c=1 and the external mass p. =1. We
also choose the exchange mass m = 1. In the c.m.
system, the radial Schrodinger equation has the
form

u"(r) + k' —V(r) —,u(r) = 0,l(l+ 1)

1 ) D(s')Im f(s')ds'
77 g S —S

where 8, and I. imply integrations over the right-
and left-hand cuts, respectively. We now write

and
f= p(s)N(s)/D(s) =N(s)/D(—s)

Im f = [I/p(s)] Im f(s) .

(Note that 1/p is an analytic function on the left-
hand cut. ) Since we do not generally know Im f(s)
exactly on the left-hand cut, our principal physical
assumption will be to replace Im f by some approx-
imation, ImB, in this region. Then our equations
become

limD(s)- 1,
and assume that D(s) and N(s) have only the right-
and left-hand cuts of f, (s), respectively.

Within this normalization we introduce a thresh-
old factor

P(S) = (S —4)'/(P7(S),

where (P7(s) is an lth-degree polynomial in s with
zeros only to the left of s =4. Without loss we
choose lim p(s)- 1. Our N/D equations are now

written for the new amplitude

f (s) =- f,(s),
1

where now on the right

1mf(s) =kp(s) lf I',
and unless f(s) accidentally has threshold zeros,
f, (s) will automatically behave correctly at thresh-
old. We now define

f (s) =N (s)/D(s),

which yields the following equations:

1 k'p(s ')N(s ' )d(s ')
77 s —sI

where k is the c.m. momentum. The potential is
chosen to be

1 k'N(s ')ds '

7l Z S -S (4)

V(r) = g'e "/r-

and our numerical results are presented for g'=5.
We normalize our scattering amplitudes such that

on the right-hand cut,

im, =flfk, I',
and we expect that f-k" at threshold. We disperse
in the variable s =4(1+k') so that f-(s —4)' at
threshold. We shall work with the functions N(s)
and D(s) normalized such that

lim N(s) - 0,

p(s) ( D(s')ImB(s') ds'
77 g P(S )(S —S)

Introducing D(s) into the expression for N(s) and
interchanging the order of integration, we find

N(s) =B~(s)+ — ds', , B~(s') —B~(s)
1,k'N(s') p(s)77RSSPS

where

p(s) ImB(s')ds'
w 1. p(s ')(s' —s)
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and ImB(s) is chosen to be some approximation (to
be specified later) of Im f(s) on the left-hand cut.
In Sec. III, we shall compare these equations with
other methods of enforcing threshold behavior.

III. RELATIONS AMONG THRESHOLD
TECHNIQUES

where the fn, }are the zeros of the polynomial,
4', (s). Likewise we can write

p(s) p(s'), ~s' —s s' —s ~ (s -n, )(s'-n, )
'

k=1

(6)

Using this expression in Eq. (5), we obtain

(A) In this section, we shall sketch the equiv-
alence of the N/D equations of See. II with thresh-
old factor p(s) to the method of using background
poles. Since p(s} is the ratio of two polynomials,
we can rewrite p(s) in partial fractions as

l

p(s) =1+Q S ef

expression.
In practice one works with Eq. (11) for N(s) and

chooses the (R,}to produce solutions with correct
threshold behavior or works with Eq. (5) for N(s)
with a threshold factor. If the poles (n,}are the
same, identical results are obtained. Although this
is obvious, it is rarely apparent in other works be-
cause of rather different choices for the [n,}.Au-
thors using Eq. (5) have often chosen forms, such
as p(s) = q" /s' ' or (in ease of meson-baryon scat-
tering) p(s) = q "/(q+ m)","which correspond to
small (n, }, that is, long-range forces. However,
in using Eq. (11), the tendency is to interpret these
poles in B(s) as short-range effects and use large
values of (n,}.In Sec. III B, we note the extreme
case of limen, }-~.

(B) In solving Eqs. (4) and (5), it is convenient
to introduce a large cutoff into the integrations.
Jones and Tiktopoulos" have shown that such
equations can be solved by matrix means as in the
Fredholm case. With this cutoff to maintain our
integrals finite, we can formally pass to the limit
where (n, }-~and make the replacements

N(s) =—1 D(s')ImB(s ')ds '

S —S

1 ~ y, D(s')ImB(s')ds'
1T s —n( L p(s )(8 —n()

(9)

p(s) s —4 '

p(s') s' —4

(s —4)',) ImB(s')ds'
J L (s'- 4)'(s'- s)

'

On the other hand, if we set p(s) = 1 in Eq. (5) and

replace Im B(s ' ) by

ImB(s')-ImB(s') —g a, 5(s' —n, ),

then we obtain and

I O'N(s')ds'
'lT z s —s

C

Our Eqs. (4) and (6) become, respectively (B, indi-
cates a cutoff at large s),

1 D(s')ImB(s')ds' 1~ v, D(n, )
1T L S —S 7T S-Q(

f =j.

