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We show that by modifying the propagator in the Kadyshevsky equation, we can obtain an
infinite set of quasipotential equations which satisfy both Lorentz covariance and elastic uni-
tarity and of which the Logunov-Tavkhelidze-Blankenbecler-Sugar-Alessandrini-Omnes equa-
tion and the Gross equation are special cases. We also show that the perturbation scheme of
Chen and Raman, for using the quasipotential equation to obtain approximations to the Bethe-
Salpeter equation, can be greatly simplified by the use of resolvent-identity-type arguments.

In potential theory, the off-shell T matrix sat-
isfies the Lippmann-Schwinger equation, the inte-
gral form of the Schrddinger equation. Since the
free-particle Green’s function has the appropriate
discontinuity, elastic unitarity is guaranteed by
the equation if the potential is real and symmetric.!

In the relativistic case, we do not have a simple
equation like the Schrddinger equation, so we must
resort to the techniques of field theory. However,
equations of the same form as the Lippmann-
Schwinger equation can prove useful. The most
common example is the Bethe-Salpeter equation in
the ladder approximation. The terms obtained
from iterating this equation correspond to indivi-
dual Feynman diagrams, the so-called ladder
graphs. There is thus a simple immediate connec-
tion with field theory. In addition, it can be shown
that elastic unitarity is exactly satisfied between
the elastic threshold and the threshold for produc-
tion.?

There are, however, serious difficulties associ-
ated with the Bethe-Salpeter equation. Since it is
a four-dimensional integral equation, it only re-
duces to a two-dimensional integral equation upon
taking a partial-wave projection. In addition, there
are the difficulties associated with the indefinite-
ness of the Lorentz metric, making the equation
difficult to deal with except in simple models such
as the Wick-Cutkosky model.

In order to circumvent these difficulties, a sim-
pler equation has been proposed by Logunov and
Tavkhelidze,® by Blankenbecler and Sugar,? and by
Alessandrini and Omnes.® This equation is mani-
festly covariant, and the Green’s function is chosen
to have the discontinuity that will insure that the
solution satisfies elastic unitarity for a real sym-
metric “potential.” The equation, however, is
three-dimensional, and it reduces to a form which
is very similar to the Lippmann-Schwinger equa-
tion in the center-of-mass system. The equation
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for a given partial wave is a one-dimensional inte-
gral equation on which ordinary Fredholm tech-
niques can be used.

This equation is, however, not unique. Alterna-
tive equations, with the same desirable properties,
have been proposed by Kadyshevsky® and by Gross.”
This nonuniqueness stems from the fact that the
unitarity does not uniquely determine the Green’s
function, only its discontinuity. (In the nonrelativ-
istic case the Green’s function is unique, since it
is the Green’s function for the Schrédinger equa-
tion with incoming plane-wave boundary conditions.)

Following Kadyshevsky, we shall refer to any

relativistic equation with the above-mentioned prop-

(D 02y M| TNy, Gy A") = Py, Doy &IV |Gy, @5, XKD

erties as a “quasipotential equation.” We wish to
point out in this note that by modification of the
Kadyshevsky Green’s function we can obtain an
infinite set of such quasipotential equations of
which the Logunov-Tavkhelidze, Blankenbecler-
Sugar, Alessandrini-Omnes (LTBSAO) equation
and the Gross equation are special cases.

In the Kadyshevsky equation,® the intermediate
state is on the mass shell but off the energy-
momentum shell. In order to accomplish this, a
quasiparticle, with no quantum numbers, is intro-
duced to carry off the extra four-momentum so
that energy-momentum conservation can be main-
tained. The equation is® (Fig. 1)

+f(2w)‘3d4k1d4k2dx”<pl, Doy MKV [y, oy XK7) 6% ()2 = m2) 8" (B2 —m?)

