
3078 A. McDONALD AND L. R. RAM MOHAN

*Work supported by the U. S. Atomic Energy Commis-
sion under Contract No. AT(11-1)-1428.

S. Weinberg, Phys. Rev. 177, 2604 (1969}; Phys. Rev.
Letters 22, 1023 (1969).

S. Fubini and G. Furlan, Lett. Nuovo Cimento 3, 168

(1970); also see S. S. Shei, Phys. Rev. 188, 2274 (1969).
3C. Cronstrom and M. Noga, Nucl. Phys. B15, 61

(1970); M. Noga and C. Cronstr5m, Phys. Rev. D 1,
2414 (1970).

J. Pasupathy, Phys. Rev. D 2, 357 (1970).

PHYSICAL REVIE W D VOLUME 3, NU MBE R 12 15 JUNE 1971

Baryon Annihilation and Exotic Exchange*

Charles B. Chiu
California Institute of Technology, Pasadena, California 91109

and Institute for Theoretical Physics, State University of Neu York, Stony Brook, Nese York 11790

Rudolph C. Hwa
Institute for Theoretical Physics, State University of New York, Stony Brook, Neu York 11790

(Received 1 October 1970; revised manuscript received 27 January 1971)

Within the framework of duality and quark diagrams, we suggest the importance of connect-
ing the annihilation processes in BB collisions to the exchange of an (e) trajectory with qqqq
quark content. It is argued that this e should be an exchange-degenerate pair with natural
parity and I=0. It is coupled strongly to the BB system at t =0. For the positive-t region, it
is expected to be manifest as a physical vector meson with G = -1 at around 1 GeV. Available
data do not rule out its existence.

I. INTRODUCTION

In recent years the idea of duality has been
proven to be successful in the study of hadron phy-
sics. The relationship between the Regge poles in
the s and t channels is made particularly trans-
parent by the use of quark diagrams. ' However,
the application of the quark diagrams to the baryon-
antibaryon system is hindered by the appearance of
four-c(uark (qqqq) states, which cannot be inter-
preted in the conventional duality picture based on
the usual quark model. It is the purpose of this
paper to give a specific interpretation for these
four-quark objects in terms of the annihilation
process in the s channel and to correlate them with
exotic Regge trajectories in the t channel.

Let us first review the status of our present
understanding about the exotics. All the well-
known mesons have thus far been classified in the
l and the 8 representation of SU(3). This regularity
suggests that these mesons are made out of a qq
pair. The underlying dynamical reason for having
these mesons associated with only a single qq pair
instead of the exotic multi-qq pairs is not clear.
In fact, the possibility for the existence of mesons
made out of the qqqq exotic states has been specu-
lated by various authors, for example, in connec-
tion with the quark graphs, ' and also in connection
with the explanation of the A., splitting. ' Experi-

mentally, much effort has also been devoted to the
search for the I-Y exotic particles, belonging to
the 10, 10*, and 27 representations. No conclusive
evidence has been advanced for their existence. '
On the other hand, in the crossed-channel physical
region, there seems to be some indication in favor
of the exchange of the I-7 exotic quantum number.
The effect observed here is relatively weak and it
could alternatively be attributed to the contribution
of Regge cuts. It seems that Regge trajectories
associated with the 10, 10*, and 27, if they exist at
all, are only weakly coupled to the hadronic system.
Furthermore, the lack of evidence for the corres-
ponding physical particles suggests that these tra-
jectories may turn over in the positive-t region
before reaching the lowest physical angular mo-
mentum, a rather common phenomenon in potential
scattering.

The exotic trajectories which we consider in this
paper differ from the ones discussed above. Their
existence is motivated by the appreciable cross
section of baryon-antibaryon annihilation processes,
so they must couple strongly to the baryon-antibar-
yon system at least at t= 0. They appear in an ex-
change-degenerate pair, which we shall label'
collectively by e. Some consequences of our pro-
posal are as follows:

(1) The energy dependence of the baryon anni-
hilation cross section should exhibit a Regge be-
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havior with o „-s-'~'.
(2) The annihilation cross sections for PP and

pn should be comparable.
(3) The conventional Regge-pole model for bar-

yon-baryon and baryon-antibaryon scattering
should be modified with the inclusion of the e con-
tribution.

(4) There should be a new vector meson in the
1-GeV region, the existence of which is also sug-
gested in Ref. 6 in connection with the explanation
of the width of the diffraction peak for NN scatter-
ing.

