
3090 ROBERT J. YAES

In this equation and the others which follow, an over-
all energy-momentum conservation 5 function between
the initial and final states, present in each term, is
implicitly understood.

~En the Bethe-Salpeter equation, we are off the mass

shell but on the energy-momentum shell.
~ T. C. Chen and K. Raman, Phys. Rev. D 3, 505 (1971).
~ R. J. Yaes, Phys. Rev. 170 1236, (1968); Nucl. Phys.

A131 623, (1969).
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We present some numerical results for Regge poles determined from the Bethe-Salpeter
equation with scalar couplings. Both the trajectories and residue functions are determined.
We find that it is a good approximation to ignore the coupling between different O(4) states.
The effect of a second-order correction to the potential (the crossed-box graph) is studied
and evaluated numerically. The relation of the Bethe-Salpeter equation with the multiperiph-
eral integral equation is reviewed, and we show how to solve the latter equation by numeri-
cal iteration. Some results are given which do not exhibit any oscillations in the total cross
section.

I. INTRODUCTION

For twenty years the Bethe-Salpeter equation"
has been of great interest in particle physics be-
cause it provides a relativistically covariant, yet
tractable, equation for a two-body bound state or
scattering state. In its simplest form (the ladder
approximation) the equation sums the series of
Feynman graphs illustrated in Fig. 1 and is thus

formally similar to the nonrelativistic Schrodinger
equation with a potential corresponding to a rung
of the ladder. In 1962 a big advance was made by
Lee and Sawyer, ' who showed that the Bethe-
Salpeter scattering amplitude in the ladder approx-
imation with scalar couplings is meromorphic in

the complex angular momentum half-plane Re l
~ ——,

' with at least one Begge pole in this region.
In simple terms the Hegge poles are just bound

states for arbitrary (nonintegral) values of /.
More recently extensive use was made of the Bethe-
Salpeter equation by Domokos and Suranyi' and by
Freedman and Wang' in their study of daughter

trajectories.
The important point, with respect to the daugh-

ter trajectories, is the four-dimensional rotational
invariance of the equation as applied to a bound
state with total energy zero [I'=0 in Eq. (1) below].
For nonzero values of the total energy the equation
has the usual three-dimensional rotational invari-
ance. At zero energy the additional symmetry
implies that the Regge poles appear in families, a

leading trajectory at I = o. with daughters at l = a —1,
n —2, ... . This 0(4) symmetry is also extremely
important for the practical purpose of solving the
equation numerically, and this is the point we are
most interested in for this paper. Because of its
covariant structure the Bethe-Salpeter equation is
a four-dimensional integral equation. If one makes
the usual angular momentum decomposition, one
obtains a two-dimensional integral equation. While
it may be feasible to solve such an equation numer-
ically on a computer in simple cases, it is cer-
tainly difficult and expensive. On the other hand,
for total energy zero the additional symmetry
allows us to expand in four-dimensional spherical
harmonics. The equations decouple and we are
left with a one-dimensional integral equation. This
can be easily solved numerically by approximating
it by a matrix equation. At nonzero total energy
the four-dimensional symmetry of the equation is
broken. However, we can still expand in four-
dimensional spherical harmonics to obtain coupled
one-dimensional integral equations. If we are
sufficiently close to zero total energy, the coupling
between amplitudes will be small and we need keep
only a few coupled amplitudes to obtain an accurate
result. Some numerical calculations of the Begge
poles a(t), using this method, have been made by
zur Linden. ' Earlier, less complete results were
obtained by Chung and Snider' using the two-dimen-
sional integral equation. We present in this paper
some additional calculations ot o.(t), and also some
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FIG. 1. The Feynman graphs for the Bethe-Salpeter
equation in the ladder approximation.

new calculations of the residue functions P(t). On

the basis of our results we emphasize that even
when the total energy does not vanish, it is still
a good approximation to ignore the coupling be-
tween amplitudes for different four-dimensional
spherical harmonics.

In addition, we consider the effect of corrections
to the ladder approximation. The Bethe-Salpeter
equation is exact if we include in the potential the
sum of all two-particle irreducible Feynman

graphs. A second term in this series is the
crossed-box graph shown in Fig. 2. We present
here some numerical calculations, including this
term, of the Regge pole n(0) as a, function of the
coupling constant.