X(K'" = 1€)™ 0% (k) + Ry = AK'" = qy = Gy + XK' )y, Ry, AK"" |T |q,, 45, XK") (1)

where X is an arbitrary four-vector satisfying A*=1, which determines the direction in which we go off the
energy-momentum shell. «, «’, and k'’ are parameters with the dimensions of energy, 7T is the T matrix,
V is the Born term, and &*(k,? —=m?)= 6(k,°)6(k,2 ~m?), The Kadyshevsky Green’s function,

G(ky, kyy Ai'") = (2m) (K" —1€)720" (k2 = m?) 6" (k,2 —m?)

satisfies

G -GV =(2m)%6(k'") 6" (k2 —=m?)6* (k,2 —m?) .

, (2)

®3)

It can thus be easily seen’® that if V is real and symmetric, V= VT, and if we put the external states on
shell by setting k= k' =0, we obtain the on-shell elastic unitarity relation

1
ImT(.bp pz; qu qz) = _—'quk],d"sz(pp pz; kp k2)6+ (klz - m2)5+ (kzz - m2)64(k1 + kz - q1 - ql)TT(kl’ kza qp qa) .

8n?

In order to simplify Eq. (1), we choose X collin-
ear with p, +p, and hence with g, +q, and &, +k,,
ie.,

P q, P q,

M Moo -
= 5 %

Ps Q2 P> dz

FIG. 1 The Kadyshevsky equation.

(4)

A= b +p, =1+ - ky+ Ry (5)
LBy + 2212 (@, + @, PT  [(Ry+ Ry 2T

We then go to the center-of-mass system,

§1= '§2=§7 al= -az=q~
In this frame, A will have only a time component,

A=(1,0,0,0). Since the external lines are on the

mass shell, we also have
M=18=@*+m*'2=E,, ©
B =a3= (G +m?)'2=E,.

The mass-shell 6 functions for the intermediate
state have the form

1 >,
&t (k? -mz) = W 5(’22 -— (k% +m2)1/z) . (7)
1

To obtain the half-off-shell equation, we further
set k' =0.
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We can then use the six 6 functions in Eq. (1) to
integrate over six of the variables by inspection,
and we have

>

k,=-kK,=k, k0=k)=(k®+m?)'2=E

K'=2(E,-E,). (8)

The initial, final, and intermediate states are thus
each specified by a single three-vector, p, 4, and
k, respectively, and Eq. (1) becomes

T@®,8)=VE,q+@mn= [ a3k v({5,k)

1 >
P G —
Ekz(Ek _Ea —iE) T(ky Q) ’

which is the Kadyshevsky quasipotential equation.
By our previous argument, we can easily see that

- ~ E.2 _m2\1~
ImT@®,q)=(87)2 d9k<._k_E_ﬂ> T(p, T*(k,q
kR

(10)

with E,=E,=E,, which is just Eq. (4) after we have
made use of the 6 function to integrate over 6 of the
variables.

The LTBSAO quasipotential equation and the
Gross quasipotential equation are usually obtained
by replacing the product of Feynman propagators
in the Bethe-Salpeter equation with a single propa-
gator which is chosen in such a way as to guaran-
tee that the elastic unitarity condition, Eq. (4),is
satisfied. In the first case, we replace

—i (k2 —m?—ie) (k2 -m? —i€)™!
5

by

1/2
475(Q- k)< k2> [4(m? - k) = s +i€]™t, (11)

where®

Q=p+DP=0,+dy =k +k,

and (12)
S= (Pl +p2)2 = (ql + q2)2= (kl +k2)2 .