II. THE CONVENTIONAL REGGE-POLE MODEL

with vr being the signature. Other terms in Eq. (1)
are given by similar expressions. Since a~(0) = 1,
the Pomeranchon contribution gives the asymptotic
cross section. The other terms with u(0) &1 con-
tribute to the energy-dependent part of the cross
section. Notice that the sum of the energy-depen-
dent part of the PP and Pn cross sections is much
larger than the difference of the same cross sec-
tions. Also, the PP and the pn cross sections are
relatively flat. These two features together imply
that the f and &u contributions (I, =0) dominate
over the p and the A, contributions (I, = 1), and that
the conditions implied by exchange degeneracy are
approximately satisfied, i.e.,

Vfe review briefly the conventional Begge-pole
description for the nucleon-nucleon and the nucleon-
antinucleon total cross sections. The general
features of the data are illustrated schematically
in Fig. 1. Here one assumes that

v(pp) =vz+vy+vu+va, +vp~

g(Pll) = g~ + gg + 0' ~ —vg —gp ~

(1)
v(ps ) = gp + vy —v (

—vg + v
p ~

n, (t) = a.(t), u, (t) = u„(f),
P~(t) = P.(t), and P, (f) = P (f). (4)

For our discussion below we shall ignore the I, =1
contribution and consider only the pp and pp cross
sections. For later convenience, we use A to
designate f and co collectively. Thus from Eq. (4)
we get

v(pp) =v +v~ —v = up,

Sg ImA~
k~ (2)

with k being the c.m. momentum. The symbol A~
stands for the t-channel helicity-nonf lip amplitude
which is parametrized by

g(pp) = gp+vy —g ~+gg —vp ~

where for example the term 0~ stands for the
Pomeranchon contribution to the total cross sec-
tion,

g(pp) = gr + vs, where gs = vy + g

The quark diagrams' for the Pomeranchon ex-
change to both pp and pp scattering are illustrated
in Fig. 2(a). For PP scattering with ft exchange
the diagram is shown in Fig. 2(b). According to
the Freund-Harari hypothesis, the Pomeranchon
in the t channel is dual to the background contri-
bution in the s channel. ' The t-channel B trajec-
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FIG. 1. A schematic illustration on the total cross sec-
tions for the nucleon-nucleon and the nucleon-antinucleon
scattering. For detailed data, see Ref. 9.

FIG. 2. Quark graphs for (a) the Pomeranchon ex-
change, (b) the R exchange, and (c) the e exchange.
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tory by assumption is made out of qq as illustrated
in Fig. 2(b). Notice that here the s-channel inter-
mediate state consists of the qqqq lines. Unlike the
situation for the meson-meson scattering, it is well
known that for the baryon-antibaryon case, the
nonexotic mesons of one channel cannot "bootstrap"
the nonexotic mesons in the crossed channel. Also,
in a conventional Regge-pole model, according to
Eq. (5), the graph such as the one shown in Fig. 2(c)
is dismissed altogether.

III. THE ANNIHILATION CROSS SECTION
AND EXOTIC EXCHANGE

In this section we present our argument that the
diagram such as Fig. 2(c) should not be discarded,
in contrary to the usual Regge-pole model men-
tioned above. This diagram is expected to give an
important contribution to the cross section.

To see this, we start with the s-channel unitarity
relation for baryon-antibaryon (BB) scattering

ImA, , =Q p, A, ,A„+Q p~A,.~A~,

The intermediate states in the above unitarity sum
are divided into two categories: those states
(labeled a) without any BB pairs and those (P) with

BIT pairs. Thus A, , is the annihilation amplitude
while A, ~ is the elastic or production amplitude.
Our task below is to motivate a relationship be-
tween the annihilation cross section and the
imaginary part of Fig. 2(c).

We start with the annihilation amplitude for the

process BS-MM, where& signifies a meson. ' A
complete set of quark diagrams for this amplitude
is illustrated in Figs. 3(a)-3(c), which we denote,
respectively, by E„E„and E,. In the dual-res-
onance model the amplitude E for annihilation into
two mesons is a sum of these three terms:

E=E.+E,+E, . (7)

It is evident from Fig. 3(a) that E, represents the
term which has poles in the s and t channels, dual
with respect to each other. Similarly, E, is the
su term, and E, is the tu term.