A development very closely related to the Bethe-
Salpeter equation is the multiperipheral model,
invented in 1962 by Amati, Bertocchi, Fubini,
Stanghellini, and Tonin" (ABFST). In its simplest
form this model is described by the same set of
graphs as in Fig. 1, with a different interpretation.
For the Bethe-Salpeter equation, one thinks of a
bound state or scattering state of the two particles
forming the sides of the ladder; the rungs of the
ladder represent the potential. For this case,
t= (energy)'&0, s = —(momentum transfer)'&0. In
the multiperipheral model one deals with the ab-
sorptive part of the amplitude in the s channel.
This is given by unitarity as a sum over n-particle
intermediate states. The rungs of the ladder now

represent the real on-shell particles in the n-par-
ticle intermediate state. For this case, s=(ener-
gy)'&0, t= —(momentum transfer)' &0.

It is plausible that the Bethe-Salpeter and the
multiperipheral approaches are related by an ana-
lytic continuation procedure, and this was proved
by Bertocchi, Fubini, and Tonin' and Sertorio and
Toiler. ' If one makes an O(3) decomposition of
the Bethe-Salpeter equation and analytically con-
tinues to negative I,, one obtains the same results
as if one makes the appropriate O(2, 1) expansion
on the multiperipheral equation. This whole sub-
ject of 0(2, 1} and 0(3, 1}expansions for the multi-
peripheral equation has been extensively studied
recently by Ciafaloni and DeTar" and Saunders,

V= + + 4 ~ ~ ~ ~

FlG. 2. The Feynman graphs for the two lowest-order
terms in the potential for the Bethe-Salpeter equation.

II. THE BETHE-SALPETER EQUATION

A. The Ladder Approximation

The Bethe-Salpeter equation for the series of
ladder graphs displayed in Fig. 1 is

Saxton, and Tan." In the present paper we are
not so much concerned with theoretical proofs,
except insofar as they bear on the practical ques-
tion of how to perform the numerical calculations
in the most expeditious fashion. For this purpose,
the O(4) decomposition discussed in the next sec-
tion seems simplest and completely adequate.
Thus, insofar as calculation of Regge poles is
concerned, the Bethe-Salpeter and multiperipheral
equations are identical.

In Sec. IV of this paper we consider the multi-
peripheral equation for the forward direction,
where the absorptive part is proportional to the
total cross section. For this case the equation
can be transformed into a relatively simple two-
dimensional integral equation of Volterra type.
This equation can be numerically solved relatively
easily by iteration. One knows from general prin-
ciples that the iteration solution will converge.
The important point for practical purposes is that
it converges rapidly for reasonable values of s;
this is related to the fact that the average multi-
plicity for the multiperipheral model grows as
lns. The solution of this integral equation gives
directly the cross sections for n-particle produc-
tion as a function of energy, and the total cross
section as the sum of these. The solution contains
the contributions from all Regge poles, not just
the leading one. Thus, if some of the Regge poles
are complex, as suggested recently, ""the solution
could show oscillations.

The plan of this paper is the following. In Sec.
II we present the theoretical background for the
Bethe-Salpeter equation. In Sec. III we give some
numerical results obtained for Regge poles using
the formulas of Sec. II. In Sec. IV we give the
theoretical background for the form of the multi-
peripheral integral equation used to obtain the
numerical results given in Sec. V. The theoretical
Secs. II and IV are not very original. Most or all
of this material is known to experts. We present
it here to form a complete story and in an attempt
to extract from the many complex papers on this
subject the basic elements which are necessary
for writing computer programs to solve the equa-
tions numerically . .
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T(q, q', P) = V(q, q') —i,V(q, k)
dk

1 1
X

(-,'P+ k)'+m' ( ,'P -k)'—+M'

(1)

with

V(q, q') =g'/[(q- q')'+ p']. (2)

g($'q I ) (1P )2 2 (1P )3 M2 qt q )i

which then satisfies the equation

[(-,'P+ q)'+m'][(-,'P —q)'+M']i|(q, q', P)

= V(q, q') —i,V(q, k)/l/(k, q', P).dk

(4)

This eliminates P from the kernel of the integral
equation. In order to deal with the four-dimensional
rotation group O(4) instead of the Lorentz group

O(3, 1), we make the Wick rotation" so that k, is
integrated up the imaginary axis, and then change
variables, k, = ik4.'

k= d k' dk0 ~ d k,'' dk0=2 d k dk4

The two particles which form the sides of the
ladder have masses m and M, and the rungs of the
ladder have mass L[L, . We assume a scalar coupling
with coupling constant g at each vertex. The ener-
gy squared in the center-of-mass system of the
two particles m and M is

I'=-P =PG —P.
We shall work in the center-of-mass system with
P =0. It is more convenient to introduce a wave-
function-like object

g q2 q2 + Qf
2

For t=0 this equation is invariant with respect
to four-dimensional rotations. For t &0 the terms
Vtq, destroy the four-dimensional symmetry. We
expand g in four-dimensional spherical harmonics.
Then at t=0 the equations for the different ampli-
tudes decouple, and for t small the coupling be-
tween different amplitudes is small. The four-
dimensional spherical harmonics, or hyperspher-
ical harmonics, are the eigenfunctions of the an-
gular part of the four-dimensional Laplacian in
Euclidean space. They have the form

