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In order to evaluate the contributions to the anomalous magnetic moment of the electron
(@), a method entirely based on computer techniques is developed. This method is embedded
in the framework of the functional formalism. As a first result, the contributions to the o3
part of a; from diagrams with vacuum polarization insertions are derived.

I. INTRODUCTION

Some of the contributions from the 72 diagrams
contributing to the a® part of the anomalous mag-
netic moment of the electron [a, = 3(g, —2)] have al-
ready been calculated.’™* Recently the measure-
ment of @, has been performed by Wesley and Rich®
with an accuracy of 6 ppm, so that a knowledge of
the remaining contributions is urgently needed.

One of the main features of this kind of calcula-
tion is the amount of algebra involved. A great
part of it can only be done reasonably by computer.
In fact, in the above-mentioned calculations, com-
puter techniques were broadly used. Two programs
devoted to symbolic manipulations were mainly
used: the REDUCE system of Hearn, ® and

SCHOONSCHIP, a machine code program devel-
oped by Veltman.” In the method we are reporting,
a slightly different method is used, and all the
manipulations involved in the calculations are per-
formed by a computer. The program written by
one of us (J.C.) is intended to be general enough to
calculate the contributions of all of the relevant di-
agrams. To do this, we had to develop a suitable
method of renormalization and the appropriate cal-
culational techniques. It appeared that the func-
tional formalism framework®~!° and the well -known
Feynman method were suitable for our purpose.
The formulation of the renormalization theory in
the framework of the functional formalism permits
us to determine unambiguously the counterterms
which have to be subtracted from a diagram to
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make its contribution finite. This, and the fact
that the tensorial dependence of the skeleton diver-
gence of a diagram contributing to @, is in y,,
have been used to develop a numerical method of
cancellation of the ultraviolet divergences. The
main features of this formulation are given in

Sec. II.

Section III is devoted to a survey of the program.
Without entering into technical details, we stress
its possibilities and limitations. This program is
written in the LISP programming language.!' It
takes as input a set of expressions describing a
diagram and gives in the output the contributions
to a, in terms of multidimensional integrals over
the Feynman parameters. It is also possible to
compute either the anomalous magnetic moment of
the muon (a,) or the difference a, —q, of the elec-
tron and muon magnetic moments.

The integrals in hand are numerically estimated
by means of a subroutine due to Scheppey, Dufner,
and Lautrup.’? Section IV contains a brief descrip-

J

tion of this subroutine and describes how the in-
frared divergences are removed, again using a
numerical method.

The last section is devoted to the latest results
obtained. We have chosen to compute first the di-
agrams with vacuum polarization insertions.
While we were compiling our results, a paper by
Brodsky and Kinoshita® appeared, reporting on the
same calculations. Both results are in agreement.

II. THE FUNCTIONAL FORMALISM
FRAMEWORK

The formulation of the renormalization theory in
the framework of the functional formalism has been
achieved for quantum electrodynamics (QED)*® and
for renormalizable scalar theories.*™'® We give
herein the main feature of this formulation for
QED.

Let u, be the generating functional of the vacuum
expectation values of the chronological products of
field operators. It is defined by

ol 1,73 =exp (<4 [ RISE e s Wtsats Jexp (= [ LN ), 2a1)

where 1, 77, and J are the sources corresponding,
respectively, to the fermion, antifermion, and
photon fields; m is the electron mass. The photon
mass is set to be zero. S(°) and A°) are the usual
Green functions. They are defined by

A )(x)=-—2—i—limfd"k el (2.2)
(2m)e, R -ie’
() 27, . . eikx -
s (x)=_Whmfdkk2+mz_ie(zk-m>, 2.3)
€=0

where k=k, " and B2 =k? k2.

The sources 7, 77, and J belong to the space
D(R*) and then all the formulas listed in this sec-
tion are mathematically well defined.'” The gen-
erating functional of the propagators of the inter-
acting fields is defined by

u[n,ﬁ,J;e,Wt]=eXp<ief r(z)d£>uo[n,ﬁ,J;m],

2.4)

where e is the electron charge and I is a differen-
tial operator which expresses the interaction. T’
is defined by

5 , 6 6
M) " ® BT (£) 0T, ()

r(g)= 2.5)

where 6/6J, (£) is the functional derivative with

I
respect to the source J, at the point £.'® The gen-
erating functional « is closely related to the scat-
tering S matrix. It is straightforward to show that
the functional derivatives of #, once the sources
have been set equal to zero, are expressed by the
usual Feynman diagrams.'’