In computing the two-meson contribution to the
first term on the right-hand side of Eq. (6), we
have

ImA, , (MM) fd'D, p,IiF (8)

where the integration is over all angles of the two-
meson system. For the purpose of computing the
annihilation cross section, the over-all t of A, , is
zero. In the energy region that we shall consider,
each E in the integral has significant contribution
only in the peripheral regions. Hence, the integral
may be divided into two parts: One is over the
forward region where the dominant contribution is
associated with the t-channel baryon exchanges
arising from the terms F, and E, ; the other is
over the backward region where the u-channel bar-
yon exchanges due to E, and E, are important.
Substituting Eq. (7) into Eq. (8) yields nine bilinear
terms in the integrand and, consequently, 18 pieces
of integrations in general, counting forward and

backward parts separately. Peripheral dominance
implies that the t-u interference terms are negli-
gible; they are symbolically

I
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)u (bj
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FIG. 3. Quark diagrams for the BB MM amplitude:
(a) st dual diagram F„(b) su dual diagrams Fb, and (c)
tu dual diagrams F, .

FIG. 4. Quark diagrams for (a) F~ F~~, (b) F~ F~+E~ F ~,
and (e) &~ &~t.
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EbEb + Fa Fa

are small to the second degree, thus even more
negligible. The only terms that we need to con-
sider are then

a Ea + Fa Ec + EcFa + EcFc
F

(9)

E E +F F, +E,E +F,F, ,
B

(10)

ImA, , (MM) =I~+I~

Using the quark diagrams in Fig. 3, we exhibit the
four terms of I~ in Fig. 4 in the same order. Iden-
tical diagrams apply also to I~ if the exchange
channel of each half of each of the diagrams is
interpreted as the u channel.

For annihilation into many mesons the quark
diagrams corresponding to E„E„and E, are as
shown in Figs. 5(a), 5(b), and 5(c), respectively.
In the dual model the production of the mesons may
be described either by a multiperipheral array, or
as decay products of resonances. It is easy to see
in the multiperipheral description that when these
multime son annihilation amplitudes are inserted

M

(a)
M

M

r (s.F,'+F,E.'+ H. f. +If (F.t,'+~ F,'.+H.c.),
F B

where the labels F and B under the integral signs
denote forward and backward regions, respectively.
The terms

into the unitarity equation, the dominant terms are
those in which each pair of multi-Regge links are
either both forwardly peaked or both backwardly
peaked. Thus the two major pieces of unitarity
integrals for each intermediate state of a fixed
number of mesons are analogous to Eqs. (9) and

(10). Alternatively, these expressions can also be
obtained by considering diagrams with only one
Regge link between two clusters of particles.
Duality does not prefer one over the other mode
of description. The four terms in (9) are consec-
utively illustrated in Fig. 6.

The problem now is to determine which quark
diagrams of A, , among those in Fig. 2 have the
appropriate imaginary parts corresponding to the
various terms in Figs. 4 and 6. We must admit at
the very outset that we have no rigorous way of
establishing this correspondence, since the appli-
cation of unitarity to dual diagrams have never
been worked out. Another way of expressing the
difficulty is that we have no consistent rules to be
applied to the quark diagrams when the interme-
diate state in the unitarity equation is integrated
and summed over. We suspect that this is related
to the difficulty of unitarizing the dual-resonance
amplitude. Fortunately, what we need here is not
a quantitative determination of the correspondence,
but a qualitative motivation for the existence of
the exotic exchange, Fig. 2(c). This we shall be
able to do.

Let the BB state be divided into two types: those
having one qq pair annihilation, (i,), and those
having two pairs annihilated, ~i,). We need not
consider those states that have no quark annihila-

(b)

(c)

(c)

FIG. 5. Quark diagrams for the multiparticle annihila-
tion amplitude: (a) st dual diagram G, , (b) su dual dia-
gram Gb and (c) tu dual diagram Gc ~

FIG. 6. Quark diagrams for (a) G,G, (b) G~G~+ G~Gt„
and (c) G, G~.
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tions since we are interested in the annihilation
part of the cross section. Clearly, the diagram
in Fig. 2(b) corresponds to (i, A~i,) while that in
Fig. 2(c) corresponds to (i, ~