Z„, (X, /}, q') =D„'",(cosX)'i', '(0, q'), l =0, 1, ..., g.
(7)

Here g is the angle with the q4 axis and the D„'",
are normalized Gegenbauer functions,

J sin XdXD„' '(cosX)D'~ (cosX) =5&z.
0

The functions C'„"(cosX) are the Gegenhauer poly-
nomials. The properties of these polynomials are
given in well-known reference books. ' ' " From the
identities to be found in these books it is easy to
derive the useful relations

cosXD'q"(cosX) =A q,D'q", (cosX)+A'kg", ,(cosX),

(X+ l}(X+2l + 2)
',, (X+ l + 1)(X+ l + 2)

(10)

» (cosX)

2I'(X+ 1)(i+X+1)sin"X '"
= 2'I"jl +1j C x (cosX,

mF(A. + 2l + 2)

(8)

A similar rotation and change of variables is made
on qG=iq4. It is easy to verify that the poles in the
Feynman propagators in Eq. (1) (with the usual
recipe m'-m' —ie, M'-M' —ie) do not interfere
with the Wick rotation for Ps& 2min(m, M). After
this rotation, the Bethe-Salpeter equation assumes
the form

(q —k) +p 2QK~ "~ 2QK "
QK

QK~E E, r 1 "( 2QK

x Z„, (X„e„y,)Z„*g (X„ t}„q',). (ll)

In this last identity,

(q'+m' —

iraq,

—,'i )(q'+M'+i& f q, —,'t)g(q, —q',P)—
f„(x)= 2/[x+ (x' —1)' ']"", (12)

= V(q, q') +,V(q, k)g(k, q', P),
d k

(8)

where q and k are now Euclidean four-vectors and,

and we have used capital letters Q and K to stand
for the lengths of the Euclidean four-vectors:
Q (q2)1/2 (q2 ~ q 2)1/2

We now expand g(q, q', P) in the hyperspherical
harmonics:
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Substituting the expansions (11) and (13) in the Bethe-Salpeter equation (6), and using q, = Q cosy and the
identity (10), we find the coupled equations for the amplitudes g„„i(q, Q', t):

((q"m'--.'t)(q"I'--,'t) tq'[(&.',)"(4, ,)'])4 (Q, Q, t)

—f&tq(M'-m')[A„', y„'„„.(q, q, f)+~„', ,y„', „(q,q, f)]

+ &q'[g„'„,a„',q„'„„,(q, q', t)+A„', ,A„', ,q„', „(q, Q', t)]

= (2m)'5„„)'„(Q,Q') +f tC'dK )'„(QK)(„'„(K,Q', t) (14)

g 1 I Q'+E'+ p.
'

V'q ~) = 16; a+ I QA-f 2qz

Equation (14) and its interpretation are rather well
known. ' ' The equation is analytically continued
to nonintegral n and E keeping n-E= integer. Since
V„(Q, K) depends only on n, not l, at t=0 the equa-
tions for the g„'„i(q, Q', 0) decouple from each other
and there is no dependence on /. A Hegge pole at
E = ~ implies then a series of daughter poles at
E=n —1, n —2, ... . For tto there is some coupling
between different amplitudes and some dependence
on E; there will still be sequences of daughter poles,
but the spacing between trajectories is no longer
unity. Note that there is a substantial simplification
in Eq. (14) if the masses on the two sides of the
ladder are equal. In this case there is coupling
only between g„'„with n's differing by a multiple of
2. We present some numerical solutions of Eq. (14)
for Hegge poles in the next section.

B. The Crossed-Box Potential

The Bethe-Salpeter equation is a rigorous equa-
tion if one includes in the potential V the sum of

all two-particle irreducible graphs. In the discus-
sion above we have kept only the lowest-order con-
tribution to the potential, the single rung of the
ladder. A second contribution to the potential is
the crossed-box graph displayed in Fig. 2. It is
feasible to include this conti ibution to tile potent1al
in numerical calculations, and it is of some interest
to see by how much numerical results are changed
when this second-order contribution to the potential
is included. Accordingly, we derive here the for-
mula from w'hich this second-order potential can be
calculated. Unlike the lowest-order potential dis-
cussed above, the crossed-box potential depends
on the total energy-momentum vector P. In what
follows we shall neglect this dependence by setting
P=0 in the crossed-box potential. %e shall also
assume the masses on the two sides of the ladder
are equal, m=M. The momentum labels are then
as indicated in Fig. 3. The graph of Fig. 3 is in-
variant with respect to the interchange q- -q, i.e.,
with respect to the interchange of the Mandelstam
variables s and u, where s+t+u=2Q'+2K'=Z. The
dispersion relation for the crossed-box potential at
t=O is then