To develop the renormalization procedure, one
has to write the « functional as a formal series in
the coupling constant e:

— e” —
uln,m,J5e,m| =3~ <o u™n, 7, J;m]. (2.6)

n

The first step of the renormalization program is
to regularize: Each term »(") of the series (2.6)
is regularized, for instance, by means of the
Pauli-Villars method.” Let us call %"’ such a
regularized term, with X denoting the set of aux-~
iliary masses introduced in the regularization. It
is always possible to find some X, such that u&’},)
=u("), The sum of the formal series of the reg-
ularized terms is then called u,.

The second step is renormalization. It consists
of determining the divergent part ® u, of «, in
such a way that

lim {u, -Du,}=Cu, (2.7
A=Xo

where ®u means the finite part of ». To realize
this step, one has to introduce the following re-
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normalization constants: N(e,m), Z;(e,m), with
i=1,2,3, e,e,m), and my(e,m). They are con-
sidered to be formal series in e. ¢, and m, are
bare charge and mass, respectively; Z,, Z,, and
Z, are, respectively, the change in scale of the
spinors and photon sources; N is a normalization
factor. Z, obeys the relation Z,Z,'/%¢,=Ze.

The renormalized generating functional ug,, is
then defined by

“Ren[n,ﬁ’ J; e:m]

1 —1/2= 5 -
Nu[Zz-l/zn,Zz 1/277,23 1/2J;eo;mo]-

(2.8)

Paraziuk’s theorem shows that there exists both a
regularization and a choice of the renormalization
constants such that

Uren[n,7,J; €,m] =@ uln,7,J;e,m]. (2.9)
Using Eq. (2.8) one can show that ®u satisfies the
following branching equation®:

d N _
—@uln,7,J;e,m|=DCuln,7,J;e,m], (2.10)

de

where D is formal series of differential operators
D", By expressing the quantities contained in
(2.10) and (2.8) as formal series in e and expanding
them in powers of e, it is straightforward to show
that (2.10) leads to the following recurrence for-
mula:

n
eunty =ifd5, (T(E) :@u™) + Z (Z) D®) @yln=r)
k=1

(2.11)
(Pu(o) =g,

The symbol : : means that one takes the Wick prod-
ucts of the quantities within it. The differential
operators D®) depend on the renormalization con-
stants introduced in the theory. They are defined
in Ref. 14. The meaning of Eq. (2.11) is that when
the finite contributions of the diagrams up to the
nth order are known, one can derive the finite con-
tributions of the whole set of diagrams of order
(n+1). An important property of this equation is
that it provides an unambiguous determination of
the number and of the types of counterterms which
have to be subtracted from a diagram to make its
contribution finite. This is of interest at high
orders when dealing with overlapping divergences.

III. CALCULATION OF THE CONTRIBUTIONS
TO:a,

Equation (2.11) was first used to develop a pro-
gram which gives the Feynman diagrams at a given

order of the perturbative expansion.?! The next
step was the calculation of the Feynman ampli-
tudes. At first it has been specialized to the prob-
lem of the anomalous magnetic moment. The cor-
responding program described in this section is
written in the LISP programming language, which
is particularly suited to symbolic calculations.
This program is slightly different from the one
written by Campbell and Hearn® which is also de-
voted to the Feynman-diagram computation.

Among the many methods which can be used to
obtain the Feynman amplitudes, the most suitable
for computer calculation is the one originally de-
veloped by Feynman.?® This is because it is very
systematic and does not need further inspection of
the expressions derived during the computation.

In fact, once the method is set up for a given low
order, the recursive property of the programming
language makes it work for any higher order. How-
ever, some of the technical difficulties arising
from the length of the quantities handled have not
yet been solved; temporary solutions were never-
theless available.

We first consider the calculation of contributions
to a, which are free from ultraviolet divergences.
Any technical considerations are avoided in the
following survey of what the program does. They
may be found in Refs. 24 and 25,

A diagram is described by the following quanti-
ties: its denominator, numerator, the list of y
matrices appearing in the numerator, the list of
the Feynman parameters, lists of internal and ex-
ternal momenta, and, finally, lists of the respective
masses included in the denominator and numerator.
We shall see later that to eliminate ultraviolet di-
vergences we need to introduce some more infor-
mation in the input. From the beginning we impose
a structure on the numerator. It only involves,
apart from the masses, quantities of the form p
but neither scalar products nor components of mo-
mentum. Here, p means either an internal or ex-
ternal momentum. This is obviously true at the
beginning when applying Feynman rules to derive
the starting form of the amplitude; moreover,
this will remain true up to the end of the computa-
tion. This choice leads to a particularly simple
structure for the numerator, although it becomes
somewhat larger.