In the center-of-mass system, this gives us the

equation

16, 9= V6,9 + 507

o 1 >
X.[V(p’k)Ek[E,f —(E, +i€)?] T, % .
(13)

Gross puts one particle on the mass shell, substi-
tuting for the Bethe-Salpeter propagator,

2m0% (k2 = m?)(ky? —m® —i€)™!,

which gives us the equation

16,9=VE,D+ [ g VG

1
X T
Equ(Ek —Etl —Z€)

TE,§. (14)

Going back to Eq. (1), we note that the invariants
associated with the intermediate state are s,
=(k,+k,)* and k''. The discontinuity condition for
the Green’s function, Eq. (3), which guarantees
elastic unitarity, involves the value of the Green’s
function at k'’ =0 because of the 6(k’’) factor.
Hence, we can multiply the Kadyshevsky Green’s
function, Eq. (2), by any dimensionless function of
s, and k'’, f(s,, k''), which satisfies for all s,

f(s,0)=1 (15)

and can still maintain both elastic unitarity and
Lorentz invariance.
As an example, consider the function

f(sk, ) (ﬁig;:) ’

which obviously satisfies the conditions. From
Eq. (8), we see that in the center-of-mass system
with k' =0, Vs,=2E, and '’ =2(E, - E,). Hence,
choosing a=B=1, y=0, we would multiply the
Green’s function in Eq. (9) by E,/E, giving us
Eq. (14), and choosing a=1, B=3, =0, we would
multiply the Green’s function by 2E,/(E,+E,) giv-
ing Eq. (13).

In the nonrelativistic limit,

(16)

>

ﬁz,kz, 312«7"2, Ep"m +§2/2m )
E,~m+4%/2m, E,~m +K2/2m .

Hence, in this limit, keeping only terms to lowest

order in [p|/m, Eq. (9) becomes

> ey > 2 3 >
16, 8)=VE,D+ gy [ PHVED

X = T(Ey a)’ (17)

k2 -42% —ie

which is the Lippmann-Schwinger equation.
We should further note that in the center-of-mass
system with x’=0, Eq. (16) becomes

. sy yEa+(1"7)E «
lse )| et (= |7, (19)

However, in the nonrelativistic limit, E ,E,-m,
SO

S (sp, k") =1 (19)
for the choice of f in Eq. (16). Hence, all the qua-
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sipotential equations obtained in this way go over
into the Lippmann-Schwinger equation in the non-
relativistic limit. Since any value of @, B, and ¥
will do, or, for that manner, any f satisfying
Eqgs. (15) and (19), we see that there are an infinite
number of equations all having the same desirable
properties and there seems to be no particular
reason to prefer any one of them over the others.

These equations could be considered either as
dynamical equations in their own right®*® or as
approximations to the Bethe-Salpeter equation.*'5"7
In particular, Chen and Raman in a recent paper,’®
have proposed a method of using the LTBSAO equa-
tion to obtain successive approximations to the
Bethe-Salpeter equation. We wish to point out that
by use of the resolvent-identity -type arguments
which we have previously introduced in the con-
text of the Faddeev equations, the perturbation
scheme of Chen and Raman can be greatly simpli-
fied.

We begin with two equations of the same form and
the same Born approximation but with different
Green’s functions,

T=V+VGT, (20)
T=V+VGT. (21)

For example, Eq. (20) could be the Bethe-Salpeter
equation and Eq. (21) the LTBSAO equation or the
Gross equation. We can also write Eq. (21) as

T=V+TGV=[1+TG]V (22)
and Eq. (20) as
T=V[1+GT]. (23)

Multiplying Eq. (23) by [1+TG], we have

[1+TG|T=[1+TG]V[1+GT]
or
T+TGT=1[1+6T]=T +TCT,

and bringing the second term on the left over to the

right, we have

T=T+TG'T, (24)
with
G'=G-G.

If Eq. (20) is the Bethe-Salpeter equation and

Eq. (21) is a quasipotential equation, then Eq. (24)
is a four-dimensional integral equation which is no
easier to deal with than the Bethe-Salpeter equation
itself. However, if we want a series of approxima-
tions, we need merely iterate,

T=T+TG'T+TG'TG'T, etc.