A i,) . Presumably,
taking the imaginary parts of these amplitudes
does not change the topology of the quark lines.
Now, the right-hand side of the unitarity equation
is given by the sum of the diagrams of the types
shown in Figs. 4 and 6. It is obvious that the dia-
grams in Figs. 4(a) and 6(a) should contribute to
Im(i, ~A~i/ while those in Figs. 4(c) and 6(c) should
contribute to Im(i, (A~i,). The ambiguity lies in the
interpretation of Figs. 4(b) and 6(b). A cross term
between ~i,) and ~i,) cannot directly be identified
with a meaningful diagram for BB scattering. If
one observes that the crisscross lines in these
diagrams start and end at the same BJ3 states, and
thereby interprets these diagrams as contributing
to Im(i, ~A~i, ), then two features ensue that are not
attractive. First, an ~i,) state is turned into an

~i,) state by the integration over the phase space.
Secondly, such a rule is not helpful in understand-
ing the meson scattering problem. Rejecting such
an interpretation, we are forced to suppose that
these cross terms contribute partly to Im(i, ~A~i,)
and partly to Im(i, ~A~i,), the relative proportions
being unknown.

Let us now attempt a rough estimate of the
strength of the exotic exchange. In the interest of
clarity we confine our attention here to the two-
meson annihilation case, the extension to the
multimeson case being straightforward. Moreover,
to avoid repetition, we examine explicitly only the
forward integral Iz as given by Eq. (9); the pro-
cedure for studying the backward integral IJ, is
similar. For fixed t and large s, the Regge behav-
iors for F, and F, are

(12)

(13)

We have included in Eq. (13) the signature factor.
Let the baryon be the nucleon, and the meson be
the pion. Then the relevant trajectories exchanged
are the N (even signature) and the 6 (odd signa-
ture). The signature of the trajectory affects only
the over-all sign of the cross terms F,F, +F,F, .
Evidently, Eqs. (12) and (13) imply

(14)

F,F, +E,E, =P's'" '(+2sinvo. ),

p2 2 N,-l
C C

(15)

We see from Eqs. (14) and (16) that the contribu-
tions of F,E, and F,F, to Im(i, ~A(i,) and lm&f, lAI~', &,

respectively, are equal and positive. The ambig-
uous term, Eq. (15), is positive or negative de-

pending upon the value of a. It is known empir-
ically' that

n~ (t) = -0.39+ 1.01t,

o.~(t) =0.15+0.90t.

(17)

(18)

Thus near t=0 where the right-hand side of Eq.
(15) is greatest in magnitude, its sign is negative
for both signature cases. Positive value com-
mences for t& -0.6 (GeV/c)' in the case of N ex-
change, but for t ~ -0.16 (GeV/c)' in the case of
6 exchange. In spite of the strong damping of the
residue factor P(t) at large t, thi-s oscillatory
behavior does provide a suppression effect on the
contribution of the cross terms to the integral
over t in Eq. (9), although not enough to make it
positive in the net. We therefore argue that the
contribution of the cross terms, when divided
between Im(i, ~A)i,) and Im(i, ~A~i,), does not upset
the rough equality of the two established above. It
is interesting to note that in the meson-meson
scattering case the cross term is proportional to
costa which is very small near t=0, and is there-
fore insignificant in its contribution to the unitarity
integral.

The multimeson contribution can be considered
similarly. We can then conclude from the above
discussion that Im(i, ~A~i,) contributes to roughly
half of the total annihilation cross section. Actu-
ally this is an underestimate. This is because
there exist additional contributions to Im(i, ~A~i,)
arising from certain terms in the second sum of
Eq. (6). Those terms may be represented by dia-
grams similar to the one in Fig. 6(a) except that
one or more of the single closed loops are replaced
by double concentric loops. These contributions
are positive definite and therefore increase the
above estimate.

The experimental annihilation cross section turns
out to be quite sizable. In fact, its magnitude is
comparable to the difference between the pp and

PP cross sections. For example, we have, "at
3.28 Gev/c, c„„(pP)= 33.8 + 3.2 mb and o(pp) —o(PP)
= 32.2 + 2.3 mb, and at 7.0 GeV/c, o,„„(pP)= 23.6
+ 3.4 mb and o(PP) —o(pp) = 17.6+ 1.2 mb. Over half
of this annihilation cross section comes from the
diagram in Fig. 2(c). A cross section of such a
magnitude must be accounted for by a significant
t-channel exchange. We therefore propose that the
qqqq object exchanged in the t-channel is to be
represented by a Regge pole, labeled e, which is
dual to the s-channel annihilation processes. Thus,
contrary to the conventional Hegge-pole model in
which the entire difference between the pp and PP
cross sections is explained by a pure qq exchange,
here we assert that a significant portion of this
difference should be accounted for by the qqqq
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exotic pole exchange. As will be shown below, this
exotic pole is expected to be high lying, in contrast
to the usual notion of low-lying exotic cuts arising
from the elastic iteration of ordinary poles. The
departure originates in the completeness of our
unitarity sum in which the number of annihilation
channels is numerous even at moderate energies,
a circumstance where the usual Regge-cut pre-
scription is known to be inadequate.