We now follow through the different steps of the
Feynman method. The first is to combine the fac-
tors in the denominator according to the identity

1
= -1) da.--+d
aa, n 1)]{; a, a,

%o ( 1 -i ai>( izl a,-ai> -n. (3.1)
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It is also possible to make the double parametriza-
tion introduced by Kinoshita.?® This is allowed by
a special form of the @ parameters input list. The
next step is to find the translations which have to
be done to get quadratic forms with respect to the
internal momenta. These translations are per-
formed in the order shown in the internal momenta
input list. For instance, when this list is (&, k,)
and when we have two external momenta p, and p,,
the translations are of the form

ky= Ry =y Py = C5 Py
(3.2)

These translations are also applied in the numer-
ator. We are now left with both a numerator and a
denominator involving coefficients which are com-
plicated combinations of the a; parameters. A
suitable simplification is achieved by replacing
these coefficients by symbolic expressions which
are printed with their corresponding values.

The summation over the repeated indices of y
matrices does not lead to any difficulty. When a
trace calculation has to be performed, a special
indicator has to be introduced in the description of
the numerator given in the input. When computing
the contributions to ¢,, a trace calculation always

ky—=Fky—ciky—cyp) —C3b,,

comes with a summation over indices of y matrices.

This fact allows us to simplify the related part of
the computation. As a consequence of the general
structure imposed on the numerator, scalar prod-
ucts or components of momenta appearing in the
trace or summation formulas have to be trans-
formed into products of if; quantities, with p
standing either for an internal or external momen-
tum.

The next manipulation on the numerator is to ex-
press it as a sum of monomials:

N =38.J1ib; v, I1 ib;. (8.3)

Here j3, is a coefficient depending on «; param-
eters and masses and in fact is expressed as a
product of symbolic variables. v, is the over-all
tensorial dependence of the vertex being calculated.
Once this decomposition is done, one has to formu-
late the symmetry properties of the integrals:

fk,, k,,F(k"’)d"k:%f 125 ,, F(&%)d *F,

f ko ky ksl g F(R2)d =2 [ [8,855 + 8,880 + 0po0s)

X (R F(k?)d k. (3.4)

To apply these formulas, we have to transform the
internal momenta which are of the form % into kpyp.

Once Eq. (3.4) has been applied, another summa-
tion over the twice-repeated indices of y matrices
has to be done in order to keep the desired struc-
ture of the numerator.

Then one has only to factorize the integration
variables and to apply the following integration
formula:

fd4k (kZ)m-z _ iﬂz

(k2 +a®)"  (a?)n-m

m=Dln -—m=-1)!
(n=1) ’

(3.5)

with #>m > 2. Once again the integrations are per-
formed according to the order shown in the inter-
nal momenta input list.

Up to this point the program is general enough
to calculate any diagram, and no reference has
been made to the fact that we are interested in the
evaluation of @,. In fact, only two limitations ap-
pear. The first is that the maximum number of
masses in the theory has been restricted to two,
plus a possible mass associated with the photon.
The second is that in Eq. (3.4) the formula for a
product of six components does not appear, be-
cause the tensorial dependence of such a product
is in vy, at the sixth order and therefore does not
contribute to the magnetic moment. The removal
of both limitations would be straightforward.

We now consider the derivation of the contribu-~
tions to a,. The numerator is at the present time
a sum of the form (3.3) but in which p; stands only
for an external momentum. Using the anticom-
mutation relations for f)l and ), and the fact that
the spinors acting on both sides of the numerator
are solutions of the Dirac equation, it is always
possible to transform the factors in Eq. (3.3) into
B p;y,Mp;, where IIp; is now either p, p, or p, or
P, or 1. As a matter of fact, only ten terms of the
form IIp, v, I1p; contribute to the anomalous mag-
netic moment. A table of these terms has been
introduced into the program. To get the contribu-
tions to a,, the external momenta are placed on
their mass shell and this table is then used.