1 "
~ ~ ~

1 I
V, (q, )t) = V,(s, M) = — ds'ImV, (s', Z —s'), +

m 24IL
$' —S S —Q (16)

Using the formula (11) we find

Substituting these in (16), we find

2 n

K„)
The factor ImV, (s, Z —s) in the integrand is given by a two-particle unitarity calculation. Working in the
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center-of-mass system in the s channel (see Fig. 3) and with p and q standing for the magnitudes of three-
vectors in (20), we find

P a 1
ImV, (s, Z —s)=, 2v d(cos8)

2(4v) Ps q +P —(E, —E&)'+m —2Pqcosgq +P —(E» —E») +m +2pqcos8

8n [s'+ 2s(Q'+K') + (Q' K')'—]'"s+ Q'+K' —2p'+ 2m' 1 —X' (2o)

(s —4$, 2) / [s + 2s(Q2+K») + (Q» -K»)2] /

X=
Ps(s+ Q'+K' —2p, '+ 2m')

In the numerical calculations reported in the next section the integral in (19) is evaluated numerically
using the explicit formula (20) for ImV, (s', Z —s').

C. The Residue Function

As a final topic in this section, we formulate
more exactly the mathematical problem of finding
a Begge pole, and in particular we show how to
calculate the residue of the pole. Suppose we

write the coupled Eqs. (14), in a very compressed
matrix notation, in the form

nontrivial solution:

det[K —V] = 0. (25)

This equation determines one of the three quantities
f, g, and I = n(t) in terms of the other two.

We can now set up a new and somewhat artificial
eigenvalue problem with the parameters determined
by (25) held fixed:

(21)
X;KtJ); = Vg;. (26)

The T-matrix-like quantity corresponding to the
wave-function-like quantity f is given by

(22)

and satisfies the equation

We suppose that X, = 1, g, = g are the eigenvalue
and eigenfunction determined in (24), (25). Accom-
panying this eigenvalue and eigenfunction are an
infinite set of eigenvalues A.; and eigenfunctions g;,
the latter assumed to form a complete set. Thus

TT= V+V —T.K (23) ~,(o.(f)) = 1. (27)

At a Begge pole, which in the present context we

may think of as a bound state at a not necessarily
integral l, we have T and g- ~, and so g satisfies
the homogeneous equation

(24)

The parameters describing the Begge pole are
determined then by the condition that (24) have a

If we now change slightly the value of I in K and

V, A., will change slightly. '

x,(l) = 1+X,'(o.(t))[l —u(t)]+ " (28)

Now, ifI is a matrix with eigenvalues A.; and
eigenfunctions g;,

(29)

the transpose matrix M will have the same eigen-
values but different eigenfunctions,

(30)

From (30),

q/Pf = A.,P;, (31)

and from (29) and (31) we obtain an orthogonality
relation,

FIG. 3. The second-order crossed-box potential
for the +cthe-Salpeter equation.

(y( —A/)(p;g, ) =0.

This implies a completeness relation,

/P&

,. (q;y;)'
and the expansion

(32)

(33)
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ktq;1-M,. I-), (P, (t,.)
'

Applying this to Eq. (26),

1M= —yz
1M=V—

(34}

(35)

(36)

becomes

Q2+g2+~2 Q 2+~2+
2QK 2Q~

2
fn( ( i}n+1[+i+( t2+ I)1/2]tt+1f(x)=

1=
(

.).+, 6'.(tt')

(44)

(45)

since V= V and K=K according to Eqs. (14) and (15).
Comparing (35) and (36) with (29) and (30), we find

Putting all this into (40) and rewriting that formula
in detail, including a factor (2)() from (14), we

find
qt; =Kg; =—Vy;.!

Manipulating Eq. (23), we obtain

1 1 1
1- VE-' V-'-K-' 1-E-'V (38)

~l
nn' I +(t) t

where

gt ( I)(n-t+tt'-i)/a~ (2 )4
X,'(o.(t)} D

(46)

Using (34) and (36), this can be rewritten in the
form

1-K 'V; ((tt;g;)

and

g 1 1 —Q '+K'+ p. '}
K K16 2

(47)

1 ttI;p;
1 —X; ((();g;)

VA(tt V
~(1—)(,))(, (((,.Kit t)

'

Using (28) and keeping only the one term i= 1 in
the neighborhood of the Regge pole, we find

1 . -1 V(ti, ((i V
t -()t(t) ),'(n(t)} ($,Kq,}

' (40)

q' = Q' = ,'(t 4m'), --
P q=iu tQ cos)(=0.