IV. PROPERTIES OF &

1. J-parity. Since the e contributes to the total
cross section, it has the J-parity, P( 1) =+-1.

2. IsosPin. To investigate the isospin of the e,
it is useful to look at the quantity

o,„„(pp) 1+r
o,„„(pn} 1 —r '

where

e, that of f T. he contribution of e, and e, to the

pp elastic amplitude at t=0 is given by

~ (o) n& (0)
I (22)

where n, (0)=-,'. (See Sec. IV4 below. ) Since anni-
hilation cross section is a positive-definite quantity,
we must have Im A, &0. This in turn implies that

a, does not choose nonsense at n, =1; otherwise,
we would have P &0."

4. Zero intercept o., (0). The low-energy pp
differential cross section is approximately satu-
rated by the optical cross section. " This implies
that the pP elastic amplitude is roughly pure imag-
inary at t= 0. Now, we know that the contribution
from the P is purely imaginary, while that from
the R is also nearly so, since o.s(0) =-,'. Thus the
c part of the amplitude must also be imaginary.
This agrees with the intuitive notion that the anni-
hilation process is .purely absorptive. The phase
factor of the e amplitude is therefore

o,„„(I,=1) a,„„(p p)
—o,„„(pn)

o,„„(l,=0) o,„„(pp)+o,„„(pn)
' (20)

or

exp[ -ivu, (-0)j =i

o,„„(pp)= cr,„„(pn) (21)

at high energies.
3. Exchange-degenerate pais. The absence of

the annihilation cross section in the PP channel
together with the fact that f and &u are exchange-
degenerate implies that the e should be a pair of
exchange-degenerate trajectories. We denote the
odd signature one by c, and the even signature one
by c,. Except for the quark content and a possible
difference in SU(3} assignment, the e, trajectory
has the same quantum number as that of ~ and the

For annihilation at rest, "it is found that this ratio
q is 1.45 ~0.07. It follows then that x=0.2. Con-
sequently, if the notion that the annihilation cross
section is governed by e exchange is valid at NN

threshold, then the isovector part of e must be
small. In fact, it should persist in being small
even at higher energies for the following reason.
The I, =1 channel of NN consists of p, A, and the
isovector ~. The amplitude for this channel is
small because the cross sections for pn- nP and

PP- nn are both small. The p and A, contributions
are by themselves small as can be inferred inde-
pendently from the K P-K'n cross section. This
is because e does not couple strongly to KK as will
be discussed below under Sec. IV8. Thus there is
no compelling motivation for introducing an iso-
vector e." Henceforth we shall regard E as an
isoscalar object. Since the annihilation cross
sections at high energies now receive contributions
from the two isoscalar objects c and co, it is inter-
esting to note that our analysis suggests

o', (0) =-,'.
The difference between the PP and PP total cross
sections should be accounted for by n and n, .

1
The observed energy dependence of this difference
is indeed consistent with the power law s"-', where

14
2 ~

5. Slope of n, (t). In our present scheme, the
exchange of the e in the t channel is dual to the
annihilation process in the s channel. From in-
spection of Fig. 2(c) the latter can alternatively be
described by the 8 trajectories and their daughters
in the direct channel. If we assume the approxi-
mate validity of local duality, then the slope of
n, (t) in the negative t region near t= 0 should be
similar to that of the ordinary trajectories. " This
argument on the slope is not applicable in the pos-
itive t region.

6. SU(3) assignment. The qqqq states can be in
the 1, 8, 10, 10*, and 27 representations. However,
since the e has the quantum number I= 0 and Y = 0,
it cannot be in 10 or 10*. From the SU(3) Clebsch-
Gordan coefficients one finds that a 27 for c would
lead to r = —', , where r is defined in Eq. (20). Thus
Eq. (19) implies that q= -7. This is ruled out
since the e contribution to o(pp) and o(pn) must be
positive definite. Hence e must belong to either
1or 8.