We next consider the computation of diagrams
which include ultraviolet divergences. The gen-
eral way to cancel these divergences is to compute
both the diagram and its counterterms and to use
the following identity:

1 1 ! (a -b)
ZZ"_‘ET"‘"fO d“[(a—b)u+b]"+1 3.6)

to obtain a compact expression of the contribution.
This method has been used for renormalizable
scalar field theories.?* Nevertheless, for the pres-
ent computation, the following facts led us to use a
numerical method to cancel these divergences.
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First, the skeleton divergence may be dropped,
since its tensorial dependence is only y,; further-
more, this means that all integrations over the
internal momenta can be performed in those parts
of both the diagram and its counterterms which
contribute to a,. Secondly, considering the way
these counterterms are obtained, we can always
associate the corresponding lines of the diagram
and its counterterms with the same a parameter.
This remark is important because we shall see in
the next section that the points where the integrands
are calculated are chosen randomly. The last re-
mark is that one can get the contributions to a,
from the counterterms of a diagram by performing
only slight modifications in the above-described
program, In fact, the main modification is that at
a given step of the calculation some momenta have
to be placed on their mass shell; these are the
momenta which are external for each subdiagram.

More precisely, let us call Spi(Pi) a diagram
which has for external momenta the p; and which
involves summation over the twice-repeated indices
p; of y matrices. If a diagram G,,,(p,, p,) enclosed
a subdiagram S, (k;), one has to sum first over v
to put the k; on their mass shell and then to sum
over p and ¢ to have the contribution of one of the
counterterms of G. When S is a self-energy of
fermion, the second counterterm of S is obtained
from S by applying a derivative and using this same
method. These operations are achieved by impos-
ing in the input special names for the momenta
which have to be placed on their mass shell and by
adding information which tells the program where
this replacement should be made.

At the present time this procedure is available
for both vertices and fermion self- energy sub-
diagrams. Nevertheless, in the latter case, it is
better to use another feature of the program, which
is to introduce finite self-energies or vacuum po-
larization contributions. This leads to simpler ex-
pressions and saves much computing time. This
is why the removal of ultraviolet divergences aris-
ing from vacuum polarization insertions has still
not been implemented.

This program allows one to compute the contri-
butions to the a® part of ¢, from all of the contrib-
uting diagrams. It is also suitable for obtaining
the contributions from the diagram contributing to
a, -a,, where a, is the anomalous part of the
muon magnetic moment. Furthermore, it has been
developed with the aim of being easily extended to
calculations of other physical effects.

IV. NUMERICAL INTEGRATION -~ REMOVAL OF
INFRARED DIVERGENCES

A. Numerical Integration

The LISP program described in the previous

section gives the contribution to a, in terms of
multidimensional integrals over the a; parame-
ters. Infact, at the sixth order, we are left with
8-tuple integrals. At the present time it is not
convenient to use non-numerical methods to per-
form these integrations. We have therefore to
use numerical ones.

A program originally developed by Scheppey and
improved by Dufner'? and then by Lautrup allows
one to evaluate integrals of the type we are deal -
ing with. Basically, this method of integration is
a computation of a Riemann sum. The integration
volume is divided into a given maximum number
of subvolumes. In each subvolume the points
where the integrand is calculated are chosen ran-
domly, and the variance is thus obtained from a
crude Monte Carlo calculation. To improve the
accuracy of the calculation, the program works
iteratively. At each iteration the divisions on the
integration axis are dynamically modified accord-
ing to the variance obtained in the previous itera-
tion. The program stops when the desired accur-
acy, which is requested in the input, is reached.
Otherwise, the number of iterations set in the in-
put is performed. To get the results shown in the
next section, we have asked for 10 to 20 iterations
and for 10000 to 800000 subvolumes. The choice
of both these quantities evidently depends on the
smoothness of the integral in hand. It has already
been emphasized that the cancellation of ultraviolet
divergences is performed numerically. More pre-
cisely, when both the diagram and its counter-
terms have been computed by the LISP program,
the integrals obtained have to be evaluated in a
same run. The elimination of the divergences be-
tween the diagram and the counterterms only oc-
curs if the same @ parameter is associated with
the same line in the diagram and in the counter-
terms. Because the points at which the integrands
are evaluated are random, this method only works
if all the integrals which contain an ultraviolet
divergence are calculated at the same time.