With t&4m2, Q is pure imaginary,

Q = iQ = t(4m' —t)'".

(41)

(42)

(43}

The argument of the function f„(x) in V„(Q,K) then

This formula provides a practical way of com-
puting the residue of the Regge pole. The elements
of the column vector iP, are obtained from (24)
once (25) has been satisfied. [One should note in
this connection a confusing point about our notation.
The (tt„t„.(Q, Q') of Eq. (14) depend on two sets of
variables n, Q and n', Q'. The )1)t of (26), and in
particular g, used in (40), are true wave functions
for a bound state and depend on only one set of
variables n, Q.] In the numerator of Eq. (40} the
quantity Vg, is the integral on the right side of
(14). Also, we must analytically continue to the
mass shell for the two external particles:

(-,'P+ q)'+m' = (-,'P —q)'+m' = 0,
or

(48)

D= Z Q'dQ g.'(Q)K.'. (Q)y.' (Q).
n, n'=l O

In these formulas (t)„t(K) is the solution of (24) and

K„'„(Q) is the matrix operator which appears on
the left of (14). In using these formulas we recall
that while n and l are not necessarily integral,
n-l is integral and in fact an even integer, n-l
=0, 2, 4, ... for the equal-mass case under consid-
eration. Carrying out the summation over m, we
can obtain the usual partial-wave expansion from
an expansion of the type (13),

T(q, q', P) = Q Q P Q T„'„Z i,(q)Z„'i, (q }
l=O =l =l l=-l

(49)

where

=g(2t+1)T P (ttsc8o), t (50)

~l n- l Tnn' n'- l (51)
ll n, n'=l

' The vanishing arguments for the functions
D„"'t(cos)() follow from the mass-shell conditions
(42). Finally we recall that what we want to do
with this Regge pole once we find it is put it in the
series (50), perform the Sommerfeld-Watson
transformation, and consider the behavior for
large s. What will occur is then

S —Q
Ptt(t)( sst) Ptt(t) 4Q 3

52r(2(). + 1) s-- 2*-r(++I) Q.
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We thus introduce a reduced residue function with
the factor Q

'" divided out,
III. NUMERICAL RESULTS FOR THE

BETHE-SALPETER EQUATION

-t tnt(t)q2n(t) Pr(f)
m I ~(f)~

p (f. ) g Di+1(p)pl Dl+1 (p)4llq„

(53)

(54)

In this section we record some numerical results
for Regge-pole parameters obtained by numerical
solution of Eq. (14). We consider only the equal-
mass case M =m. For practical purposes it is
convenient to introduce a new wave function

For large s, the total cross section in the s chan-
nel is then given by

ypl (q2+ 2)2g l (56)

=tl(2n+1),„, p„(0)s ', t). =t).(0).
I'(2n+ 1)

(55)

The Regge pole is found from the homogeneous
equation obtained by dropping the inhomogeneous
term in Eq. (14):

2 2 2

2 + t 2+ 2 2 n-l n-1- l n t 2 2 2 +n+1-l~n-l n+2 +n-2-l+n-I-l n-2

E'dKV. ,K, ' " ."K 57

In these equations the integrals are replaced by
sums using Gaussian quadrature mesh points. In
this way the integral equations are replaced by
matrix equations. The eigenvalue equation is the
usual condition that the set of homogeneous linear
equations have a nontrivial solution, as indicated
in Eq. (25). There are three parameters in these
equations: t, g, and I = ot(t). If two of these are
given, the remaining one is determined by Eq. (25).

Thus, if we want a Pomeranchuk pole at (2(0) = 1

for t= 0, g is determined. In fact, for M =rn= p. ,

g /16li m' is determined to be 16.38. With this cou-
pling constant we can now determine the Regge
trajectories and residue functions as a function of
t. Some results for the trajectories obtained in
this case are presented in Fig. 4; in Fig. 5 we

give the reduced residue function of Eqs. (53), (54).
The trajectories in Fig. 4 have been obtained pre-
viously by Chung and Snider' and zur I inden. ' In

addition to the leading Pomeranchuk trajectory,
there is a daughter trajectory which passes through
u =0 at t=0, and a secondary trajectory nearly
degenerate with the daughter. The wave function
for the leading Pomeranchuk trajectory has no

nodes, as does the wave function for the daughter
trajectory. The wave function for the secondary
trajectory has one node. The reduced residue
functions for the leading Pomeranchuk trajectory
and the secondary trajectory are given in Fig. 5.
For the daughter trajectory the residue function
vanishes identically.