7. Quark spin. For a qqqq system, there are
three possible values for the total quark spins,
j= 2, 1, and 0. Denote the relative angular momen-
tum between qq and qq by L. We assume that the
Regge recurrences correspond to increasing
integer values of L. Then for L =0, the total angu-
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lar momenta J and the parity P of these states are
J =2', 1', and 0'; for L = 1, they are J = 3-, 2-,
1, and 0, etc. Consider now the L =0 states.
The 2' state cannot lie on the e trajectory, since
the associated 1- state would have to be nonsense,
a situation which violates Sec. IV 3 above. The 1'
state has the wrong J-parity (see Sec. IV I). The
0' state can, and we suggest that it does, lie on the
e trajectory. Now, according to Sec. IV4, we have
o., (0) =-,', so the point n, = 0 occurs in the negative
t region. There can be no physical particle there.
The physical particles on the exchange-degenerate
e trajectory are then 1 at L = 1, 2' at L = 2, and
3 at L =3, etc. This trajectory is to be associated
with the SU(3) octet or singlet. Whether it is in a.

pure 1 or 8 or a mixture of the two is to be deter-
mined by the appearance or absence of the other
SU(3) partners. We remark in passing that if it is
to be identified with the object needed in Ref. 6,
then it must not be in a pure 8. Since e is the
leading qqqq trajectory, the symmetry implied by
the quark model must be so badly broken that the
trajectories with the triplet quark-spin and other
SU(3) multiplets are much lower lying. We do not
have a theory for such a breaking.

8. Decay modes. We adhere to the rules of
Refs. 1 and 2 for the quark diagrams. In particu-
lar, the e trajectory couples directly to the BB
system but not to the nonexotic meson systems.
Its coupling to these mesons can be achieved only
through a second-order effect, e.g. , through a
BB loop. This is illustrated in Fig. 7. If there is
a vector meson on the c trajectory, we expect
that it decays weakly into m' v m' (or wp) and my.

The relative ratio for these two decay modes
depends on the mass of this e, vector meson and
can be determined in a manner similar to that for
the (u. '

V. CUTS AND DUALITY

Within the pole approximation our proposal im-

plies that

o(pp) = o~

(24)

o(PP) =os +oz+&g ~

Thus the difference between the pp and pp cross
sections is given by 0„+0,. Since the annihilation
cross section we considered is approximately equal
to this difference, it appears from Eq (24) that.
the R contribution should be at most about half
that obtained from the usual Regge-pole model.
In reality, our estimate on the R and e contribution
is expected to be obscured somewhat by the cut
contribution. For example, to the order of the

N
I

I

l

l

I
I

I

(N
I

I

FIG. 7. The coupling of the e& meson to three pions
via an intermediateN2V loop.

double Reggeon exchange, the amplitude can be
symbolically written as

A =[A +A. 3(A +A +A, )j
+ [AR+A~(Ate+As+A, )]

+ [A., +A, Ign (A +A +A, )] . (25)

The terms on the right-hand side involving the
convolution (3 are eut contributions. Specifically,
the term Apm)A, , for example, is illustrated in
Fig. 8 where the two shaded blobs contain the
"third" double- spectral functions.

Within our present scheme, in the s-channel
physical region near t = 0, the duality picture can
be schematically represented as follows:

[A, +cutsj, —[As+ ~ ~ j, ,

[A„+cuts], —[A, + ~ ~ ~ ], .

(26)

(27)

VI. DETECTION OF THE cl MESON

As in the case of the 10, iO* and 2V, where the
trajectories are conjectured to turn over before
reaching any physical angular momentum states,
it is conceivable that the e being made out of qqqq
could eventually also turn over. However, since

In Eq. (26) the t-channel e contribution together
with the appropriate cuts is dual to the s-channel
Regge trajectories A and their daughters having
the qq quark content and part of the production
cross section. The other energy-dependent piece in
the t-channel amplitude given by the left-hand side
of Eq. (27) is dual to e plus other contributions in
the s channel. We do not expect that the e and its
daughters could provide an adequate description
for the qqqq system in the physical s region in
spite of the fact that the t-channel e trajectory at
t=0, being a high-lying J-plane singularity, does
control the asymptotic behavior of the s-channel
annihilation cross section. In the physical region
of the t-channel, near s = 0, the duality relation is
identical to that given by Egs. (26) and (27) except
for the interchange of s and t.
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FIG. 8. A diagram for the P-e Regge cut.