(10)

N(s) = (s —4)' B,(s)+ (s —4)'

[B,(s') —B,(s)]ds',
u'N(s')

C

In both cases, the equation for D(s), Eq. (4), re-
mains the same but the equation for N(s) is of the
form

where
1 1mB(s')ds'

L (S' —4)'(s' —S)
'

1
I

D(s')ImB(s')ds' g B,
s' —s S —Q]

To show that Eqs. (9) and (10) are completely equiv-
alent, we must demonstrate that if the (n,}in Eq.
(10) are chosen to produce threshold behavior like

(s —s,)', then the residues of the poles fA, }are the
same in both cases. This is straightforward to show
and has been carried out elsewhere. '" We shall
not repeat the proof here. Note also that if some

n, 's are equal, our expressions change because the
simple partial-fraction expansion, Eq. (8), is in-
valid. However, it can be shown that if this limit
is taken carefully, in Eq (9), we obt.ain the correct

For completeness, we note that B,(s) can be writ-
ten in the form

B,(s) = B(s) 1 ) Im[B(s')/(s' —4)']ds'
(s —4)' w s s —s

Making the identification N(s) =N(s) x (s —4)', we

secure

1 k'(s' —4)'N(s')ds'
7T s~ s —s

n'(s' —4}'N (s'}
S —8

x [B,(s') —B,(s)]ds',
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which are the equations used by Luming' and by
Collins and Johnson. ' Although we have not shown
that the limit (n, } ~ exists uniformly, it is clear
that the most plausible interpretation of these cut-
off equations is that they correspond to subtracting
forces of zero range to produce correct threshold
behavior. It shouldbenoted thatnoforces [infinities
in B(s)] have been neglectedbyusing the above cut-
off procedure. Rather, it hasbeenassumed that the
nonunitary behavior of the unitary integral is precisely
the same, in an opposite sense, as that of B(s), so
that together they approach zero for high energies.

Although it is a rather strong assumption to con-
sider background forces of zero range, it does
serve to bypass two obvious problems with the
more general form p(s)= (s —4)'/(P, (s). First, as
we go to larger l, the degree of arbitrariness in
(P, (s) increases, which is contrary to our knowledge
that the simple Born approximation is valid in this
limit. Second, if we wish to look for Regge poles
in our amplitude, we must analytically continue in
I . Therefore (P, (s) must be chosen to have suitable
analytic structure in l as well as s. The choice
(P, (s) = constant serves to eliminate both of these
difficulties; however, an alternative choice,
(P, (s) = (s —a)', also works and does not encounter
the difficulty of zero range forces. As we shall
see in Sec. IV, for the case, /= 1, we find better
agreement with the exact solution for 6'(s}= (s —a)
than for (P(s}= constant using the same approxima-
tion for the left-hand cut.

(C} In passing from Eqs. (2) and (3) to Eqs. (4)
and (5), we implicitly assumed that

pN=N, D =D .

Expanding p(s}/(s' —s) into partial fractions then
leads to an equation of the form, Eq. (11), with
poles in the equation for N(s). This was shown to
be equivalent to adding background, polelike terms
to ImB(s). At times it may be more convenient to
work with equations such that these poles appear
in the equation for D(s) instead of N(s).

To find such a form, we again begin with Eqs.
(2) and (3) but now define

N=N,

D =pD,

so that again,

f(s) = p(s)N(s)/D (s) = N(s)/D(s) .
The equations for N(s) and D(s) are

1 1 /2'p(s')N(s ')ds'
p(s) 7fp(s} R s s

1 D(s')ImB(s')ds'
v I, s —s

Now 1/p(s) =(P, (s)/(s —4)' has a multiple pole at
s = 4 and the expansion into partial fractions takes
the form

1 l
T)

p(s) ~ii (s —4)'

1 1
p(s}(s' —s) p(s')(s' —s)

~(s —4)'(s' —4)' '" '
f=j. i=1

Using these we can write for D(s)

1 "O'N(s')ds'Ds =1—— +
7i ~ s' s -(s-4)

f=1

1 ~~ r, k'p(s')N(s')ds'
v ~~ (s —4)' (s' —4)'-'"

R

Thus, we can write for N(s) and D(s)

1 D(s')ImB(s')ds'
7T L S -S

1 O'N(s')ds' ~ zi
ii R s s (- (s 4)

(12)

In the formulation of Eq. (11)we had to choose the
(R,}such that N(s) vanished like (s —4)' at thresh-
old, but the poles (n,}were automatically on the
left (by choice). Here we automatically give D(s)
a pole of order l at s=4 but we choose the (s„}to
make sure that its zeros lie to the left to avoid
physical poles. In this scheme, Eq. (13) is quite
similar to adding an lth-order CDD pole at thresh-
old except that we want to choose the (s„}so that
no resonances are produced. This will again pro-
duce solutions identical to the threshold factor
method if these zeros of D(s) are chosen at the
points (o.,}.

IV. RESULTS AND CONCLUSIONS

Having discussed threshold behavior in detail in
Sec. III, we now examine the phase shifts generated
by using various approximations for the discontinu-
ity across the left-hand cut. We restrict the cal-
culations to the case of p-wave scattering.