I
In Eq. (54) the functions

Dt"(0) vtanish identically for n —l = odd integer. ]
The point we would like to emphasize in connec-

tion with Figs. 4 and 5 is the high accuracy of the
approximation of neglecting the coupling between

components of the wave function with different
values of the O(4) quantum number n. Of course
at t = 0 the equations decouple completely. However,
for [t/m2~ as large as 2 it is a. very good approxi-
mation to neglect the second group of terms in Eq.
(57) in which tji„" is coupled to g,t, . This was
tested by writing the program in such a way that
the number of amplitudes coupled together could
be varied. It was found that coupling three suc-
cessive values of n(n, n+2, n+4) gave essentially
exact results out to ~t/m2~ =2. For the trajectories
in Fig. 4 the difference between the results obtained
with decoupled equations (just one n value) and the
exact results is so small as to be difficult to plot—
less than a few percent. The differences are
larger for the residue functions plotted in Fig. 5.
Here the smooth curves give the exact results, and
the dashed curves the results with decoupled equa-
tions. It is seen that the decoupled approximation
is adequate except when very accurate numerical
results are desired. It seems to the present writer
that the accuracy of the decoupled approximation is
an important point which may be useful in other
calculations more realistic and extensive than any
attempted here. Mathematically, the decoupling
amounts to replacing a two-dimensional integral
equation by a one-dimensional one, a very signifi-
cant simplif ication.

In Fig. 6 we present some Regge trajectories
for a different choice of masses. The sides of the
ladder are taken to have the pion mass and the
rungs to have the mass of the p meson. The cou-
plings are all taken to be scalar. For g'/16tt
= 3.182 GeV' the trajectory passes through n(0) = 1.
For g'/1611' = 1.143 GeV' it passes through n(0) = —,'.
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FIG. 4. The Regge trajectories obtained from the
Bethe-Salpeter equation in the ladder approximation with
all masses equal: p = M g2/] 67f2~2 ]6 g8 The so]
curves are exact results. The dashed curves are ob-
tained by neglecting the coupling between 0(4) states.

The complete trajectories for these two choices of
coupling constants are given in Fig. 6. In Fig. 7

we give the reduced residue functions correspond-
ing to the trajectories in Fig. 6. The residue func-
tions are almost constant in this case. Again, the
exact results given in the figures by the solid
curves differ at most by a few percent from the
results obtained by decoupling the equations and

keeping only one n value, the dashed curves.
In Fig. 8 we fix t=0 and plot as a function of n(0)

the coupling constant necessary to produce a Begge
pole with intercept n(0). This calculation was
made for the case M =m= p, . The upper curve wa, s
obtained with the lowest-order potential (2). The
middle curve was obtained with a potential con-
sisting of the sum of (2) and (19) (see Fig. 2). The
bottom curve is the perturbation-theory result for
n(0),

o.(0) = —1+g'/16 m'm'.

The curves in Fig. 8 speak for themselves. It is
seen that for large a(0) the curves differ consid-
erably. Presumably, the inclusion of other terms
in the potential will produce similarly large changes.
It is seen that the perturbation-theory formula used
in recent eikonal calculations' is not at all accur-
ate near n(0) =1.

FIG. 5. The reduced residue functions obtained from
the Bethe-Salpeter equation in the ladder approximation
with all masses equal: p, =m, g~j16~2m2= 16.38. The
solid curves are exact results. The dashed curves are
obtained by neglecting the coupling between 0(4) states.
The units of P„are {GeV) 2~{~~, where n{t) is given in

Fig. 4.
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(2m~)

2

FIG. 6. Regge trajectories obtained from the Bethe-
Salpeter equation in the ladder approximation when the
sides of the ladder have the pion mass and the rungs
have the p-meson mass. The trajectories are given for
two choices of coupling constant. The solid curves are
exact results. The dashed curves are obtained by ne=..

glecting the coupling between 0(4) states.



3098 H. W. WYLD, JR.

IV. THE ABFST EQUATION

Th1s famous equation is closely related to the Bethe-Salpeter equation (1). Referring to Fig. 1, we sup-
pose s &0, t&0 and calculate the absorptive part of the invariant amplitude in the s channel, using unitarity:

imT, , =-,'g(2~)'6(P, -P„),'" ',".
n

(58)

This sum over n-particle intermediate states is the iteration solution of the ABFST equation. With A=ImT
we find

g(q, q', p) =g ql)((q —q')' ~ q')+ f (
.g'gq))((q —q)'+q*)(. . . (. . .g(g, q', p). (59)

Much has been written in recent times on the problem of making appropriate O(2, 1) or O(3, 1) expansions
of this equation so as to obtain equations determining the Begge poles. "'" We do not wish to enter into
that here. As explained in the introduction, at the numerical level, which is of most concern to us in this
paper, the results must be the same as obtained in the previous sections. For such mundane purposes the
methods discussed in Sec. II seem simplest and completely adequate.