B. The Infrared Divergences

The removal of infrared divergences (IRD) is in
principle straightforward when the integrals are
calculated analytically. One needs only to asso-
ciate a mass with the photon, to drop the factors
in either lnX or In®A, where X is the ratio of the
photon and electron masses, and to pass to the
limit as A #0, -

Unfortunately, it is not possible to computerize
this procedure at present. The removal of IRD is
then much more troublesome, and can only be
handled by using least-squares fitting techniques.
Furthermore, even using this kind of method, the
determination of the IR part of a diagram may not
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be obtained with the desired accuracy (less than
5%). This is due to the amount of computing time
needed to get an accurate result. A way to partial-
ly avoid this difficulty is to compute in the same
run a sum of diagrams free from IRD. For this
purpose we give the photon a mass and perform
the calculations for a set of values of ) (generally
107%<2x<107"). The results F()) obtained in this
way are fitted by a curve whose equation is of the
form

G(\)=A+BXx+CXInx +DXInA + EA®1ln®A + -+ . (4.1)

The factors in Eq. (4.1) involving A, which are
referred to as background terms, are generally
smooth enough to permit a good determination of
the constant term A. When a diagram contains an
IRD only in ln), the same method, using

G'(\)=G(\)+alnr, (4.2)

leads to satisfactory results. Although a is ob-
tained within an error, it is possible to determine
its best value, which is the one which gives A
with the smallest error, by performing first a fit
on a and then another fit on A. The accuracy of
the result obviously depends on the accuracies of
the F(\) calculations which, in their turn, depend
chiefly on the amount of machine time spent for
their computation.

At the present time this method does not permit
us to extract an IRD of the type (elnX +b1n®X)

13 15

FIG. 1. Diagrams with vacuum polarization inser-
tions contributing to the a® part of a, .

from the contribution of a diagram. The only
available method is to evaluate at the same time
several of these diagrams in such a way that their
sum is free from IRD.

V. RESULTS

The method has been tested first by calculating
the contributions to the o part of a,. The result
obtained was (~0.322 +0.086)(a/7)?, which is in
good agreement with the analytic value, —0.328
X (a/m)?. The details of this calculation are re-
ported in Ref. 24; the error comes from the inte-
gration subroutine.

Two diagrams contributing to the a® part of a,
- a, have also been evaluated.? The results ob-
tained are in agreement with the calculations of
Lautrup, Petermann, de Rafael®” and Brodsky
and Kinoshita.® We have begun the complete
evaluation of the contributions from the 72 dia-
grams contributing to a, by first computing those
with vacuum polarization insertions (Fig. 1). We
have obtained the following results:

p® =(0.002559 +0.00015)(a/7)?,

p® 4 p® 4 9 =(0,05221 + 0,00209)(a/7)?,

w® + 18 =(0.0522 £0.0010)(a/7)*,

w4+ (8 =(-0.0031:0.0010)(a/7)°, (5.1)
p® 4+ u19=(0,0274 £ 0.0005)(a/7)?,

D 4 1 02) = (20,1151 £0.0009)(a/7)%,

p) 4y (9 4,9 4 (8 2 (20,1121 £ 0.0022)(a/7)°.

The values u(*) through iu(Y were already known.
Mignaco and Remiddi® had found by a different
method that p(? =0.00258(a/7)® and u® + u® + p®
=0.05289(a/7)®. While we were compiling our re-
sults, a paper by Brodsky and Kinoshita® appeared,
reporting on the contributions ©(® through p(1®,
They have obtained for the sum of these contribu-
tions

(~0.154 +0.009)(a/m)?, (5.2)
while we have found
(-0.1507+0.0056)(a/7)%. (5.3)

Both results are in very good agreement.
Diagrams (1), (9), (10), (11), and (12) of Fig. 1
are free from IRD and are thus easy to compute.
The sum of the diagrams (5) and (6) is free from
IRD. They have been computed in the same run
and the background terms have been removed with
the use of (4.1). The same method has been used
for the sum (7) plus (8). For diagrams (13) and
(14) we have also performed another calculation
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in order to check the method of elimination of the
IRD. We have used (4.2) to determine the IR part.
The result obtained was

- u® 4 4119 = (0,01582 + 0.00026)InA2
—(0.0653 +0.0003)(a/7), (5.4)

while for diagrams (15) and (16) it was straight-
forward to take off the IRD analytically. The re-
sult obtained was

p(1® 4 (18 = (0,0474 + 0.0020)(/7)3 + (IR term).
(5.5)

The IR term was not checked. The sum of (5.4)
and (5.5) gives (0.1127+0.0023) for the constant
term. This is in agreement with the value listed

3107

in (5.1) for pO® + (9 4 09 4 ;09 which was ob-
tained by calculating these four diagrams in the
same run and eliminating the background terms.

Apart from these 16 diagrams, the only known
contributions are the six light by light diagram
contributions® and an estimate of three of the dia-~
grams without any insertion.* The evaluation of
other diagrams is in progress.
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