(A) Our first approximation is that which has
enjoyed the widest application in actual numerical
calculations; namely, B(s)= first Born approxima-
tions, B~'i(s}, plus a single background pole term,
A/(s —a).

In applying this method we arbitrarily choose the
position a and adjust the residue A until a thresh-
old zero appears. This procedure is tantamount
to using the first Born approximation and a thresh-
old factor of the form p(s) =(s-4)/(s —a). Calcula-
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FIG. 1. The phase shift resulting from the input B (s)

(s)+A/(s-a} for various values of a. (A} a =-2,
(B) a = -6, (C) a =-20, (D) a =-200. The dashed line re-
sults from integration of the Schrodinger equation.

tions were made using both of the above procedures
and, as expected, identical results, to within the
accuracy of our calculations, were found. In ac-
cordance with the idea that the background pole
represents additional forces, the parameter a was
restricted to values less than zero. Figure 1 shows
the he p ase shifts produced for various values of a.
The strong dependence of the solutions on a is
clearly shown. " However, for no v'alue of a in our
range of values does the approximate phase shift
rise to more than 80% of the actual phase shifts.
This discrepancy was found to increase as the cou-
plings increased.

(B) We next included additional forces through
the second Born approximation ' B "(s); that '

we tried to represent other forces as being approx-
imately proportional to B~"(s). This idea was im-
plemented by using a left-hand cut contribution of
the form B(s)=B~"(s)+AX"(s), where

—(„1"' 1mB'"(s')ds
B '(s)=-

7T~-~ S —s

B(s)=B'"(s)+B~"(s)+
s —a' (14)

again determining a and A as in Sec. IV, paragraph

The purpose was to determine the parameter A by
requiring the presence of a threshold zero. In this
way we had hoped to find a parameter-free solution.
However, evenforawide range of A(0.1 &A & 10.0)
it was not possible to satisfy the threshold requir-
ment. A typical solution (A =1.0) is shown in Fig.
2 along with the exact solution determined from in-
tegration of the Schrodinger equation. The lack of
proper threshold behavior of this approximation is
evident.

(C) Finally, we tried a combination of the above
methods. We included the left-hand-cut contribu-
tion through

I.O—
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FIG. 3. The phase shifts resulting from the input

(A) B(s) =B ~ (s)+B( (s)+A. /(s —a) for various values
of a. (A) a =-2, (B) a =-6, (C) a =-20, (D) a =-200.
The dashed line results from integration of the Schro-
dinger equation.

S

FIG. 2. The phase shifts resulting from the in ut

( ) B(s)=B (s)+B (s) and (B) the actual solution.A Bs=
e xnpu

(A). The phase shifts resulting for various values
of a are shown in Fig. 3. For a = -6 to -8 our solu-
tion is within 2% of the exact solution for s ~ 12.
The phase shift shown in Fig. 3, curve D is for the
large value a = -200, which is essentially equiva-
lent to choosing the pole at infinity. We include
this value in order to make a comparison of our
method with the cutoff method previously discussed.

In the case under investigation we have found an
approximation scheme that reproduces the exact
solutions determined from the Schrodinger equa-
tion very well. In addition, the scheme has the
very desirable property that it can be continued in
angular momentum without violating unitarity. To
accomplish this, the equivalence of the threshold
factor and background pole methods are taken ad-
vantage of by including a threshold factor of the
form p(s) = (s —4)/(s —a) with the first and second
Born approximations for the left-hand cut. Thus
we can extend our scheme to Reggeized calculations
by using the above threshold factor and using, for
instance, the new form of the strip approximation
to determine our input.
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It is, of course, essential in an actual calcula-
tion to be able to estimate the correct value of a.
Although this is an unresolved problem, we note
that a behaves as expected when higher-order Born
terms are included in our approximation to B(s).
That is, when B(s)= B("(s), a very small value of
~a ~

is required to approximate the actual solution
(see Fig. 1). When B(s)=B~o(s)+B"'(s), the prop-
er value of a increases to about a= -6. For the
case B(s)= B"'(s)+B"'(s)+B~"(s),Collins and
Johnson found that a = -~ produced reasonably ac-
curate solutions. Thus, the background forces ap-
proximatedby A/(s —a) represent shorter-range ef-
fects in a potential model, one might hope to make
a reasonable approximation for a in a physical cal-
culation.

As a concluding remark, we note that in some
recent work Collins and Johnson" made a p-meson
bootstrap calculation in which they obtained, very
good numbers for the position and the width of the

p meson. Previous calculations have generally
found a width which is too large by a factor of
about three. This is usually the fault of the phase
shift turning over too fast, as do our phase shifts
in Fig. 1. The interesting question then presents
itself: Are higher-order elastic forces, as includ-
ed in our Eq. (14), enough to produce the required
narrowing or are inelastic effects, which Collins
and Johnson also included, necessary? We hope
to answer this question as well as a similar one
with respect to the N-N3, system in the near future.

*This work is based in part on the thesis submitted by
E. B. Nemanic as partial fulfillment of the requirements
for the degree of Doctor of Philosophy at Northwestern
University, 1969.
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