We discuss in this section a slightly different approach which seems useful for some purposes and is
numerically simple. First, we restrict ourselves to the forward direction in the s channel for equal-mass
particles, i.e., t=0 for m=M. The absorptive part is then simply related to the total cross section

A = 2pPso,

with p the center-of-mass momentum in the s channel. We can reverse the direction of some of the arrows
in Fig. 1 so as to obtain Fig. 9. In terms of the notation introduced in this figure, we can transform the
integration in Eq. (59) so that it assumes the form of a two-body phase-space calculation:

d'A
2 2

~ (2)T)', 2115((q —k) +)(1 ) ~ ~

=
g, *f« fg qf ''(gl+qq') q(q+ql ) q( q+qq. -qq-q')-

=
(2 2 ds

2@ 2@
5 ((f1+ gh —(f —(1 ) "'1 i dql

2F I 2

(22)2 ' ' ~'2Z2Z d{Z+Z)

1
a ds dcos (61)

For P =0 or t= 0, the y, integration just gives a factor 2v. In the last two lines of Eq. (61) (I, stands for the

magnitude of the center-of-mass momentum in the intermediate state in the s channel,

[s' —2s(s'+ p2) + (s' —p, ')']'"
2&s

(62)

We can also introduce the center-of-mass momentum in the initial or final states in the s channel,

[S'+2S(q' —222') + (q'+m')']'"p-
2

In terms of p and q, the scattering angle 6), to the intermediate state in Fig. 9 is given by

4pq, cos 8, = —2k'+ s + q' —nP —p' —s'+ (m'+ q') (s' —l1')/s. (64)

Using Eq. (64) the integral over cos8, in Eq. (61) can be transformed into an integral over k . Substituting
all these results back into (59), we find that the ABFST equation can be written in the form

2
2~ (q ~+ g(S) k2)

( q 0 ) R v ( P)1622 [s2+ 2'2(g m2) + (/+~2)2]1/2 (k2+ 2)2 ' (65)

The limits on the k' integration are obtained from Eq. (64) by setting cos8, =+ 1:
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k m(„ S

+
2

([s'+ 2s(q' -m') + (q'+m')'][s' —2s(s'+ p, ') + (s' —p, ')'])'".

The limit on the s' integration is the maximum s' consistent with conservation of energy. We can iterate
Eq. (65} once and obtain

A(s, q') =g'v5(s —p') +a(s, q'),

with B(s, q') satisfying

(6'I)

16m' [s'+ 2s(q'-m') +(q'+m')']'", „2 2 (k'+m')' ' (68}

The inhomogeneous term (the absorptive part of the box diagram) is given by
4 {s 4 2)1/8

B,(s, q') =16, . [m's+ p, 'q'+ p.
' —8m'p, '+s 'p, '(q'+m')'] '. {68)

The ABFST equation in the form (68), (69) forms the starting point for an investigation by Tiktopoulos and
Trelman.

V. NUMERICAL RESULTS FOR
ABFST EQUATION

The ABFST equation in the form (68) is relatively
easy to solve numerically. Since the equation is of
Volterra type, the iteration solution converges.
Furthermore, as has been known since the time of
the original papers, 9 the expectation value for the
number of particles grows logarithmically with s'.

2 2
~ep Gey

—400
l67r 2

n= clogs, and thus for any reasonable value of s,
n is a small number, n&10, say. This means that
the number of iterations necessary to achieve a
high accuracy is much less than the number of iter-
ations kinematically allowed by the value of s.

%e present in Fig. 10 some numerical results
obtained by straightforward numerical iteration of
Eq. (68). We chose the case in which the exchanged
particles (the sides of the ladder} have the pion
mass and the produced particles (the rungs of the
ladder) have the p-meson mass. The coupling con-
stant was chosen to have the value g /16m' = 3.182

18.0

2
—200

g = I. i 45 GeV
2

l6TI-

14.0—

12.0—
N

IQ.Q—

8.0—
1

—II}O

I I I I I I I I

-I.6 —
I 4 - I.P. —I.O -.8 —.6 —.4 -.2

t(GeV )

FIG. 7. The reduced residue functions obtained from
the Bethe-Salpeter equation in the ladder approximation
when the sides of the ladder have the pion mass and the
rungs have the p-meson mass. The solid curves are ex-
act results. The dashed curves are obtained by neglect-
ing the coupling between O(4) states. The units of P„are
(GeV) 2~~~), where n(t) is given in Fig. 6.