o', (0) =
2 and the local duality picture favors n, (t)

to have the usual slope in the negative t region
near t=0, we suggest that it should cross at least
the J=1 value. If one allows an uncertainty of
1 GeV' in extrapolating the trajectory from n, = 2

to n, = l, the trajectory n, (t) would cross the J= 1

point somewhere between 0.7 and 1.2 GeV. This
mass range is compatible with what is needed in
Ref. 6. Provided that the NN vertex function does
not have too strong a dependence on the nucleon
four-momentum, we anticipate that such a vector
meson should be detected. Because of the coupling
scheme discussed in Sec. IV8, this meson can be
effectively produced only in the baryon-antibaryon
annihilation processes" and in backward scattering
processes involving baryon exchange. We have
looked at some m'n m' invariant-mass plots from

pp annihilation. Also, in the reaction"
& p- Aom'7t-mo the m'm-mo invariant-mass plot
associated with the forward A has been compared
with that of the backward A. Although there is no
obvious signal for e„ those data we have studied
are relatively poor in statistics and they do not
rule out the possibility for its existence. However,
the data do seem to suggest that, if e, exists, its
coupling to NN is no stronger than that of q'(958).

The situation is more uncertain in the energy
region beyond 950 MeV. Future experiments in-
volving a careful study of the 3n. invariant-mass
plots for the backward —as opposed to the for-
ward —produced baryons in the neighbor. hood of
the 1-GeV region will be a crucial test deciding on
the existence of such an object. Also, it might be
of interest to study the neutral missing-mass spec-
trum again near the backward direction for re-
action MB- B+ (missing mass)' in the event that

e, has some unusual prominent decay modes.

VII. CONCLUSION

The duality picture for the baryon-antibaryon
system is investigated. We point out the impor-
tance of the special role which annihilation pro-
cesses play in the BIT system. We have seen that
a significant part of the annihilation processes are
dual to the exchange of an exotic e. We have
studied the properties of this e and considered its
effects on the phenomenology of the total cross
sections. Available data on the relevant mass
spectrum does not rule out its existence. Future
experiments with better statistics are suggested
for its detection.
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We show that by modifying the propagator in the Kadyshevsky equation, we can obtain an
infinite set of quasipotential equations which satisfy both Lorentz covariance and elastic uni-
tarity and of which the Logunov-Tavkhelidze-Blankenbecler-Sugar-Alessandrini-Omnes equa-
tion and the Gross equation are special cases. We also show that the perturbation scheme of
Chen and Raman, for using the quasipotential equation to obtain approximations to the Bethe-
Salpeter equation, can be greatly simplified by the use of resolvent-identity-type arguments.

In potential theory, the off-shell T matrix sat-
isfies the Lippmann-Schwinger equation, the inte-
gral form of the Schrodinger equation. Since the
free-particle Green's function has the appropriate
discontinuity, elastic unita, rity is guaranteed by
the equation if the potential is real and symmetric. '

In the relativistic case, we do not have a simple
equation like the Schrodinger equation, so we must
resort to the techniques of field theory. However,
equations of the same form as the Lippmann-
Schwinger equation can prove useful. The most
common example is the Bethe-Salpeter equation in
the ladder approximation. The terms obtained
from iterating this equation correspond to indivi-
dual Feynman diagrams, the so-called ladder
graphs. There is thus a simple immediate connec-
tion with field theory. In addition, it can be shown
that elastic unitarity is exactly satisfied between
the elastic threshold and the threshold for produc-
tion. '

There are, however, serious difficulties associ-
ated with the Bethe-Salpeter equation. Since it is
a four-dimensional integral equation, it only re-
duces to a two-dimensional integral equation upon
taking a partial-wave projection. In addition, there
are the difficulties associated with the indefinite-
ness of the Lorentz metric, making the equation
difficult to deal with except in simple models such
as the Wick-Cutkosky model.

In order to circumvent these difficulties, a sim-
pler equation has been proposed by Logunov and
Tavkhelidze, ' by Blankenbecler and Sugar, 4 and by
Alessandrini and Omnes. This equation is mani-
festly covariant, and the Green's function is chosen
to have the discontinuity that will insure that the
solution satisfies elastic unitarity for a real sym-
metric "potential. " The equation, however, is
three-dimensional, and it reduces to a form which
is very similar to the Lippmann-Schwinger equa-
tion in the center-of-mass system. The equation