It can easily be seen that this perturbation series
is equivalent to that of Chen and Raman (except for
the fact that they have chosen to use the R matrix
rather than the T matrix. However, since the T
matrix and R matrix equations have the same form,
the argument would be the same for the R-matrix
formalism as for the T-matrix formalism). How-
ever, since we have already effectively used the
resolvent identity to “solve” the equations which
Chen and Raman have written down, at each stage,
we have only to evaluate an integral rather than
solve an integral equation.

If we are interested in the problem of the differ-
ence between two different quasipotential equations,
i.e., if Egqs. (20) and (21) are both quasipotential
equations, then Eq. (24) is actually a three-dimen-
sional integral equation which can be solved by the
same techniques that we would use on the quasi-
potential equation itself. Thus, while this problem
is both interesting and not very difficult, to our
knowledge there has been no numerical work done
on it as yet.
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We present some numerical results for Regge poles determined from the Bethe-Salpeter
equation with scalar couplings. Both the trajectories and residue functions are determined.
We find that it is a good approximation to ignore the coupling between different O(4) states.
The effect of a second-order correction to the potential (the crossed-box graph) is studied
and evaluated numerically. The relation of the Bethe-Salpeter equation with the multiperiph-
eral integral equation is reviewed, and we show how to solve the latter equation by numeri-
cal iteration. Some results are given which do not exhibit any oscillations in the total cross

section.

I. INTRODUCTION

For twenty years the Bethe-Salpeter equation®?
has been of great interest in particle physics be-
cause it provides a relativistically covariant, yet
tractable, equation for a two-body bound state or
scattering state. In its simplest form (the ladder
approximation) the equation sums the series of
Feynman graphs illustrated in Fig. 1 and is thus
formally similar to the nonrelativistic Schrédinger
equation with a potential corresponding to a rung
of the ladder. In 1962 a big advance was made by
Lee and Sawyer,® who showed that the Bethe-
Salpeter scattering amplitude in the ladder approx-
imation with scalar couplings is meromorphic in
the complex angular momentum half-plane Re!
> — 3 with at least one Regge pole in this region,

In simple terms the Regge poles are just bound
states for arbitrary (nonintegral) values of I.

More recently extensive use was made of the Bethe-
Salpeter equation by Domokos and Suranyi® and by
Freedman and Wang?® in their study of daughter
trajectories.

The important point, with respect to the daugh-
ter trajectories, is the four-dimensional rotational
invariance of the equation as applied to a bound
state with total energy zero [P=0 in Eq. (1) below].
For nonzero values of the total energy the equation
has the usual three-dimensional rotational invari-
ance. At zero energy the additional symmetry
implies that the Regge poles appear in families, a

leading trajectory at [ = @ with daughters atl=a -1,
a~-2,.... This O(4) symmetry is also extremely
important for the practical purpose of solving the
equation numerically, and this is the point we are
most interested in for this paper. Because of its
covariant structure the Bethe-Salpeter equation is
a four-dimensional integral equation. If one makes
the usual angular momentum decomposition, one
obtains a two-dimensional integral equation. While
it may be feasible to solve such an equation numer-
ically on a computer in simple cases, it is cer-
tainly difficult and expensive. On the other hand,
for total energy zero the additional symmetry
allows us to expand in four-dimensional spherical
harmonics. The equations decouple and we are

left with a one-dimensional integral equation. This
can be easily solved numerically by approximating
it by a matrix equation. At nonzero total energy
the four-dimensional symmetry of the equation is
broken. However, we can still expand in four-
dimensional spherical harmonics to obtain coupled
one-dimensional integral equations. If we are
sufficiently close to zero total energy, the coupling
between amplitudes will be small and we need keep
only a few coupled amplitudes to obtain an accurate
result. Some numerical calculations of the Regge
poles «(t), using this method, have been made by
zur Linden.® Earlier, less complete results were
obtained by Chung and Snider” using the two-dimen-
sional integral equation. We present in this paper
some additional calculations of «(¢), and also some