2.0—

Q I I I i J
-I.Q —.8 -.6 —.4 —.2 0 .2 .4 .6,8 1.0 1.2

u (0)

FIG. 8. The coupling constant g2/lex2rn2 vs 0. (0) for
the Bethe-Salpeter equation in the ladder approximation
with all masses equal: p, = m. The top curve is obtained
in the ladder approximation The middle curve ls ob-
tained for a potential consisting of the sum of the ladder
potential, Eq. (2), and the crossed-box potential, Eq,
(1S). The bottom curve is the lowest-order perturbation-
theory result.
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FIG. 9. Graph for the integral in the multiperipheral
integral equation with the notation used in Eq. (61). IO—

GeV' which produces a Pomeranchuk Regge pole
through the point o.(0) = 1 (see Fig. 6), In Fig. 10
we plot the cross sections for production of various
numbers of "p mesons" and also the total cross
section as the sum of these. According to Eqs. (60)
and (68) the n-particle cross sections are given by

( )
B„(s,-m„')

n
(

2 8 2 )1/21 (7o)

where B„(s, q') is the nth term in the iteration
solution of the equation. One sees from the figure
how the n-particle cross sections add up to give a
constant total cross section at high energies. The
magnitude of the total cross section is in agree-
ment with the value 0 = 1510 GeV ' = 587 mb obtained
from the Regge-pole calculation, Eq. (55), if one
inserts the value P„=321 GeV ' (see Fig. 7). The
calculation presented in Fig. 10 contains the con-
tributions of all Regge poles, not just the leading
Pomeranchuk pole. Therefore, if there exist com-
pl.ex Regge poles with large Rem and large residues,
they will produce oscillatory behavior in the total
cross section as suggested in Refs. 13 and 14.
There is no hint of any such behavior in Fig. 10.

Our calculation is not in disagreement with re-
cent calculations of Misheloff ' and Shei. ' These
authors do find complex Regge poles, but the real
part of o.(0) is quite small. Shet finds that if the

coupling constant is adjusted so that the Pomeran-
chuk pole goes through 1, the leading pair of com-
plex poles is located at o.(0) = —0.8+1.7i. We con-
clude that for the model discussed in this paper
there exist complex Regge poles, but the real part
of o.(0) is too negative and the residue too small
for the complex Regge poles to produce an appre-

IO IO

s(GeV )
2

IO

FIG. 10. The total cross section and the cross sec-
tions for the production of various numbers of particles
as a function of s, obtained by numerical iteration of Eq.
(68). The top curve is the total cross section obtained
as the sum of the cross sections for production of n "p

mes ons. "
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ciable effect in the total cross section.
Our main point here has been to demonstrate

that it is practical to solve the ABFST equation in
the form (68) by numerical iteration. Although the
example we studied is somewhat academic, clearly
the method could be used for more complicated
realistic cases. The iteration solution yields the

type of information given in Fig. 10, i.e., o„(s) as
a function of n and s. Although we have not pre-
sented any graphs of it, the iteration solution also
yields the off-shell q' dependence in B„(s,q'). This
may be useful or necessary for other calculations,
e.g. , the calculation of the one- or two-particle
distribution functions.
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In order to evaluate the contributions to the anomalous magnetic moment of the electron
(a, ), a method entirely based on computer techniques is developed. This method is embedded
in the framework of the functional formalism. As a first result, the contributions to the e
part of a& from diagrams with vacuum polarization insertions are derived.

I. INTRODUCTION

Some of the contributions from the 72 diagrams
contributing to the a' part of the anomalous mag-
netic moment of the electron [a, =2(g, -2}jhave al-
ready been calculated. ' Recently the measure-
ment of a, has been performed by Wesley and Rich'
with an accuracy of 6 ppm, so that a knowledge of
the remaining contributions is urgently needed.

One of the main features of this kind of calcula-
tion is the amount of algebra involved. A great
part of it can only be done reasonably by computer.
In fact, in the above-mentioned calculations, com-
puter techniques were broadly used. Two programs
devoted to symbolic manipulations were mainly
used: the REDUCE system of Hearn, ' and

SCHOONSCHIP, a machine code program devel-
oped by Veltman. ' In the method we are reporting,
a slightly different method is used, and all the
manipulations involved in the calculations are per-
formed by a computer. The program written by
one of us (J.C.) is intended to be general enough to
calculate the contributions of all of the relevant di-
agrams. To do this, we had to develop a suitable
method of renormalization and the appropriate cal-
culational techniques. It appeared that the func-
tional formalism framework' "and the well-known
Feynman method were suitable for our purpose.

The formulation of the renormalization theory in
the framework of the functional formalism permits
us to determine unambiguously the counterterms
which have to be subtracted from a diagram to


